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Abstract

A method of real-time dvnamical simulation for laser interferometric gravitational wave de-
tectors and various physical effects related to these are presented here. The method is based on
a digital filtering approach and is applied with success for the dynamical simulation of 2-mirror
cavities (both low and high finesse), 3-mirror coupled cavity and a full length power-recycled inter-
ferometer with mirrors having longitudinal motion. The details of the simulation procedure vary in ..
different cases and sometimes new ways are developed to perform analytical calculations describing
field evolution in various coupled or uncoupled cavities. Computer experiments performed with
the fast simulation code for 3-mirror cavities also establish a rule for the appearance of resonance
peaks in coupled cavities. Details related to the appearance of the dynamical peaks are also in-
vestigated and the related physical points are discussed. The final analytical representation used
for the fast simulation of a full length power-recycled interferometer is analogous to a 2-mirror dy-
namical cavity with time-dependent reflectivities, when intra-cavity fields of the interferometer are
expressed together in a state-vector representation. A detailed discussion establishes relationship « -
among physical effects pertaining to field evolution in 2-mirror cavities and coupled cavities or the . . :
full interferometer. A proposal is made for a relatively easier start-up procedure for a dynamical‘
power-recycled interferometer to bring it near to the operating condition from time zero.

1 Introduction

" Gravitational wave detectors based on laser interferometry are currently being developed by varioi

. collaborating groups [1. 2, 3, 4]. Some common features to the long baseline facilities (as shown in%¥
Fig.1) are these: (a) To increase the storage time of light, Fabry Perot (FP) cavities to be used. ini,
the arms, (b) To maximise signal to noise ratio, the arm length difference to be so adjusted that the
output port remains on the dark fringe, (c) To reduce the shot noise, high power laser to be used, in
conjunction with power recycling technique[3], in which. at a dark fringe operation, the outgoing light~
is recycled back into the interferometer by putting a mirror in front of the source, thus enhancing the .
laser power, (d) To isolate mirrors from the seismic noise, all of the six mirrors to be suspended as-
pendulums,

The full interferometer is thus a system of coupled cavities. In addition to maintaining the dark
fringe condition, all of these cavities are to be kept on resonance with the laser source. Thisisa difficult .
job since the suspended mirrors, by getting excited by the residual seismic noise, may oscillate around’
their equilibrium points at low frequency with an amplitude of some tens of wavelength.

All these features provide newer dimensions to the interferometry of the gravitational wave detec- ",
tors. It should be noted that the physical effects related to dynamical single or coupled cavities and -
interferometers have been hardly discussed in the literature because of the simple reason that prior
to the time the gravitational wave detectors got conceived, people could not even imagine designing -

TR

such a system for some useful purpose.

A detailed investigation of these effects is necessary for a complete understanding of the operatlon...

_ of interferometric detectors. At this point of time. it is. therefore. extremely important to develop,

 numerical simulation programmes that mayv predict the behaviour of the detector with sufficient level‘_' :

© v m=Uof accuracy. The need of this also arises in order to evaluate and optimize parameters of different

components of the interferometer. We necd to know how fields at various locations of the mterIerometer i
change as the mirrors move, so that we can utilize those informations to detect any variation in the

required operating condition. An automaric length control system can then be developed based on:

these dynamical parameters. g
It is straight-forward to write a simulation programme using exact equations of field evolution,
but it takes too long computational time as compared o the real time to perform its calculation
and so does not come to be of much/anv use for cither the control svstem or investigation of the
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Figure 1: Configuration of a power recycled interferometer. BS - Beam Splitter EM - End ‘\urror IM
- Input Mirror, PRM - Power Recycling Mirror. i
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physical effects. This demands the requirement of fast simulation codes for a part or the whole of the_:
interferometer which we can utilize for this purpose. If the behaviour of various servo responses.can -
be properly ascertained, we can also compare performances of the real interferometer with the one
running in computer (provided the latter is fast enough) and initiate proper action if anything goes
wrong during operation. Such a complete simulation incorporating both signal generated by moving
mirrors in a high finesse 2-mirror cavity and the response of the servo control system has been reported -
by the LIGO team(6]. : :
~  With these objectives in mind, in this paper, I develop a method of dynamical 31mu1at10n for -
a power-recycled interferometer, which is able to perform real-time calculations for various levels of
accuracy. The method is based on a digital filtering approach and a number of important physical
points understood by a step-by-step investigation process. This investigation finally establishes rela-
tionship among characteristics of dynamical field evolution in a long-baseline interferometer with those
in 2-mirror and 3-mirror coupled cavities. Therefore. in sections 2, 3, 4, I introduce various aspectsiof
this method and discuss the characteristics of dvnamical response in low finesse 2-mirror cavity,*hi'gfh <

. finesse 2-mirror cavity and a 3-mirror coupled cavity respectively. The special features of coupling
. between recycling cavity and arm cavity are discussed in sec. 5 with the help of the results obtained

by performing computer experiments using the fast code developed for 3-mirror coupled cavity. Fi-

nally, in sec. 6, I use all the understandings arrived at through this step-by-step process along with ‘
the techniques developed thereby to write the fast numerical code for power-recycled interferometer.. ' |
The physical effects related to the coupling of fields in-between two arm cavities of an 1nterferometer |
are also discussed and on the basis of these points. in the same section, I propose a relatively easier -
method for solving the start-up problem of such interferometers, i.e., to bring all the coupled cavities -

near to the resonant condition starting from time zero. Section 7 summarizes important conclusions :
on the physical effects in a dynamical power-recycled interferometer as well as considerations about ‘

the computational speed of the codes developed.

2 TFast simulation of low finesse 2-mirror cavities : Digital ﬁltering?;
approach based on Perturbation method

In this section, I study the simplest case of simulation, i.e., that of a 2-mirror cavity of low finesse.
Such a cavity of finesse about 50 will be used in the arms of the VIRGO interferometer. We may:
note in advance that a direct analogyv can be established between the response of a power-rec :'cl_'e
interferometer and that of a 2-mirror cavity under general dynamical conditions. as will be shown i
sec.6. The dyvnamical response may show low or high finesse characteristics depending on the opera,tih

_condition of a light beam. Results of the investigation in this section are, therefore, very important:

and will be applied in writing the simulation programme of the whole interferometer in sec.6.

An analogy is established here berween a digital filter and the linear response of a cavity towar'ds%
small motion of mirrors. A fast simulation procedurce based on this is developed thereafter (7). The:
analytical calculation presented here for the respounse of a low finesse cavity is based on the per»urbatwe
technique. I investigate how well such a perturbative calculation can describe the evolution of fields
when used in the fast dynamical simulation procedure based on digital filtering approach (DFA). The
numerical results and comparison with other methods are also presented.
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Figure 2: Notation for a 2-mirror cavity; 7 (r¢) and i, (te) are amplitude reflectivity and transmittivity
“-respectively for the input (end) mirror. The sign (+) or (—) indicates the phase acqu1red on reﬂectloni >
from that side of the mirror. S TN LR

2.1 Cavity linearized equation

Let us first write down the exact equation for the intra- cavity field, F' based on the notatlon of.’Flg 2
by taking the laser source to be the reference point for the motion of the mlrrors ' - S
o . .

F(t)=1t.A expj[}“ Te(t)] + rere expj[ (t - T/2)]F(t —-7)," ..

where 7 = 2L/c = 2 x 1075 sec. is the round-trip time for VIRGO 3 Km cavmes and A 1s the‘
wavelength of the laser light, 1.064umeter: ¢, is the amplitude tra.nsmlttlva of ‘the mput mirror,;.
whereas r. and r, are the amphtude reflectivities of the input and end mirror respectlvely The

quantity, §(t) represents round-trip phase offset in the cavity at any time ¢:

0t - 7/2) = o+ L 2a(i - 7/2) - (z)]f-:

~where ¢ is the initial (comnstant) round-trip phase offset and z(t — 7/2) is variation in the length of
the cavity as experienced by the light at time ¢ due to the movement of the mlrrors

2z(t = 7/2) = =z (t — 7) + 2z (t — 7/2) — z(¢), SRR '.:'j,:“ (3)
where z.(¢) and z.(t) are displacements of the input and the end mirror respectively. - S
If we assume that both the variation. z(t) of the length. L of the cavity and the frequency of such - _
variation are small enough, we can reasonably predict that the field amplitudes will also vary slowly
around some stationary point (an elaborate and nicer treatment can be found in Ref ]) The Eq (1)
can, therefore, be written in the following form for small = :

2 27 T .
F(t) = () + R+ 52 2t~ D) PG~ 7), (4
where
R =r.r.exp jid]. (5)

Note that we make a simplifving assumption that the input light, 4 is constant. The stationary

point of the intracavity field can thus be wrirten from the zeroth order equation:
i -
Fy= —=. (6)
S R it



| Y LIVTIN R TR lOYUSUIT Y T T

755
( f/ fnﬂ Real-time simulation of interferometric ... ! Issue: 1 ‘
VIRGD " | Date : 09 December, 1996 |
| Page: 3 R

which just represents the quasi-static field. i.e., when mirrors do not move at all or moves so slowly.
that it does not affect anything for a long time. The variation of the intra-cavity light from tlns can’;
be obtained from the first order equation: :

4w

OF(t) = R[6F(t —7) -‘-j—FoZ‘( )] (7).

This leads to the following transfer function for the cavity in the s-domain of the Laplace transforma-
tion:

IOI bl

_OF(s) _ . exp(—%s)

Hels) = z(s) JPFOI Rexp(——rs)m(S)’ .(8)? :

where :
P=(I)R o),

The Eq.(8), as such, is not of much use for the time domain simulation, since we need to knéxv

z(t) in the full time domain (¢ — +o0) for the calculation of §B(s). However, as is discussed in the
next subsection, the technique of digital filtering can be appropriately applied to take advantage of
. the linear equation (7) with the objective of developing a fast computational method for the va,rlatlon
in the intracavity light. S

2.2 Cavity as a digital filter

A number of standard texts [9, 10] on digital filters are available. However, it is worthwhile introducing*
a few important concepts here to understand the domain of validity of the analogy between a cavity
and a digital filter, which I am going to describe.

Let us consider a transfer function of the following form corresponding to the input, X and output,
Y in the s-domain :

_Y(s) _ TiyCrexp(—ksA)
X(s) 1-M . Dnexp(-msA)’

where k and m are integers and A is some fixed time interval.
The correspondence between this transfer function and its own discrete form in the Z-transform
domain can be established by a conformal transformation, z = exp(sA):

= Yin) _ SK o Crz™
T Y _
Ninj 1- >om=1 Dm=

where n represents the sampled points with a time period, A. 2
So, one can now arrive at the following cquation describing the output function in its discrete form

- '>“ CeXin— k) = S DT (n —m). ~-(12)

=) m='2

This is known as the infinite impulsc response (1IR) filter which is actually a series of feedback loops
as is obvious from the equation a}mw
Let us now look back at Eq.(71 and compare it with Eqs.(11.125. We can casily see that Eq.(7).

as such. can provide only two nouzero cocfiicienms (¢, = PBy and Dy = re’%) for the evaluation of
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the output.i.e.. the variation in the mtracaviry light. 5B in the discrete time domain with a sampling
period of 7/2. However. if we wish. we can alwayvs increase the number of the coefficients, C}. simply
by explicitly evolving the recursive relation. Eq.(7). in N steps for time N7. In optical language, this
Is equivalent to tracing the path of the light for A" nuniber of bounces on the moving end-mirror.

