
plq} -T3l otLsb -o. - l)

USERS MANUAL

GRASP: a data analysis package for gravitational wave detection

Bruce Allen*
Department of Physics

University of Wisconsin - Milwaukee
PO Box 413

Milwaukee WI53201, USA

August 25,1997

Abstract

GRASP (Gravitarional Radiation Analysis & Simulation Package) is a public-domain software tool-kit

designed for analysis and simulation of data from gravitational wave detectors. This users manual de-

scribes the use and features of this package. Note: an up-to-date version of this manual may be obtained

at: http : / / tttwat .1 i go . ca1 tech . edu,/LlGO-web/ Col laboration,/manual . pdf , or at

ht tp: / /www.1igo.cal tecb.edu, /LIGO-web/Col laborat ion/ lsc jnLerm-htm1- The

software package is available on request.

Copyright 1997 @Bruce Allen

GRASP RELEASE 1.5
manual version 1.5.0

-batlen@dirac . PhYs . uwm. edu

Contents

Acknowledgements

Introduction
2.1, The Purpose of GRASP
2.2 Quick Start
2-3 A few words about data formats
2-4 GRASP Hardware & Software Requirements
2-5 GRASP Installation

2-5.1 GRASP File Structure
2.5.2 Accessing Numerical Recipes in C libraries
2.5-3 Accessing MPI and MPE libraries
2.5.4 Accessing FRAME libraries
2.5.5 Real-time 4O-meter analysis
2.5.6 Making the GRASP binaries and libraries

2.6 Conventions used in this manual

3-2 Function: readlclock () . .
3.3 Example: reader program
3.4 Function: find-lockedO .
3.5 Example: locklist. program
3.6 Function: get-data ()
3-7 Example: grwoutput program
3.8 Example: animate program

7
7
7
8
9
9

t 0
1 l
1 1
T2
t z
t2
15

GRASP Routines: Reading/using Caltech 4O-meter prototype data 16
3 . 1 T h e d a t a f o r m a t L 7

2l
23
)4

25
26
27
28

3.9 Function: read-sweptsine () 32
3.10 Function: calibrate () 35
3 . 1 1 E x a m p l e : p r i n t - s s p r o g r a m 3 6
3 . l 2 F u n c t i o n : n o r m a l i z e - g w | 3 7
3.13 Example: power-spectrumprogram 39
3.14 Example: calibrateprogram 42
3.15 Example: diagprogram 45

GRASP Routines: Reading/using FRAME format data 4g
4-l Time-stamps in the November 1994 data-set . 50
4 . 2 F u n c t i o n : f g e t - c h f l 5 1
4.3 Function: framefiles O 55
4.4 Example: locklist.F program 56
4.5 Example: gwoutputF program 59
4 . 6 E x a m p l e : a n i m a t e F p r o g r a m 6 l
4.7 Swept-sine calibration information r. . . 66
4.8 Function: GRcalibrate O 6g
4.9 Example: print-ssF program 69
4 . 1 0 F u n c t i o n : c R n o r m a l i z e Q . . . 7 l
4.11 Example: power-spectrumFprogram 73
4.12 Example: calibrateFprogram 77

4.i3 Example: diagFprogram 81

GRASP Routines: Gravitational Radiation from Binary Inspiral U

lli*#ffi*##"tT-r.=i***.'.,r, ;;;"r : : : : : : : :,,,,,,, ii
5 . 5 F u n c t i o n : c h i r p - f i l t e r s $ - . . - 9 4
5.6 Detai ledexplanat ionofchirp-f i l - tersO rout ine . . . - . 96
5 . 7 E x a m p l e : f i l t e r s p r o $ a m 9 8
5.8 Practical Suggestion for Setting Up a Large Bank of Filters: 100
5 . 9 S p i n E f f e c t s . . . 1 0 1
5 . 1 0 F u n c t i o n : m a k e - f i l t e r s 0 1 0 3
5.11 Stationary phase approximation to binary inspiral chirps . . . 104
5.12 Funct ion: sp-f i l tersO 106
5.13 Example: compare-chirpsprog&m 107
5.14 Wiener(optimal)filtering 109
5 . l 5 F u n c t i o n : c o r r e l a t e o . . . 1 1 3
5.16 Function: awg-inv-specQ . . . - . 'ttS
5 . l T F u n c t i o n : o r t h o n o r m a l i z e 0 . . . 1 1 6
5.18 Dirry details of optimal filtering: wraparound and windowing ll7
5.19 Function: find-chirp0 - 123
5.20 Function: freg-inject-chirpO124
5.21 Function: time-inj ect-chirp ()
5.22 Yetoing techniques
5.23 Function: splitup () .
5.24 Function: splitup-freq()
5.25 Function: splitup-freq2 o
5.26 Example: optimal program
5.27 Some output from the optimal pro$am . . . 138
5.28 Structure: struct Template - . . 143
5.29 Structure: struct Scope . . 146
5.30 Funct ion:tau-of:nass0 - -L47
5 . 3 1 F u n c t i o n : m - a n d - e t a o 1 4 8
5.32 Function: tauspace-areaQ 150

125
126
r29
130
131
r32

5.33 Example: area program
5.34 The match between two templates
5.35 Function: compute:natch o
5.36 Function: match-parab () . . .
5.37 Function: maLch-cubic () . . .
5.38 Example: match-f it program
5.39 Function: template-grrid ()
5.40 Function: plot-template o
5.41 Example: templateprogram . . - . .164
5.42 Example: multifilterprogram . . 165
5.43 Optimization and computation-speed considerations . . . 178

1 5 1
r52
153
154
156
t57
159
r62

6.14 Vetoingtechniques forringdown waveforms . . .201
6.15 Example: qn-optimal program . . 202
6.16 Structure: struct qnTemplate207
6 . 1 7 S t n t c t u r e : s t r u c t q n S c o p e 2 0 8
6.18 Function: qn-template-gridO - .'20g

GRASP Routines: Black hole ringdorvn
6.1 Quasinormal modes of black holes .
6.2 Function: qn-eigenvalues ()
6.3 Example: eigenvalues program
6.4 Function: sw-spheroid o
6.5 Example: spherical program
6.6 Example: spheroid.pro$am
6.7 Function: qn-ring ()
6.8 Example: ringdownprogmm
6.9 Function: qn-qring ()
6.10 Function: qn-f ilter ()
6.11 Function: qnnormalize ()
6.12 Function: find-rins ()
6.13 Function