It should be noted that such a procedure. however. does not increase the numrber of nonzero D,
coefficients and. in fact, reduces the wumerical nuportance of the only available coefficient (which is
Dy, for m = 2n at any stage, 1) at every step of this evolution by a factor R. So, if we are able to take
a sufficiently large value of A, we can reasouably neelect the contribution of previous outputs in the
present value of the output in a low finesse caviey. Such a filter which does not receive any input in
the form of a feedback is called Jinite impulse response (FIR) filter and for such filters, the coefficients,
C represent the unity impulse response of the filter. It should be noted that by going through this
step, the concept of the cavity as a filter got converted from an IIR one to a FIR one.

In the context of a two-mirror cavity. we can thus write down the following equation for the

intra-cavity light directly from Eq.(7):

.

F(t+ N7) = “—‘W(l +jP Sum) - (13)
where
A ) 1
Sum-= Z RY"g(t + (n — 5)7) (14)
n=1 =

The structure of the correction term shows that it is nothing but the time-convolution of the input,
z(n) with the unity-impulse response-function represented by the coefficients,

Ci =jPRR*™, where k=123,... . (15)

Before we go to the next section we should keep in mind that the usefulness of the analysis presented
here depends strongly on the validity of the assumprtion that the mirror movement is very slow which
enables us to use the linear equation for the cavity. So. the validity of the analysis depends on how we
make a suitable choice for the number of bounces. \". The value of NV is to be ascertained numerically
in the next subsection by taking error considerations into account.

2.3 Simulation and results

The numerical investigation shows that the phase factor which depends on z(¢) in Eq.(13) has almost
no influence on the evolution of fields in a low finesse cavity (note that it will not be so in the next
section, when we discuss about high finesse cavities). So. while developing the following simulation
technique, we can safely ignore this factor. This also means that for a low finesse cavity, it does not
maiter whether we take the laser source or the mput mirror to be our reference point of mirror motion,
provided the speed of the input mirror is of the order of 1 um/sec or less than that.

The procedure of the numerical siiulation is as follows:

estep 1: Time is sliced into equal intervals of width A\ = N7, s0 that any time t; = tNT, where i is
an integer.

estep 2: The phase, ¢ is fixed to the following value during any time interval (B tiz1)

= o+ (i A, (16)

A

vhere oy is a small inirial phase ofiset ar time i = 4,
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estep 3: During the time interval (¢;.¢;.1). the rate of change of the cavity length is also assumed‘: »“"“-*j
to be constant . :
Zix] — T ’ :
w = ST A7):
! N7 ( R
This is a valid assumption, as long as the frequency of mirror oscillation is small and we choose -
a reasonable value of N. For example. for a frequency of, say, 200mHz, we can reasonably talk
about a value of N up to, say, 200 without making much error. .

estep 4: The assumption in step 3 enables us to arrive at a very simple expression for the convolution-
sum in Eq.(13). This sum now turns out to be an arithmetico- geomez‘mc series which can be

easily converted into its compact form [11]. So,

V=)= (Y Drereespdldd L -
Sum = : zl_rcreexpj[@])Q i+ O . (1'8)

The O(RVN) terms can be neglected for sufficiently large values of N.

are chanved in the next step and B,y is calculated.

" Asone can see, this method makes a slope-by-slope approximation of the actual mirror movement,
where each slope (velocity, w;) lasts for a short time. The span of this short time (represented by V) can
be decided by numerical investigation of the errvor level introduced by slope-by-slope approximation.

The above method based on a digital filtering approach (DFA) can now be compared with other':
methods[12] of simulation which have been tried in order to get a fast simulation of low-finesse cavity: :
(a) the sequential method (SM), which computes the intracavity beam at each round-trip and so is”
accurate but very slow, (b) the quasi-static method (QSM) that just computes a stationary value
from the cavity Airy function (Eq.6) for the intracavity light on the assumption of constancy of all
quantites over a sufficiently long time and thus its error is independent of the time-step used in the
computation, (c) the differential equation method (DEM) [12] which under the assumption of constancy .
of z (and thus of the phase offset) over an interval A = N7, solves the cavity differential equation -
in that interval, sets the initial condition for the next step with that solution, changes the phase by
another step and solves the differential equation again. As a result, for smaller values of A, the DEM -
approaches the accurate SM and for higher values of ', it approaches the QSM.

An important difference between the DEM rnethod and the present method is that while the
former makes a step-by-step approximation (i.e. z is constant over the interval A) for the mirror ;
displacement, z(t), the present method takes a slope-by-slope approach (i.e., z changes with constant
velocity during A) for the same. As a result, a comparison between either DEM or QSM and the'u".
present method can only be made for small \alues of V. For large values of \', such a comparison’is?
meaningless since. in that case. only iu the limit v+ — . the present method can be expected to be--
similar to either QSM or DEM. : -

The simulation program as described in the last section is run for two values of mirror velocity ,,
(which. for the sake of simplicity. has been assuned 1o be constant throughout the time of simulation), ”
lpm/sec and 0.5um/sec. The values of r, and # are chosen to be 9405 and 99.99% respectively,.
which corresponds to a finesse of approximartely 502 A power-loss of 10 ppm has been considered
for both mirrors.

A typical resonance curve generated by the exact SN method for such a cavity with v = lum/sec
is shown in Fig.3. The resonance curve gencrared by either QSN or DFA method under similar
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Figure 3: A typical resonance curve for a low finesse cavity that can be drawn by using SM or QSM
or DEM or DFA method (with reasonable values of A" in the last two cases), while the cavity length
changes at a rate w = lum/sec. Input power, |A[? is assumed to be one unit. Note that the resolution
of the plot can not make difference among curves obtained from these methods. The error levels of
QSM and DFA are shown in the next figure.
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Figure 4: Relative error (%) of (a) QSM and (bj DFA based on perturbative calculation as compared
to the exact SM in computing the resonance curve of Fig.3. Note that the error level of QSM is:
independent of the choice of the number of steps. .\ (provided 2\ is not so large that the sampling of -

values becomes meaningless).
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conditions looks to be similar to the above curve. bur any of these methods actually makes some error
‘(wrr the SM). which remains to be invisible by the resolution of the plot.

The ‘relative error’ made by either QSN or DFA with respect to (wrt) the accurate SM method in
drawing the same resonance curve is plotted in Fig.d. The relative error of some method ¥ wrt some
other method X. is defined as follows:

value predicted by Y — value given by X

Relative error(% . =
(%) value given by X

x 100. (19)

The nature of the error curve for DFA as shown in Fig.4(b) is more or less similar for various
values of N and w. but is quite different from those for either QSM (Fig.4a) or DEM. The error curves
generated by QSM and DEM are similar looking. burt the level of error is less in DEM as compared
‘o QSM([12]).

The maximum values of the error curves of the DFA as a function of N have been plotted in F 1g.5.
One can see that the simulation performs quite satisfactorily even for large values of N (= say 60 for
w = lum/sec or say 100 for w = 0.5pum/sec, if we take an arbitrary value of about 4% to be an upper
limit). I neglected O(r") terms in Eq.(18) for simulation and thus for sufficiently low value of N, the
maximum value of error increases again, as can be seen in Fig.5.

The relative error increases not only for higher values of N and/or mirror-velocity, but also for
-higher values of the cavity finesse. The finesse of a cavity can as well be expressed by the product
of the amplitude-reflectivities of the two mirrors. Since we always keep the value of Te equal to a
constant, 99.99%, from now onwards I always refer to the finesse of a cavity in terms of the reﬁectivify
of the input mirror, r,.

Now we fix N = 50 and tabulate the maximum values of error curves generated by DFA for
Increasing values of r, in Table 1. As we can see. the error increases too fast just after crossing
the value r. = 0.975. A validity domain for this method based on perturbative calculations may be
ascertained in terms of an upper limit of about 0.975 on re for a mirror velocity of < 1 umeter /sec;
This limit, however, depends on what trade-of one would like to make between computational speed
and error in its application and should be mentioned in that spirit. Bur whatever be the trade-
off, the perturbative calculation of cavity response is certainly not applicable in the digital filtering
approach of fast simulation for a value of finesse corresponding to r. > 0.99. So, we need to replace
the perturbative calculation by some other method in the framework of the digital filtering approach
of fast simulation when we intend to apply the same to high finesse cavities.

From now onwards, we refer to cavities with ro < 0.975 as low finesse cavities and those with
e 2 0.985 as high finesse cavities. The cavities with 0.975 < r, < 0.985 correspond to the intermediate
range for which a perturbative approach of simulation leads to too much of error for high values of
mirror velocities (i.e.~ 1 ym /sec.). but. on the other hand, for which the high-finesse characteristics
of the cavity response (as I discuss in the nexr section) are not so prominent. In any case, the fast
simulation methods to be developed in the next section for high finesse cavities can always be applied
to lower finesse cavities. I am making this division in the range of finesse Just to make a clear-cut

distinction between the high finesse and low finesse characteristics, which lallows us a convenient. basis
of our discussion.
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Figure 5. Maximum values of the relative error (71 of DFA based on perturbative calculation as”
compared to the exact SM (in computing the resonance curve of Fig.3) is plotted against N. the
number of steps for two rates of change in the cavity length.
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Table 1: Approximate values of the peaks of the relative error curves for cavities with various values
of the finesse. keeping N fixed to 50. Nore that for r. > 0.96. the error curves are characterised by lot
of oscillations, but one can alwavs find a waxiiun value of the error near the resonance point. This
table shows how DFA based on perturbarive caleuiation breaks down for high values of finesse.

Max. rel. error(%) \ax. rel. error{%;

Te (v =0.5um/s) {v=1nmssi
0.94 (.65 L
0.95 0.80 3.2
0.96 1.0 4.2
0.97 2.0 3.0°
0.975 4.0 4.5
0.98 10.0 32.0
0.985 30.0 90.0
0.99 175.0 325.0

3 Simulation of High finesse 2-mirror cavities : Digital filtering ap-
proach based on Jump-and-Sump method

We may note again in advance that there exists a direct analogy between the dynamical response of a

_power-recycled interferometer and that of a 2-mirror cavity. We will also see in sec.6 that most of the
time in a general dynamical situation and especially at the desired operating condition of the laser
light, the response of the interferometer shows high finesse characteristics.

In the last section, we found that the perturbative calculation of cavity response, when utilized in
DFA method of fast simulation, fails to describe the evolusion of the fields as we increase the finesse of
the cavity. This just indicates that the perturbative approach of performing cavity calculations is not
suitable for describing the enhanced sensitivity of the high finesse dynamical cavities towards small
perturbations in the form of mirror movement. In this section. I introduce a method[13] replacing
the perturbative calculation in the framework of DFA and apply the same for the simulation of high
finesse 2-mirror cavities.

The enhanced sensitivity of the cavity in its dynamical response to the mirror movement can be
illustrated here by drawing a resonance curve fur rhe intra-cavity field by using the Eq.(1) of the SM

~ method in Fig.6(a) when only the end mirror moves at a speed lum/sec. The value of r, is chosen to
be 0.998733 (A question like ‘why such a value’ will get answered in section [V where we will see that
this choice will cut short the number of figures of this paper).

When the mirror movement is very slow or zero, the corresponding resonance curve, as generated by
QSM method is shown in Fig.6(b). A comparison of Figures 6(a) and 6(b) and all those generated for
the low finesse cavity in section? brings forth certain special characteristics of the dynamical response

of high finesse cavities:

(a) Failure to achieve maximum peak value : One can see that the peak value of the dynamical curve
fails to reach the maximum value of power (the quasi-static value, Fig.6b) that can be achieved
on resonance from such a system. The reason is the fast motion of mirror which does not allow
partial beams to stick to the resonance or near-resonance value for a long time.

(b) Displacement of the peak from the resonance point : The peak value of the dynamical resonance
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" Figure 6: (a) Dynamical resonance curve for a high finesse (r, = 0.998733) 2-mirror cavity while only
the end mirror moves and so the cavity length changes at a rate of w = lum/sec. Input power isj
assumed to be one unit. (b) Quasi-static resonance curve for the same cavity. t
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+ Figure T: Difference in power between the case when the Input mirror moves (at a speed of lum/sec)

and when it does not, but the rate of change in cavity length, w is same in both cases (= lum/sec).
The latter case corresponds to Fig. 6(a).

curve appears a few round-trips after the actual point of resonance (ie., 8 = 27). Due to
high finesse, a large number of partial beams get stored for a long time, each of them bearing
different phase information about the moving cavity and a combination of all these beams find
a maximum point of their combined power at a point somewhat displaced in time from their
quasistatic resonance point.

(¢) Oscillations after crossing the peak : The oscillation of power just after_cr_ossinglthe.;_ peak is due

to the generation of beats by the interference of the Doppler-shifted beams which were there
for long time (as a result of high finesse) and those beams which are relatively newcomers. The
frequency of this oscillation increases for a short time and then again decreases down to zero as
the interferometer goes farther away from resonance and the contribution of long-lasting beams
becomes less and less (the last point can be shown in a frequency-domain simulation. It will
also be evident when we’ll study the relative error in the rer ‘nance curves generated by some
non-exact equations at the end of this section).

(d) Enhanced sensitivity towards the movement of the input mirror : Unlike in the low finesse case,

the field evolution now gets affected by the Doppler shift that is experienced by the input light
wrt source due to the movement of the input mirror. Fig. 7 shows the difference in power of
the field, F' between a case when both mirrors move and when only the end mirror moves, but
the rate of change of the cavity length. u is kept to be same (= lum/sec) in both cases. The
resonance curve corresponding to the latter case is already shown in Fig.6(a). The numerical
investigation and Fig. T show that if the mirror velocity is restricted to < lpm/sec, there will
be little and insignificant effect on the field evolution near resonance. We can, thus, neglect this
phase factor in the input light again for the case of high finesse cavities without committing
much error.
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To describe this enhanced sensitivity with a faster simulation, the following analytical calculation
is incorporated in DFA method of fast simulation. replacing the perturbative method :

step 1 : Let us start with the following equation of the intra-cavity field,F :

St bk e sl

Az
F(t+7)=1t. 1-—Re\p7—)\— (t+7/2)F(t) (20) -

- - written for a small variation r in the length of the cavity. This equation is then recursively
=« evolved in time for .\ steps. where one step is equivalent to the round-trip time. 7 of the cavity i
. : and thus obtain:

'

N N REE
, F{t+ N7) =t Al + v Bt I expil + F(6)RY [ expy, (21)#
- r—’ k=N-—-n=2 k=1 -
where
A Y
expy = exp[J -)\—zk], o (22)
and
e =a(t+(k=1/2)7) (

and is described by Eq.3.

step 2 : Let us assume that for a reasonable number of steps, :V, the mirror motion can be approx- :
imated by a constant velocity,v. which enables me to write Eq 2) as St

exp; = expl&(k — 1/2)] (24) 7

where & = jdmvr/A.

step 3 : It is also assumed that the mirror displacement that takes place within the interval /V T.i8%
very small, so that I can linearize all the exponentials in Eq.(21), thus obtaining

A(1 — Ny N—~1 . N 1 ’\[2
Fe+Nr) = 20 st asR YR Y (k- 5)+ FORY el

i=1 k=N-—i+1

Note that the first and third terms in the above equation have been obtained by summing the:
series (geometric in the first term and arithmatic in the second term) of terms in Eq.(21). In;
fact the series in the second term in the above equation can also be shown to be a combination™
of an arithmetico-geometric series 11 and an arithmetic series: :

tcAER v Nk tcAgR‘ Y 1
- = E:k—— 2
I—R‘—“k _)R (k=3 (26)

Both these series can be summed over easilv. so that the final equation can be written down as :

t.A(1 =R t.AER o _ t ASRY
1-R 1-R™ 2A1-R)

Ft+N7) = (N2 —1) + F(t)R" expi¢

AEETTARTTN S T

1-R

N —05 - L3RY"L R— RN-
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Figure 8: Error made by DFA based on JAS as compared to SM for N = 50 in calculating the
resonance curve of Fig.6(a) '

feedback is not neglected in this case. The first reason is that the terms of order O(R™) are not really
negligible now because of high value of R. Speaking in the language of digital filters with an argument
related to the same reason, we can say that feedbacks are really important in this case since partial
beams get stored for a long time in such cavities. The equivalent ITR filters cannot be converted into
FIR ones, as long as we intend to apply the linear Eq.27 by restricting N within a suitable upper
limit. This limit is to be determined numerically.

The simulation procedure is same as that described for low finesse cavity in section 2, except that,
in step 4, Eq.27 is to be used instead of Eq.13. Since this method involves Jumping a few steps of
field-evolution and then summing up the contribution of various partial beams, I call this method - the
Jump-and-Sump (JAS) method. It should be noted that JAS is not a replacement for DFA. Rather it
is a replacement for the perturbative calculation that the low-finesse version of DFA is based ‘upon.

The error in unit of power (i.e.. just the difference) made by DFA based on JAS as compared to
SM is shown in Fig.8 for V = 50. The relative error as given by Eq.19 is also plotted in Fig.9. We
see the relative error is quite small near the resonance but it shoots up as the field starts oscillating
with higher and higher frequency. This is simply due to the fact that the frequency resolution of the
method is worse than that of the exact method due to an increase by a factor of N in its sampling
interval. However, since the field-amplitudes at those points are exceedingly small, this relative error
Is irrelevant for the simulation programme. As this oscillation starts decreasing soon, the relative error
also gets reduced and soon becomes almost zero - much before the next resonance point comes (Gap
between two resonance points for w = 1 pm/sec is 26600 round trip times).

One may note that although relative error is a hetter measure than simple error, in the case of high
finesse response of the cavities, it may lead to some confusion because of its sudden shoot-off after
crossing a resonance peak. From the next section onwards only relative error in a certain important

One may note that. unlike the low-finesse case in sec.Il, the last term in Eq.27 represenﬁng the
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range of time around the resonance poiut will be plotted. as in Fig. 9(b). One should keep in mind

rt time due to the reduced frequency resolutions of
bortant because of the reasons explained above.

sed on JAS works quite well (with moderate values of
esse. As may be obvious. when applied to low finesse
of error ax thar of DFA based on perturbative calculation.

the methods to be described are actually uniny

Numerical investigation shows that DFA ba
N, say, 50} even for higher values of cavitv fin
cavities. this commits same level

4 Simulation of 3-mirror coupled cavity

A power-recycled interferometer with & FP cavity 1 each arm. which is constituted by static mirrors,
can be thought to be equivalent to a 3-mirror cavity. Study of such a simpler geometry of the optical
arrangement can this provide us answers ta some of the issues which are in common with a complete
FP-type power recycled interferometer. e.g.. coupling of intra-

cavity fields, sensitivity to misalignment
etc. The resonance properties of such a cavity are,

in general. quite complex. in which the mode losses
may depend on the distribution of the optical field between the two cavities and the behaviour of
this distribution may again depend on, among other parameters, the relative sizes of the cavities[14].
The static properties of such coupled cavities have been discussed in Ref.[15, 16]. Some table-top
experiments were also performed to study the frequency response of such a coupled cavity [17, 18].

In the dynamical case, however, such an equivalence between the full power-recycled interferometer
with FP arm cavities and a 3-mirror cavity can he established only under some simplifying assumptions,
i.e.; that the beam-splitter is static and that the movement of the input mirror or the end mirror of
one arm cavity exactly mimic the movement of the corresponding mirror in the other arm cavity (the
movement we mention in the present context is measured wrt the beam-splitter).

On the other hand, such an interferometer can also be thought to be
3-mirror cavity systems coupled with each other through a shared par
'The nature of this coupling is investigated in sec.(:
understanding and simulating the dynamical respons
investigate physical effects and test the applicability
cavities in a 3-mirror coupled cavity.

In’ this section, it is shown that the evolution of fields in a 3-mirror cavity
a 2-mirror cavity whose input mirror reflectivity is changing with time. Under a
condition, most of the time, this reflectivity is quite high. Utilizing this idea, I ap
DFA based on JAS introduced in case of hj
technique, called Freezing-the-Finesse whic
DFA code for 3-mirror cavity.

equivalent to two dynamical
t of their recycling cavities.
So. one important step towards the final goal of
e of a power-recycled interferometer would be to
of the numerical methods developed for 2-mirror

Is just like that in
general dynamical

ply the method of
gh finesse cavities in sec.3 and also incorporate a special

h takes care of the changing reflectivity, to write the fast

4.1 Field equations in a dynamical 3-mirror cavity

The notation to be used for the calcul
The amplitude-reflectivities of the in
interferometer), the middle mirror (

ation of fields in a 3-mirror coupled cavity is shown in Fig.10.
put mirror (the recycling mirror for a dynamically equivalent
the input mirror of arm-cavities of a dynamically equivalent in-
1+ 72 and r3 respectively. The numerical values

are 0.96, 0.94 and 0.9999 respectively which
are same as those to be used for corresponding mirrors in VIRGO interferometer(2]

The exact equations for the intra-cavity field

$ In a 3-mirror coupled cavity when all mirrors.move
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can now be written as follows :

B(t) = tiAexpjp(t)]
—rireB(t = 27 ) exp jlor — piit — 27;) + 2pa(t — 77) — p1(2)]
+tarira D(t — 27 — 77)
x exp j¢e + &r/2 — pa(t — 27 — Tr) + 2p3(t — Tc — ) — p1(2)],
(29)
" D(t) = t2B(t—7r)expii lor — pr(t = 77} + pa(t)]
+

+ror3 D(t — 27) e.\pj{ O — paft — 27) + 2p3(t — 7¢) — pa(t)] (30)

vt tur i

where ¢, and ¢, are initial (constant) round-trip phase offsets in recycling and arm cavities respec-%

tively; 7. and 7, are one-trip time in recycling and arm cavities respectively; p;(t) are changing phase
offsets(one-trip) due to the motion of mirror ¢. i.e.. p;{t) = (27/A)x;, z; representing displaceme'ﬁt"
The positive direction of motion is set to be from 1st (recycling) mirror towards the 3rd (end), and}
_ the reference point for the mirror movement is taken to be the laser source. &
If we assume that mirrors are not moving at all or are moving so slowly that their motion does_‘:_ _

not affect any field for a long time, then we can arrive at the following quasi-static expressions for ‘B: gb
and D:

By = Ati(l —rarsexpljocl)/xo - (31)
Dy = Atit‘_)exp{jo,‘;’:?]/,\'o (32)

where

- . R , 0 ) . .
xo =1+ riroexpijo-. — roryexpiioe; — rirs(ra + t3) expljor + J.@c]- (33)
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The Double-resonance condition is actileved when ¢, = 2n7 and ¢, = 2mm, where n and m are
integers. The numerical values for {Byi? and [Dyf* at double-resonance condition are ~ 49.0W and
~ 1584.0W respectively for | 412 = 1.0\V and the values of reflectivities as chosen above for VIRGO.
In the static case, the power transmitted through the system is maximum at this point [15}; However,
in general, a maximum point of transmission may occur at a value, ¢, # 2n for a value of ¢, # 2m,
The rules of the occurence of these resonunce peaks will be discussed in the next section for both the
static and dynamical cases.

The exact numerical code for the 3-niirror cavitv is written on the basis of Egs. (29) and (30) as
shown in Fig.11. It should be noted thar riic code is really exact only if the ratio of the lengths of the
arm cavity and the recyeling caviey is itewer. oo It is. owever, not a very important consideration
because, in case p is not an integer. a code like this based on the nearest integer value of p would make
only negligible error wrt one which may take inro account the real value of p- The reason is that in
almost all cases of interest. we need not study the system with a very fine level of frequency resolution
(i.e., with a sampling period smaller than the round-trip-time in recycling cavity). .

A dynamical double resonance curve for the field B, while only the end mirror moves with a
velocity of 1 um/sec. and ¢, is set to a value of 2mx is shown in Fig.12. It so turns out that the
corresponding resonance curve for the field. D looks exactly like what we plotted in Fig.6(a) for a
2-mirror high finesse cavity with Te = 0.998733 whose length was also changing at ‘the same rate. The
following discussion explains this. ’

. The exact code as represented in F ig.11 takes a very long time to compute the field evolution.
We, therefore, need to develop a faster way of doing this by finding some ways of writing non-exact
equations for 3-mirror coupled cavities. One way of doing this is to replace the recycling cavity by an
equivalent mirror whose reflectivity, 7. depends on the dvnamical phase offset denoted by 6, in the
recycling cavity. and then to write down the equation for D in the resulting 2-mirror cavity constituted
by the end mirror and the equivalent mirror for the recycling cavity: :

D(t) = trec(t) 4 + reec(t)73 expi56a(t — 7)1D(t - 27,), (34)
where
) 2 . .
L r2 = ri{rs = 15) exp[s6, (¢)] S
. t\ = bnad = o . EEE N
Trec(?) 1+ ryryexpij6,(¢)] I (35)

tits expj6-(¢)/2 + py(2)]

trec(t) 1+ rirs e.\'pfjer(t)]

(36)

The field B can then be easily calculated using this equation. Simulation programme based on these
equations now runs about 270 times faster since the time-sampling rate is much smaller now (i-e,
1/7c instead of 1/7,) and also it needs o perform much less expensive algebraic calculations without
memorizing any data in a buffer. . ' o

We find that this equation makes negligible (in fact zero upto several decimal points near the peak)
relative error as compared to the exact code. However, in this case also, the relative error shoots up
for some time after crossing the resonance peak. as the fields start oscillating with higher and higher
frequencies. This is due to a reduced frequency resolution of the method which effectively increases
the sampling period by a factor of p- As already explained in section 3 for the case of DFA based on
JAS, this error is unimportant since the absolute value of the field is very low in that range. Obviously,

this level increases as the ratio of lengths of the arm cavity and recycling cavity is reduced and vice

versa.

The reason that the above equation can work so accurately is that the missing information in the
equation, 7, is only 40 nanosec as compared to 7. which is about 10 microsec. So, any extra information
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Figure 11: Exact dynamical code written for a 3-mirror cavity for which the ratio of lengths of the
arm cavity and the recycling cavity is an integer. p. The figure shows the case for p = 4: For the=
equivalent case of the VIRGO interferometer. p has been assumed to be 250 (= 3000/12). Note that'
at any moment of time the code needs to memorize 2p number of data for the evolution of phases i in:
two cavities and p number of past values for the field D. RM - Recycling Mirror, IM - Input Mirror, *

EM - End Mirror.
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Figure 12: A dynamical double resonance curve for the field B in a 3-mirror cavity, while only the
end mirror moves with a velocity 1 pm/sec and the round-trip phase in the recycling cavity, 8, is set
to an integral multiple of 27. Input power is one unit.

into the dynamical response that 7, could have contributed amounts to a negligible time-gap between
~cause and effect as compared to the evolution of fields during one-trip time in the arm cavity. For
same reasons, if we had tried the other way round by playing a similar trick by replaci'ng arm cavity by
-an equivalent mirror, we would have written completely wrong equations for the dynamical evolution
of fields. '

On the basis of the above observation, we mayv thus make an assumption that 7, can be neglected
with respect to 7 in the exact set of equations. This approximation was first used by Redding[19] and
has also been applied by others [20] to study the responses of a 3-mirror cavity. From now onwards,
we refer to this as small recycling cavity (small-rec-cav) approximation. :

Using this approximation, the full dynamical Egs. 29 and 30 can now be written as

1 -

} O (t+
Blt+r) = WG {tl-'i expjip1(t + 7)] + tarir3 D(t) eXP]["(—Q—Tl +0c(t + 7/2)]}

TRV e

(37)
D(t+71) = tree(t +7)A + rrec(t + 7)r3 D{t) exp j[6.(t + 7/2)], (38)
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where 7 = 27, and

trec(t) = zll—f f‘e\pjil9 (t) = pi(t)] (39)
Trec(t) = ro— &n \\F:tj)!g'(t” - (40)
0.(t) = o —2piit) = 2palt). {(41) x

0.t — 1) = o — pait =270+ 2psit — 7o) — pall). (42) >
\(t) = 1= rirexp i) (43)°

4.2 Simulation by Jump-and-sump while freezing-the-finesse . ;.Aé; .

We may DOW ask ourselves if it would be p0551ble to cornpute even faster than what the short-rec-cavg‘

i

" represented by Eg. (38) is Just hke that of the intra-cavity ﬁeld F of a 2-mirror cav1ty whose mp_' 4
* mirror reflectivity r. = rrec is changing with time. st

F(t+47) = to(t < 7)4 = F(t = R(t + 7) expls6(t + 7/2)]

where R(t) = rore(t)e?® is the product of the amplitude-reflectivities of the end mirror, r., the input?
mirror, r. and a very small constant phase offset.d; in a round-trip of the cavity when mirrors are:
not moving. The evolution of field B represented by Eq.(37) is completely dependent on that of D,”
which means that if we can compute D faster, we can compute B also at the same speed. Let us plot
the reflectivity, rwec as a function of A9, = 6, — (2m + 1)7 in Fig.13. One can see that except for
values very near to (2m -+ 1)7 for 8,. the value of re. is always quite high and very near to = 0.998733 .
- the value at 6, = 2mn. This explains why the dynamical double resonance curve for the field D
in a 3-mirror cavity has an exactly similar behaviour like that of a high finesse 2-mirror cavity with$
re = 0.998733 (as in Fig.6a), when we assume that only the end mirror is moving and set 6, = 2m. 3

So, we now have a ready answer to the above question in our hand. If we consider the simplest -
case of constant rre by assuming ‘only end mirror moving’. we just need to apply the method of
DFA based on JAS to Egs.38 to develop a code much faster than what small-rec-cav approximation :
can ensure us. For example, the error level for JAS as compared to the equations approximated by::
small-rec-cav for the field D in this simplest case, when we allow only end mirror to move and é;etf
6, = 2mmn. is same as what is shown in Fig.3. )

However, to have a complete simulation. we need also to consider the dynamics of the recvchng%
- cavity and thus the changing values of 7. By mal\mv a comparison of Eq.(44) with Eq.(38), we note 3
that in the equivalent expressions for r.(¢) and t.i#1.1.e.. Trec and trec respectively, the time- dependence g
arises only through the dependence of #, on time. We noted that except for a small range of values i‘
of 8, near 2mmn. the equivalent reflectivity. r..(#) does not change much from unity. This leads me to
incorporate a special technique named as Ffreezing the Finesse (F TF){21]. As the name suggests and ,
as is explained below, I set the values of , and so of r, and ¢, to suitable constants before each step?
of the Jump-and-Sump method, thus effectively freezing the unnalent finesse of the 3-mirror cavity =
during each interval of jumping.

So, the procedure of simulation for 3-mirror cavities when all mirrors move is as follows:

e step 1: Time is sliced into equa intervals of width A = V7. so that any time t; = ¢V 7, where
1 is an 1ntecer

Ve Tes ew
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Figure 13: The equivalent amplitude reflectivity of the recycling mirror, rrec is plotted as a function
of round-trip phase offset, Af;, in the recvcling cavity.
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velocmes then by deﬁnmOr the rates of change of the phase offsets in the recycling and- arm~
cavity respectively as

Yy v
bty apuhe by
s e

W, = s —tr. 45) 4
we = U3~ U2 (46) A
we can write . %
= : E
Hrl'T,‘ = Opr + —\—u.rf (47)1_' :
A %
Gort) = o+ fu‘c(t — 7). (48)_—?

e step 3: The phase. ¢; and reflectivity. r. in the expression for R and ¢. in Eq.44 are ﬁ:\ed to.x
the following values during any time interval (¢;, ¢;+1)

o; = gc(ti)

1.
Teg = lrrec(f )+ rrec(tz-rl)]
te = trec(tiz1)-

o step 4 (Jump-and-sump) : The Eq.27 of the is then applied to compute the field, D inside’ the
arm cavity of the 3-mirror coupled cavity. The field at ¢;.1, D(¢ + N7) is obtained from the’ -
value of the field at t;, D(¢) by simply substituting D — F, r3 = 7o, 7e = Tei, te = to and . 3
v; = w, in Eq.27.

o step 5: The values of ¢;;; and v;.; are changed in the next step and D; 9 is calculated.

Before we discuss about the error levels of such a simulation, we note that if p; were a constant, :
that would not have affected the intra-cavity field-amplitudes in any way, since it would have actedi
as an overall phase. The variation in p;. i.e. the velocity, v}, however, affects the field amphtudes
whenever the operating condition of the beam corresponds to a high value of effective finesse (1 e,
whenever r is high) for the 3-mirror svstem. So. if we completely neglect p; in Eqs.(37) and (38), i
leads to almost no error if the beam is on exacrt antiresonance in the arm-cavity and on resonance m
the recycling cavity (i.e., . = (2n+1)7 and 6, = (2m+1)7 : Effective finesse is the lowest). However, &
it leads to the same level of error as shown in Fig.7 when the beam is on or near double resonance:: 5
(i.e., 8. = 2n7 and 8, = 2mn : Effective finesse is the highest). Throughout the following dxscussmnt
on error levels, we neglect thxs phase factor arising out of the Doppler-shift of the incoming light Wrtg_

* the source.
As we can expect, the error made by the technique of FTF strongly depends on the first derivative

of rrec with respect to time. So, we can guess that the error will be less as long as e varies slowlv
which it does almost throughout the range of #, except for a small range (i.e.,about £0.27) around?

&
£
&

91’ = v : B Yoy
In Fig.14(a), I plot a double resonance curve for the field D using Eq.38 while phases change with- s§

rates: w, = w, = lpm/sec. The same resonance curve. when drawn by using faster method of DFA -3

based on JAS and FTF for .V = 30 gives relative error with respect to the equations based on small-

rec-cavity as shown in Fig. 14(b). As has been explained. the error is quite small near resonance and

increases for some time when the field oscillates rapidly with very small amplitude. For N = 40, the

€rror near resonance vary between -—3‘“ whereas for vV = 50 the same figures increases to about *o%
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Figure 14: {a) A dvnamical double resonauce curve for field D in a 3-mirror cavity drawn by using

equations based on only small-rec-cav axswmprion for v, = w, = lum/sec. Iuput power is one unit.
(h) the relative error by DFA based on JAS i FTF wrt oniv Sludil rec-cav in calculating the ame

curve for N = 5l THC S live crror finis = v G ~Bori i e the 5oL -olitude is very
This increase’ is thus unimportant.
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For other combinations of w, and w.. Tue crror levels vary, but in ail cases for same N
to have the same order of magnitude. provided. of course. that the velocities 4o not become too high

compared to lum/sec.

Now we discuss the error considernrion wivn she effeerive Buesse of the svsrem is near the lowest.ie
when the beam is ' ‘ D= LT i on resonance (4, =
{2m -+ 1)74 in the recs Monoe s =, = lum sec. The peak for this
condition is drawn Cutive orToOr i ; i
DFA basedon JAS and FIF for vV =3 g Shewttor Tl enirve in B
As expected. the ¢ 1S I L e s, . f g
10 about 8% for N = 42U aund a'*‘)onr By tor N = Su. For other combinaticns of w. and w.. unlike .

el due ro fower vadues of =Fective finnesse in this®

the previous case, the error lev :
region. S
So. we see that for any value of N, the strnutlarion error is rie least for a beam on double resonance
- While the operating condition of rhe bewn is anvwhere elsel the error in simulation increases. Wi hen -
the operating condition gets to the exacr antiresonauce point in the arm cavity but individual r resonance &
point in the recveling cavity. the simularion for DFA based on JAS and FTF runs with its h1crbest

level of error.
Ever the highest level of error is quite tolerable for (sayvi N = 50 for which the programme runs at
po] A
a speed about 30 times faster than a code based only on the approximation of small-rec-car (Eqs.37 -

and 38).

5 Three-mirror coupled cavityv : What happens when all mirrors move
p ] pp

Now that we have a fast simulation ¢ode in our hand. we can use it to perform some e\'pPriments[QQ}
with the aim.of obtaining some physical insights it the coupling of the intra-cavity fields in a 3-mirror
cavity. Specificallv. T study how and when the ;_n~-.1l\> for the intra-cavity fields of a 3-mirror cavity
appear in both static and dynamical cases. This will aiso come to use for writing an aigorithm for
starting up a power-recycled interferomerer ro bring all its constituent cavities near to the operating

condition.
In subsection 5.1. I describe how varivus curves are drawn to b ring out physical issues related toz

values after introducing various important &

D

the field-distribution in the two cavities and rabulate s30m I

parameters. In subsection 5.2 all these physical points are discussed. It should be noted here that’gf

_although these discussions are regarding 3-mirrer coupled cavities, the conclusions drawn here are, 2
however, very important and come to great nse when we starr discussing about the full power- recvcled

interferometer. as is shown in the next secrion.

+owy g

5.1 Dynamical curves and the corresponding Quasi-static curves

Dynamical Curves

As shown in Eqs..37) and (38}, intra-eaviey ficlds are funcrions of two parameters. the round-trip
phase offsets. 8. and #.. However. if we assume constancy of velocities of mirrors for a short time, we
can express these phases in the unit of those acquired due to mirror motion in one round-trip-time
(rtt) of the arm cavity. Such a unit provides an advantage in rerms of plotting the power of the fields
as a function of only one paramerer. rthe wnmber of round-trips. instead of two. 8, and f,. as shown
in figures 16 to 23. Su. phases acquired in one r1p by Aoand 4, are given by R and A respectively. :

'H«'k_*..! T
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where j is the number of rtt and so

How to follow Figures 16-23 :
F 1gures 16 to 23 are crencrated for ’vanous cases pertaining to the dyna.mlcal condition of thef;j

much simpler but at the cost of generality and realm -
Throughout our discussion, we express ¢, and 6, in terms of the nearest integer values of rtt The
small fractional difference between the actual (real) and the quoted value {integer) does not affect the F.
main physical points that we are going to describe here. -
Note : In all of these figures, the points 8, = 2m= (n is any integer) and 8, = (2m + 1)7 have been
fixed at points 7 = 324 and j = 8147 respectively (Notice: 8, acquires a phase of 7 in 8147 — 324 = 7823
rtt, whereas 6, acquires the same in 13300 rtt. since the chosen value of w, is greater than that of w).
In the first figure, the phase offset in the arm cavity is chosen to be such that the . = 27n (n is
any integer) point coincides with 6, = 2mr at 7 = 324. thus generating the double-resonance curve 'f
(dynamical). In the same figure. when 6, is equal to (2m + 1)7 (at ;3 = 8147), the value of 6, 1s*
+0.5882357 and so this corresponds to an individual resonance point of the recycling cavity and some >
light leaks into the arm cavity.
In the next successive figures, the initial phase offset in the arm cavity is changed in such a way .
that 6, = 27n point gets shifted towards 8, = (2m + 1)= before getting coincident with it in Fig. 21
(Case 1) and then crosses the point to the other side. -
Some of the interesting numerical values for these figures as well as those corresponding to th
intermediate situations are shown in Table 3. There are two peaks in each figure. The quantltlesfi
P,(DY) and 7,(DY) represent the power and location of the 1-th peak (1 = 1,2) for the field D, Whereas, :
* 70 represents location of the point 8, = 2n7. The value of 6, when 8, = (2m + 1)7 (at 7 = 8147) is
represented by V. g
The figures are different from each other just because the . = 2n7 point appears at a dlﬁ'erent 3
location in each case. So, each of these figures can as well be represented by the values of ¥V and/or

Jo-
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Figure 16: Evolution of fields (a) D and (b) B in case aa which corresponds to double-resonance
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Table 2: This shows numerical values of some important quantities for the dynamical simulation of
3-mirror coupled cavities under different sitruations. The *-marked cases aa,dd.ff-kk correspond to

.- -figures 2-9 respectively.

3 Case g vV B(DY] uDYi RDY) p(DY)
o aa* 324 +0.588235= 63 150 2.3 3262
T bbb 1497 <057 66 1563 3 8298
£5 cc 2827 +0.4x TE 2817 12 8351
S dd* 4157 +0.37 90 1046 6.5 8430
ee 5487 +0.2= 114 5222 13 8363
: f/* 6817 +0.17 115~ 6275 23 8815
gg*  T748  +0.03= 83 6870 55.1 9139
= hh* 8083  +0.0048% 68.8°  T042 63.8 9297

b ii* 8147 +0.0 | 65 7073 72 9330 ‘

’ ji* 8211 —0.0048% 63.5 7102 74.5 9363
kk* 8419  —0.02047 55.4 7192 83.5 9480

Quasistatic Curves for the corresponding dynamical case :
For a closer study of the physical nature of these curves. here I introduce what I call Quasistatic
.. - curve corresponding to each of the dynamical case described above. In the quasistatic (QS) expressions
- for the intra-cavity fields in Eqs.31 and 32. phases #, and 8, are expressed in terms of the parameter 7
-and thus in units of phases which could he acquired in a dvnamical case in one rtt with w, = 1.7um/sec
and-w, = 1.0um/sec respectively. Then the power of each of these fields is plotted as a function of 7-
A For example, the quasistatic curve for field D corresponding to the dynamical Cases gg and’ii are
-Plotted in Figures 24(a) and 24(b) respectively. Table 3 gives numerical values for some important
Quantities for the quasistatic curves corresponding to the dynamical cases described in Table 2.

In quasistatic curves, we plot something static in a seemingly dynamical way. These curves just
represent how the intra-cavity fields in a static 3-mirror cavity vary if these are measured step-by-step
by changing the phase offsets in the two cavities at each step in such a way that these changes exactly
mimic the corresponding dynamical case.

So, these curves provide us the actual values of the phases for the resonance points,i.e., a static
3-mirror cavity shows resonance peaks for exactly these values of the phases. However, as also noted
in case of high finesse cavities in sec.3. in dvnamical cases. the peaks appear a few rtt after crossing
these resonance points. For example. the quasi-static expressions above find their maximum values
when 8, = 2mx and 6. = 2n= (Double-resonance point). According to the QS expressions the double-
resonance peak should appear at 75 = 324, but dynamical equations give the peak value at j = 450
(see Table 2 and Fig.16). Also the dynamical resonance curve has a peak value much less than the
corresponding quasistatic value and it is characterised by lot of oscillations after crossing the peak, as

explained in sec.3.

5.2  Analysis of results

We noted in sec. 4 that the effective finesse of u 3-1irror svstem is the highest while the beam operates
in the double resonance condition (which happens in Case aa here) and is the lowest when the beam
is on exact antiresonance in the arm cavity bur on resonance in the recycling cavity (which happens
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Table 3: This shows numerical values of some important quantities for the quasistatic curves of 3-
mirror coupled cavities under different situations.

Case 70 Pi{QS) 7(QS) R(QSi ,iQS)

aa 324 1330 324 2.3 8260
bb 1497 1290 1438 3 8295
cc 2827 1100 2693 4.2 8347
dd 4157 810 3927 6.5 8424
ee 5487 500 5113 12 8530
ff 6817 230 6188 28 8790
4 7748 114 6807 58 9092
hh 8083 854 6988 76.8 9242
Tl 8147 81 7020 81 9274
ij 8211  76.7 7052 85.3 9306
kk 8419  64.4 7148 102 9417
Table 4:

AS(DY) AY(DY) A§(DY) J(DY) A{(QS) ANQS) AS(QS) AYNKQS)

aa 126 126 7938 ~7708 0 0 7936 7710
bb 68 1241 6801 ~7672 —59 1114 6798 7675

cc  —10 2493 5524 ~7619  —134 2369 5520  —7623

dd  —111 3722 4273 7540 =230 3603 4267  —T546
ee  —265 4898 3076 ~7407T 0 -374 4789 3063  —7420
i —539 5954 1998 -7135  —629 5864 1973 —7180 £
gg  —878 6546 1391 -6830  —941 6483 1344 —6878
hh  —1041 6718 1214 6673  —1095 6664 1159  —6728 3
i —-1074 6749 1183 —-6640  —1127 6696 1127  —6696
i —-1109 6778 1152 6607 —1159 6728 1095  —6664 .
kk —1227 6868 1061 —6490 1271 6824 998 —6553
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Figure 24: Quasistatic curves for the field D for (a) case aa and (b) case ii.
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Figure 25: Equivalent reflectivity of the recveling cavity as a function of the phase offset in the same
cavity. The points (7 =) 324 and 8147 for the phase offset correspond to 0, = 2mm and §, = 2m+1)7
respectively, as in Figures 16-23.
in case ii). In the following discussion. we refer to these two operating conditions as highest finesse *‘:
condition and lowest finesse condition respectively.
The effective finesse as expressed in terms of rrec can be plotted as a function of 6: expressed in <
terms of 7 (for the same range covered in any of figures 16-23). as shown in Fig.25. As can be seen, -
the effective finesse is quite high except for a small range around j = 8147 (where 8- = 2m +1)7). %
On the basis of these observations. we can explain a few physical effects related to what we observe s

wa

in figures 16-23:

o first peak for the field, D: We observe that as we go from Fig.16 to Fig.20 (i.e., from the hig’h"efSta%

' to a lower finesse condition for the peak). the resonance power of the first peak for the field % -

D increases initially (cases aa to ff) and then decreases again (cases ff to ii). As we go fronl g'

the case aa to ff, the effective finesse decreases slowly, the sensitivity towards mirror movemer'ltl

reduces and thus the first peak grows up. However, for the cases gg to kk, the effective finesse is%

quite low and although the system is now much less sensitive towards the mirror movement, thez .
maximum achievable power (quasistatic) itself can have a low value again because of the same

reason of having low effective finesse.

e second peak for the field. B: For case aa (Fie.16). the B field is on its individual resonance at its
second peak. Since the recycling caviry itself has a Jow finesse. the field achieves its quasistatic
power (about 49.0) and show a typical resonance curve of a low-finesse 2-mirror cavity without?”
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any oscillation after the resonance point is crossed. It remains to be so in the next few cases,
but then start decreasing again. when irs coupling with the D field becomes very important as
the point 8, = 2n7 comes nearer to #. = (2m + 1)x.

¢ second peak for the field. D: For case aa and a few of the next cases. this peak is just the part that
leaked into the arm cavity from the /ndividual resonance power of the recycling cavity. This has
a typical low-finesse shape and grows up as the corresponding peak for the field B decreases from
its quasistatic value because of more coupling between two cavities at the operating condition
of the second peak. R

¢ first peak for the field. B: In case aa. it is just the double resonance curve and experiences the
high value of effective finesse of the svstem with its own oscillations and by its failure to achieve
the quasistatic power. It slowly grows up in power and sheds its high finesse like outlook as it
approaches the 6, = (2m + 1) point. the individual resonance point of the recycling cavity.

¢ A Symmeiry: As can be expected, the arrangement.of the curves are symmetrical about case
hh, when the value of ¥V (the value of 6§, when 8, = m) is +0.0048w. That is why. case kk
(V = —0.0204) is symmetrical with case gg (V = +0.037). From this symmetry one can easily
guess what would happen if the point 6, = 2n7 is moved in between 8, = (2m + 1)z and
6 = 2m=
The only question is why the symmetry is about the case represented by V = -+0. 0048(case
hh) and not about that represented by ¥ = 0.0 (case ii). This is because of some assymetery
introduced by the dynamical response of the system.i.e., due to the shifting of resonance curve
from the actual resonance point. However, as can be seen from the corresponding quasistatic
curve for the case ii (Fig.21), the symmetry could have been actually observed to be about case
i1, in case the experiments were done in a sratic 3-mirror cavity by a step-by-step change in
the phase offset. For similar reasons. this symmetry for the field B is about the case JJ which
corresponds to V = —0.0048.

- _ ® Reflected light: Every resonance point is characterised by lot of oscillations in the reflected beam
from the 3-mirror cavity as shown in Fig.26. The oscillations are most prominent when the beam
is on double-resonance (first peak of case aa) and are much less as the dpera.ting condition shifts
to a state of lower effective finesse (second peak of case aa and peaks of case ii).

¢ Transmitted light: As can be expected from analytical expressions, the evolution of peaks of the
transmitted beams in the successive figures follow the same kind of description as those of the
field D. Fig.27 shows peaks in the transmitted field for two cases, aa and ii. One may note that
unlike the static case, the maximum rransmission (among all other peaks) does not occur at the
double resonance condition when the mirrors move.

RN B TS S ST S

e Positioning of peaks in the quasistatic cases: Here I discuss about the positions of occurrence
of these peaks, which brings out an important physical point regarding the coupling of fields
between the two cavities. :

Let us denote the values of 6, and . at the first and second peaks respectively by
6. =2=m + K, AT (37)
6. = 2mn + N AL - (38)

where 1 = 1.2 representing the first and second peaks respectively. The values of these As for
both static and dynamic cases are presented in Table 4.
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Figure 26: Reflected light in {(a} case aa and (b) case ii.
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Let us also express the phase of the refiected light from the arm cavity as

11 Bl

4 B i S ﬂ
B = 2 — 1im + K, AR

v
&

in Fig.28. For reasons to.be:

and plot Ar? as a function of phase offset in the arm cavity (A9)

explained soon, Afeﬂ is expressed in the same unit as that of 6, as can be noticed above. It~

should be noticed that the (0.0} point of this plot corresponds to 8. = 2nw and Aeg = (2m+1)m,
is an odd multiple

representing the fact that the phase on reflectio
of = on resonance.

n from an undercoupled cavity

By inspecting values of different quantities in Table 4 and referring to Fig.28, the following
conclusion can be arrived at: Tn the case of a static 3-mirror cavity, a peak can always be found §
whenever A¢ (phase offset in the arm cavityi is such that the corresponding value of Aref (phase #
on reflection from the arm cavity in excess of an odd multiple of 7) exactly cancels the value 7
of AT (phase offset in recycling cavity in excess of an even multiple of 7) at that operating =
condition, thus making the round-trip-phase in the recycling cavity equal to (2m + 1), the %
condition for the individual resonance of the recycling cavity. . ! \

s whenever the operating:ct
dition of the recycling cav

The essence of the statement is that a peak always apppear

dition fulfills the requirement of the individual resonance con £
(6, + phase on reflection = (2m + 1)7): The arm cavity is individually resonant only at the¥

double resonance condition. In all other cases. the phase offset in the arm cavity should change
in a suitable way to ensure that to have a resonance peak. SR é‘\
above was also made at the end of section III of Ref.[15], but
their statement bears a restriction equivalent to K A < 1 (ie., phase offset in the arm cavity >
The fact that the above rule is always true in the static case without any -
be tested for each of the cases presented in Table 4.

43

Notice that a statement like the

expressed in radian).
restriction on phase offset. can

e Positioning of peaks in the d ynamical cases: As we have already observed, while on double resonance
(first peak of case aa), the gap between the dvnamical peak (j1(DY) = 450, Table 2) and the :
quasistatic peak (71(QS) = 324, Table 3): this represents the actual double resonance point)

s about 126. The value of this gap reduces to almost nil for the case ii, when the operating ;
condition at the point of appearance of the first peak corresponds to a low value of the effective'::
hat even in the dynamical cases, the peaks try =

finesse of the system. In conclusion. we can say. t
nce with the rule described above, however, when the effective

ber of parrial beams get stored for a long time, each of them :
bearing different phase ‘nformation about the moving cavity and a combination of all t,he_.se_.f"
beams find a maximum point of their combined power at a point somewhat displaced from wha
would have been their original point of resonance in a static case. This displacement gets reduct

if either the velocity or the effective finesse decreases. ..

to position themselves in accorda
finesse is quite high, a large num

peaks may appear in coupled cavities under general:%;
avities. A power-recycled FP-type interferometery

are coupled together by a shared part of theirg
tems™

In this section, we noted how combinations of
conditions of phase evolution in different constituent ¢

is rather a combination of two 3-mirror svstems which
recycling cavities. By observing a handful number of details of such successive peaks in these sys

during start-up time, ON€ may decide which way to control the cavities to bring them close to the -
desired operating condition before starting the linear/nonlinear locking procedure. thereby saving -
time and effort. Development of such an algorithm based on these information is currently under

progress.
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Figure 28: Phase acquired on reflection
the phase offset (in excess of 2n7
by recycling and arm cavities res
corresponding to u;, = 1.

(in excess of (2m + )7)
T) in the arm cavity. Th
pectively in 4 round-trij
fum/sec. and we = lum/sec.

from the arm cavity as a function of
€se are expressed in units of phases acquired
-time of the arm cavity due to mirror motion
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-~ : 6 -Real-time simulation of power-recycled interferometric detectors
In: this section, I apply all the techniques developed and applied in previous sections to the-casé
~_of the full length power-recycled interferometer to develop a fast dynamical simulation code for?-;i
The in-line arm cavity (that receives transmitted light through beam-splitterj and the perpendicular: -
“"hrm “cavity (that receives the reflected light from the beam-splitter) are represented by X and " ¥i§

* respectively; These two letters appear in the subscripts of various quantities to make a differentiation.
a—,%-. 2

g
£

A gt

W

between them. :

. We may think of the whole interferometer as a combination of two 3-mirror coupled cavity systems,
which have a common shared part (that between recycling mirror and beam-splitter) in their recyclings E
cavities. The recycling cavity X is the one between the recveling mirror and the corner mirror of the ¢ —f
in-line arm cavity, whereas the recycling cavity Y is the one between the recycling mirror and thel .
corner mirror of the perpendicular arm cavity. These two 3-mirror systems are coupled to each other -
through their shared part, so that some amount licht always get exchanged between these two 3- i
mirror systems. [n case of a static interferometer this exchange rate remains to be constant, however,
in dynamical cases, the rate may vary depending on phase conditions of these systems, as we can see

in the equations written in the following subsections.

b gty ’\gi'kg‘w-‘"e-’,\i:_-” .

6.1 Simplified problem : when only the end mirrors move
To investigate into the nature of coupling of fields between the two 3-mirror systems constituting
the whole interferometer, let us first study a simple case when only the end mirrors of both thez

arm cavities move but other mirrors and beawm-splitter remain to be static. The reflectivities .ofg, e
corresponding mirrors in both arms are assumed to be perfectly matched with each other and thi

beam-splitter is assumed to be of 50:50 type (exact). These simplifications are made for the tirb :
being to concentrate on only the physical effects due to dynamical coupling between the two 3-mirror =
* systems, while keeping away other effects. ; 3 g
Let us also assume that the round-trip phases, 6ry and Orz, In both the recycling cavities are s,e(;‘;%‘

to be integral multiples of 2, which ensures that whenever a particular arm cavity gets resonant §.
(when 6y or 8. gets to a value of integral multiple of 27). the corresponding recycling cavity -also
gets resonant (by receiving the extra 7 phase from reflection) and the corresponding 3-mirror system :
gets doubly resonant. The aim of locking the whole interferometer is to make both the component -

3-mirror systems doubly resonant for the laser carrier frequency.
For such a simple case of dynamical interferometer. let us write down the equations for the intra-

ik oy S CER

K

cavity fields with short-rec-cav approximation. thereby neglecting lengths lo, Iz and Iy of parts of the :
recycling cavities (see Fig. 1) as compared to the full arm length of the interferometer. Both the ' -; |
arm lengths are considered to be same. [ = 3000m. The intracavity fields at the input mirrors and: 3
travelling towards the end mirrors inside the respective arm cavities are represented by Dy and DI-’;’ ‘_‘if
respectively. The field at the recycling mirror and travelling towards the beam-splitter inside the: 3
common shared part of the recycling cavities is represented by Bg. The error analysis of the small- - g
rec-cav approximation in sec. 4 gives us the confidence that this should lead to a negligible level of . 3
error near resonance for any of the constiruent 3-mirror cavities and thus for the whole interferometer: : ;

o e e

e 'V’“ ﬁ!‘ U ¢ -ﬁ.l"tllc it

. .;:.z..)él.ﬁ?ﬁ:)mml

LA

5

1
=
3
=
s
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-fields also evolve in the same w
- equation. We can then identify

Under such a condition, the nature
t0 Te = rie. as shown in Fig.29(a) for either D, or
is exactly like that in Fig.6 for the field F in 4 ».
3-mirror cavity considered by

originating from the presence of the beam-spl
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1
Ban(t) = )4+ —sriters Dot — 7 exXPp {0y (t — 7/2)] .
Vo2
T—zrifory Dot — 7 exp j{6..(t ~ 7/2)] - riraB(t), (60)
V2
1 . .
D.it) = 7)_':'33\1; = rars Dol — 5 exp Jif,.~{t — T/2)], (61)
NG .
Dy(f) = T‘,;—f_‘B!f} - ;"jt"_‘-;D;/ij‘ - 4—' e.\:p]{ecyi‘t — T/?}}, (62)
V2

Note that the round-trip times in both. :
In the actual design of an interferometer.
different in length even by severa] meters.
the order of 0.4% (the lengt

he arm cavities are assumed t
however. the FP cavities in th
We can sav rightaway that as long as this difference is of
5 cavity as compared to that of the arm in case of VIRGO),
rec-cav approximation. We

baseline interferometers will
5 We can use such an approximation without making much
€rror in our simulation.

0 be same and equal to 7.

These equations can be rearranged and written as

 Balt) = 7(1{\3)1%0 = ) exD iy (1 — 7/2) (63)
,_\rlt?LDI(t = T)exp ji6.,(t — T/2)] + _bd . (64)

\/2(1 +T17‘2) ' ‘ ’ (l+rlr2)

Dy(t) = A+ r33Dy(t ~ rjexp T, — 7/2)] + r3CD. (¢ — 7)exp j[fu; (t — 7/2)], (63)

Dy(t) = A4+ r33Dz(t - 7) exp j 0., (¢t — 7/2)] + r3CDy (¢ — 7) expj{ﬁcy(t - 7/2)], (66)

where
_ t 4 . _
A = T—rlrg’ ' (67)
o )
! = 1o - = o+ \2
d R 2(1+T17‘3) (68)
rits
C = 12
2(1 'f‘T'lT'g) (69)

The numerical values of 3 and C for the chosen parameter-

values for VIRGO are about = 0.969367
and 0.029367 respectively. In case both the arm-cavities ch

ange in length in the same manner, their
ay and we can set Dy = D, and get back the 3-mirror coupled cavity

rrec = 3+ C ~ 0.998733. (70)

.

of the field evolution shows a high finesse behaviour corresponding
D,. One may note that the field evolution behaviour

2-irror cavity of r, = 0.998733 or the field D in the
us in sec.4: the onlv difference being in power level - a factor of half -
itter in the interferometer.
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3-mirror system get doubly resonant but the other 3-mirror system remains far in out- of-resonace. in &
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both the figures, the input power is one unit.
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If the motion in the two arm cavities are our of phase with each other, each arm ca\?ity gets resonant
on its own at different points in time and this resonance shows a low finesse behaviour corresponding to
7e = 3 as shown in Fig.29(b). The conrtribution of coupling of the nonresonant cavity to the resonant
one is negligible in that case. Whenever the values of ey and G, get close-by together and move
towards the resonance point. fields in the arm cavities start getting coupled to each other and the
term with the coupling factor ¢ becomes important.

We may thus conclude that in between the rwo extreme cases described above. whenever the two
sets of 3-mirror coupled cavities cross their individual resonance points (double or others) very close-by
in time. the fields strongly couple witly cachoriser-and their evolution always shows characteristics
typical of 2-mirror cavities with a valuc of #, iu between 5 and 3 + C. The exact profiles of the
resonance peaks in individual arm cavities mayv. however. differ from each other depending on-how
close-by in time and with what velocities of their constituent mirrors, the two systems cross their
resonant points.

If the finesse of the arm cavities are increased. that leads to an increased value of B but a reduced
-value for C (one should ,however, note that if arm cavity finesse is increased, one also has to change r;
“to have optimum recycling of light). But that does not make coupling between the arms on resonance

less important than the case of low finesse arm cavities because the power stored is much higher in
high finesse arm cavities.

The situation when the fields in the arms couple with each other, is the one .which is important
for the purpose of locking. To simulate such or other situations, the following algorithm is developed.
6.2 Simulation procedure for the whole interferometer

"The simulation procedure to be described here is based on the state vetor representation of the intra-
cavity fields of the full interferometer. This particular way of solving problems have been utilized in
many multi input/output cases in the field of digital filtering and signal processing (see chapter 4 and

. .12 of Jackson[10]). The method is presented in three parts: first, the equations for the simple case of
* - the previous section is written down utilizing DFA based on JAS. Next the equations are generalised
by incorporating dynamical changes in the recvcling cavity and also other asymmetries due to differing
~mirror reflectivities. At the end the simulation procedure for both these cases are discussed together.

6.2.1 Equations for the simple case

In order to express the main points of the simulation procedure in an easier way, let us first consider
the simple case when (i) only end mirrors move, (ii) §,; and fry are set to integral multiples of 2,
(iii) corresponding mirror reflectivities in both arms are perfectly matched with each other, and (iv)
the beam-splitter is of (exactly) 50:50 type, (v) beam-splitter is static, let us write down Egs.(65) and
(66) with the following state-vector representation: ‘

D(t+7)= A+ RExp(i +7/2) D(1), ‘ (71)

Bt re A e A o
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where
D) = (ﬁiy(i))
2 af)
R =1 LJ L, J (6\13](.)[(1361/z exp IO‘I’C,J)
Exp(f) = (e::?)gf»zzth expj{gfvszt])

where it is assumed that for a short time the end mirrors are moving with velocities v3y and viz'%
" respectively for arms Y and X: ®.; and ®., being initial round-trip phase offsets in arm cavities. -

6.2.2 Equations for the generalised case

When all mirrors move, we can write down the coupled equations of the intra-cavity fields in arms Bjr%‘;_‘

also incorporating all asymetries due to differing mirror reflectivities and moving beam-splitter as: =z

D(t+7)=Alt+7)+ R(t +7) Exp(t + 7/2) D(?). (76)

Various quantities in Eq.76 are defined as follows. Note that, in the subscripts of these quantities, ,
letters ¢ and r represent arm cavity and recycling cavity respectively; numbers 1,2,3 and b represent :
recycling mirror, input mirror, end mirror and beam-splitter respectively; as already stated,  and y
refer to recyeling or arm cavitities of the 3-mirror systems X and ¥ respectively : o

A = bk (retwesp iUyt

o X(t) tplor e.\’p]{@,-z(t)]

X<t) = 1= rlrgr?‘-?' exp }:9 (” ' Hryi(«‘*')] - rltgrlr expjizgrz(t)]
1

_[8y Cr\ [expjiog! 0
By = (c a)( 0 expjloc]

Exp(t) = (e‘ip] EH ! e\p]f . Z 1Y, cmt])
By = T3y + ﬁr;rgfgyrgy exp J(Orys(t) + Orys(t)]
b = rasmas + — i orae o (261 )]
C: = j{%ﬁrbfﬁgy?‘mﬁax exp j{frz () + Orys(t)]
&y = ittty 59 e (6) 7 (0]

The phase factors in the above equations can be expressed in the following form if we assume that :
for a short span of time, N7 (where N is some number to be determined numerically) all mirrors a.re 3
moving with constant Velocmes (Note: this assumption on arm cavities have been already used in -

!
=
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writing down Eq:76) -
z 2, . .
i gry‘;‘(t} = C’ry//‘z - “\—(”ﬂ t+ I'b.z't) . (85)
2% :
t Oy (B = ©p,/2+ T( Tyt + Viyt) (86)
2
Orc(t) = Orz/ 2+ _\ et (87)
-
Qc:/ (£ = ., 2 - :—\—U'ﬁ‘d" . - (88)
vl I ;
o
6cx:!.f3 = e 2 - .T H.crf (89)

where ¢-s are initial round-trip phase vffscrs in various cavities and 11-s are relative velocities defined
as

All the V-s above are magnitudes of velocities of the correspondmg mirrors wrt the initial position
of the beam-splitter; V},, Vby are components of the velocity of the beam-splitter wrt its initial position,
as shown Fig.30. It should be noted that if the beam splitter moves, light beams do not retrace their
path while returning to the beam spiitter. This way lead to distortion of beams in the transverse
direction and thus generation of higher order modes. In this paper, however, we confine our attention

.only to the longitudinal effects. Investigations related to the transverse effects are going on at present.

R T R I O O S

6.2.3 steps of simulation

step 1: Time is sliced into equal intervals of width A = N T, so that any time ¢; = iNt, where i is
an integer.

step 2: During the time interval (ticticy), the rates of the changes of phase offsets in arm cavities,

U3z and v, (simple case) or ¥ rys Wz Wy, e, Vy and V. (generalised case) are assumed to
be constants.

step 3: The phases, &, » Pey (simple case) or ¢¢y. 0y (for generalised case) are fixed to the following
constant values dummT (t tiv1):

P = @cr(ti) (94)

Py = Ogylty) - (95)
ber = Wea(ts) . (96)
Cey = 20cy(t:) (97

' (98)

step 4: (Freezing-the-finesse for the generalised case) In the matrix B and A areset to the following
constant matrices during the same time-interval :

% (E”z b+ E'{ti—.-l,)) (99)

4 = A=) (100)

=3
Il

W, = 1o, -1 . (90)
Wee = Vi — Vi (1)
Wey = Vay— Vay (92
Wee = T3~V . . (93)
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step 5: (.]-ump—and—sump) Now by per
in section 3 on either Eq.71¢
We can arrive at the follw

forming the equivalent algebraic o
simple case) or Eq.76 (for which Ran
ing equation equivalent to Eq.27:
DiE+Nr) = RV E D(1)

;

The error levels are found to be alm
IVC) when both cavities achieve either
at the same time.

Fig.31(a)

ost at the same levels as these are in 3-mirror cavities (section
the highest (F 1g.14) or the lowest finesse (Fig.15) conditions

m-splitter is assumed to be static. The

Tec-cav approximation is shown

- in Fig.31(b). the difference between power levels of D, and D, is shown in Fig.32. )

Fig.33(a) shows the peak in field D, when the 3-mirror system Y
of ‘antiresonant in arm cavity but resonant in the recycling cavity’
corresponding to a phase difference of 7/100, while Wey = Wey =W, =W = lum/sec and the
beam-splitter is assumed to be static. The relative error by DFA ag compared to equations based on
only small-rec-cqy approximation is shown in F 1g.33(b). Note that in this case there is no difference
between power levels of D, and Dy could be found even at a level of 10~* unjt of power. This is
another manifestation of the low-finesse characteristics of the operating condition for the beam when
partial beams do not get stored for a long time to make any difference between two coupled cavities.

gets to the lowest finesse condition
ahead of system X with a time-gap

RERTE l-,ivl A A

6.3 Proposal for a relatively easier start-up procedure for long baseline power-
recycled interferometers
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perations of JAS as described
d 4 are now constant matrices)

+(U — ﬁ)_} i(c_ - ﬁx) +E§§ - %(’,\ﬂ _ 1.)EN§}A (101)
Wheré
oo 1o o
o - O l 9
exp(&,.\?/2) 0
= - ( \6 t?xm'f.f-\"‘:"2;) (103)
&, 0
= [S
g = (U ‘ﬂ)_l~[(N - é)Q— I.SQN‘IJ + (_[_j._ﬁ)—Z[ENq _‘B] e
Amyg, 7
§y = J\/\ Y
fz = 47“331'7' (107)
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Figure 31: (a) Resonance peak for the field Dy when 3-mirror system Y gets doubly resonant ahead{ %
of system X with a time gap equivalent to a phase difference of /100, while mirrors move such that : 3
Wry = Wi = W = Wey = 1pm/sec and beam-splitter is assumed to be static. Input power'is-?"
one unit. (b) Relative error by DFA based on JAS and FTF wrt only small-rec-cav approximation in -H
computing such a peak. The relative error increases for a short time while the field amplitude is very :

small; This ‘increase’ is thus unimportant.
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Figure 32: The difference between resonant power levels of fields D, and D

z under the condition
described for Fig.31.

mirrors, by getting excited by the residual seismic noise. may oscillate around their equilibrium points
at very low frequency with an amplitude of some tens of wavelength. A local damping system may
reduce this amplitude to a fraction of a wavelength. but that is not sufficient when we consider changes
in the relative positions of the mirrors which may also be caused by slow thermal drifts. To maintain
the appropriate operating condition of the interferometer, it thus requires an active global control of
relative changes of the mirror distances in various cavities.
Sensing schemes based on the phase modulation of light (23, 24] have thus been devised in order
“to produce signals corresponding to small deviations from perfect interference and then to use these
signals to feed back to the laser frequency and /or the mirror control System to bring back the System
‘to the perfect operating condition. Under these schemes. the phase of the laser light is modulated at a
radio frequency, typically of the order of 10\ [Hz. The effect of this modulation is to impose effectively
. “two sidebands on the laser, wy = wy; wy. Wm are the carrier and modulation frequencies respectively.
The lengths, [, ly and [, (in Fig.1) are so chosen that both the carrier and sidebands are resonant in
the recycling cavity. The operating condition of the sidebands in the arm cavity is generally chosen to
be somewhere out of resonance; The best condition seems to be the exact antiresonance. The difference
between ly and I; should be suitably chosen so that it allows sideband light to be transmitted to the

against the sidebands. This light is detected and demodulated with a mixer. The signal thus generated
is called the Pound-Drever signal{25]. This signal is linear wrt either frequency or length deviation
in a small range around the perfect resonance condition. This range is wider for a system of lower
effective finesse and thus controlling is relativelv easier in such a case.

It should. however, be noted that these schemes work only when the interferometer Is very close
to its desired resonant condition and a Pound-Drever signal gets generated. It is, therefore, also
Important to plan a method which, starting from time zero. can act on all of the coupled cavities
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Figure 33: (a) Peak in power of the field Dy when 3-mirror system Y gets to a condition of resonance
in recycling cavity but exact antiresonance in arm cavity ahead of system X with a time gap equivalent *
to a phase difference of /100, while mirrors move such that Wiy =W =W = Wy, = lum/sec;
and beam-splitter is assumed to be static. Input power is one unit. (b) Relative error by DFA based -
on JAS and ETF wrt only small-rec-cav approximation in computing such a peak.
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this condition so thar the Pound-Drever signal gets generated and the

above-mentioned locking scheme can srart irs operation. A lot of time and effort can be saved if we
are able to develop an efficient procedure to do that. :

The power-recycled interferometer with FP arm c:
3-mirror cavity Systems sharing :

both of these 3-mirror components.
if some odd-looking resonance peak gets its shape out of mirror motion
“An algorithm can be developed on t}
utilized for this purpose. For exampl

their profiles. one may decide which

know
or a bad operating condition.
1e basis of the physical points described in section 5 and can be

e. by observing time difference between two successive peaks and

way to control the cavities to get to the desired goal.
If we assume that corresponding mirror reflectivities are matched with

the time under the starting-up condition. the feld evolution in arm-cavities obeys Egs.(65) and (66).
The nature of field-evolution deviates much from these two equati

ons only when the beam js very
~ hear to the individual resonance point (i.e., about +0.27 around 0rz and/or 6,, = (2m + 1)m) of the
ﬁrecycling cavity while the finesse changes quite rapidly. So, we can expect that in a long range of |
_time near the desired operating condition. we can use Eqs.(65) and (66) to describe the evolution of |
“fields without making much error. So, on the basis of our discussion in section 6.1, we can divide the
" start-up procedure into two steps [26] which can make the job relatively easier to perform. A
Step 1: Locking first the 3-mirror cavity Y: In this step, one needs t '
. of-resonance and try to bring the system Y near to its double-resonance condition
based on section 5). The locking

procedure based on Pound-Drever technique can be started thereafter.
- While locked, the perpendicular arm cavity will have a constant power corresponding to a 2-mirror

cavity with input mirror ampli-reflectivity, r, = 3 0.96937... for VIRGO. The 3-mir system Y is

chosen to be locked in step 1 to take care of the extra 2-degrees of freedom of beam-splitter movement

right in the beginning and avoid these in the relatively tougher Step 2. . |
Step 2 : Locking the in-line $-mirror cavity X : Since-other 3-mirror cav is already locked, in-line

cavity now has a level of power always higher than its own antiresonance level. Various peaks will

appear in this system from time to time due to the movement of two mirrors of the in-line arm-cavity.

One has to try to get to the desired condition again by observing (for example) the successive peaks.

The variation of power in X cavity will cause the same variation in Y arm cavity above the constant

level of power it has obtained due to its already-achieved resonance condition. However, this is like

nant 3-mirror system Y and can not take it out-of-resonance.

€ can be described as follows: From Egs.66 and 65, we can see that
trying to lock the whole interferometer together is like trying to lock a high finesse 2-mirror cavity |

withr, = 8+ (C = 0.998733. .. (for VIRGO), while keeping control over 4 cavities coupled together.

-Now step 1 is like locking a 2-mir cav with re =0 =0.96937... (a lower finesse one), while keeping

- “control over 2 cavities coupled together. Also. step 2 is like locking a 2-mir cav with Te = 0.998733...
“but keeping control on only 2 mirrors of the in-line arm cavity. Effectively, we can :take_ advantage of

the reduced number of degrees of freedom and increased linear region .in the Pound-Drever signal in
--step 1 due to the reduced finesse of the sy

full interferometer originally has, but the task >
~of freedom have already been taken care of in step 1. o R ‘
Of course, such an advantage can also be obtained in t

each other, then most of

(using an algorithm

" The advantages of this procedur
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7 Concluding remarks .

er-recvcled interferometer has been developed in this.
dvnamical conditions of an interferometer with ¢

A digital fiitering approach of simulating a pow
paper and successfully applied to study various
. able error level. Here I write down a number of important conclusions:

-

7.1 Physical effects

(a) A power recycled interferometer
two 3-mirror svstems which are coupled to each other through a shared part of their recy
cavities. Field evolution in the arm cavity of any of these dynamical 3-mirror systems can
be shown to be equivalent to that in a 2-mirror cavity with changing finesse. An interesting :
analogy has thus been established between the evolution of field in a dynamical 2-mirror cavity

hen the latter are given an analytical

and that of the arm cavity fields in a full interferometer, w
representation with state-vectors.

._
&
-
i

L]

(b) We may give a quantitative representation of the response of a 3-mirror system by the ﬁnesse
or, equivalently, by the amplitude reflectivity of the input mirror, r. of an equivalent 2-mirror.
cavity whose end mirror has a fixed value of high reflectivity. In an interferometer, the ¢ of any ¥
of the two coupled 3-mirror systems can be divided into two parts : 7.~ 8+ C in a long range;'? ‘ |
around the desired operating condition of double resonance. The quantities, 3 and C depend on ¢ =3
various parameters of the mirrors and depend on time only through the evolution of the phase ; }% |
-offsets in the corresponding recycling cavity. The quantity, C is always very small but is verys 2@
important in terms of making that lictle contribution in 7 which might change the response of ¥
a 3-mirror system from a lower finesse to a higher finesse one. -

kS
=
~

(d) In case the two 3-mirror systems are achieving double resonance at well-separated points in tim'e,j%_ -
the evolution of fields in each system is similar to that of an equivalent 2-mirror cavity with'g
r. = B and thus shows a lower finesse behaviour. However, if both the systems achxevethe.xrg
double resonance at the same point of time (which is the desired operating condition for the 7
carrier), the evolution shows a high finesse behaviour corresponding to e = 8+ C in both "’Ch'—e:g“

cavities.

(e) A 3-mirror system may show peaks under various dynamical conditions of its two constituent
cavities. These peaks have been studied in Sec. 5 and a rule has been established. It is
shown that such peaks appear whenever the recycling cavity gets resonant; Double resonance .
condition is just one of the various possibilities that may ensure this. On the other hand, theZ
individual resonance point of the arm cavity may not correspond to a resonance peak for thei .-

stem. Only at the double-resonance condition, both the arm and recycling cavities get 2

whole sy
to their individual resonant points together.

n of fields due to coupling between a double;;

resonance peak and a wrong peak or between two wrong peaks from the two 3-mirror systems £y

.shows a behaviour corresponding to 7. in between B<r.<B+C.

In a power-recycled interferometer, the evolutio

1

Hrul it

(h) Based on the above-mentioned points a proposal for an easy start-up procedure for such.iifg - ¥
ometers have been made in sec. 6. Development of an algorithm for deciding which way 10.¥ - ;

0gress.

ThE,

7]

fer
control the mirrors during start-up time is now in pr

et b

fltering approach has been successful in developing §

(i) Finally, we should note why and how the digital
{ the whole interferometer is highly &

a fast dvnamical simulation. It is true that the response o

iy

v gy

¥
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nonlinear towards mirror lmovement especially near the desired operating condition of double
fesonance. However, if we divide time into small fragments then within such an interval, the
Iesponse can be well approximated to be linear one, provided we properly take into account the
feedback in the form of the field at the beginning of the interval. The JAS method of analytical
calculation is based on this idea. The Digital filtering approach thus could be applied to the fu]]
interferometer by suitably modifying the analytical procedure in various cases, but applying the
same idea.

ERERC SN TP

1

lengths are of the order of 1 pum/sec.

Such a code written in C-language using DFA based on JAS and FTF with'N."=‘l5Q runs
faster than real time in a DEC ALPHA work-station; The Computational ‘time is about 80%

of real-time for calculating the dynamical evolution of fields at various locations of the VIRGO
interferometer. : : ‘

AR i

(b) The code can be made about 2.5 times faster than this if (1) the operating condition for the
sidebands are chosen to be the lowest finesse condition (i.e., resonant in recycling cavities, bug
anti-resonant in arm cavities) or some other point well inside +0.27 around this (most probably
this will be the choice for all long-baseline detectors), and (2) we are interested in calculating
dynamical field-evolution only near the desired operating condition while the Pound-Drever
signal can be generated. '

lowest finesse. Since near such a condition, the field evolution shows a low finesse béha,viour,
We can write the part of the code for the sidebands by using computationally much inexpensiifé
- DFA with perturbative approach (sec.2) rather than DFA with JAS. We just need to apply the
equivalent matrix equations corresponding to Egs.(13) and (18) instead of Eq.(101).in step 5 in
section 6.2.3. Although error consideration remains to be same, two-third- of the _"codé can be
made about 3 times more efficient in such a way, so that the full programme.runs at a speed
about 2.5 times faster than the general code described in item (a). o

(c) While achieving locking, if we are sure that the system will not o very far away from the operating
condition, we may switch over to a programme somewhat faster than the codes described above
by getting rid of the Step of freezing-the-finesse in the part of the code for the caﬁiér, since we
know that near the double-resonance the finesse of the system for the carrier changes very little -
and very slowly. S

BRI W USRI

(d) If the speeds of the mirror can be slowed down much, we can go somewhat"fastér_‘by. inéreasing .
the length of our Jump in time, i.e., Increasing the value of NV to certain extent. i e

(e) These codes have been Studied specifically for the VIRGO interferometéf whosea.rmcavmes
are of low finesse (~ 50). It may be noted thar there will be very little Changé in the error
consideration and thus the compurational speed of the codes, if cavities |
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" incorporated in the arms. Numerical investigation shows that the method of DFA based on J AS3
works quite well when applied to interferometers with arm cavities of much higher finesse. | _3

23

AN . ettt
(e) One should, however, note that all these codes do not address the transverse effects on the laser ¥

beam. If these higher order effects due to mirror misalignments are also incorporated in such,a® ™
programme, the codes will be somewhat slower. Works on incorporating higher order effects are & '

going on at present. :

7.3 Further works
ating the full interferometer -

Works on testing computational speed and error of another method of simul
[27] coupled between two :

based on DFA with JAS but summing-up the most significant partial beams
arm cavities (instead of using algebra of state-vector representation) are currently under progress and ¥

will be communicated in future.
It needs to be seen how this method works for other potential optical configurations for interfero- 2

metric gravitational wave detectors: dual recycled [28], doubly-resonant signal recycled [29], resonant

sideband detection [16] etc. However, what may be a really interesting problem is to try this method__é_ _

in Sagnac interferometers [30] incorporating dynamical FP cavities in both arms. The completely. dﬂ.%
ferent nature of coupling between fields in two arms of such an interferometer may shed newer lights:

 on the dynamical nature of coupled cavities. Thoughts and calculations are currently under progress:
" in these directions. sy

. . ¥
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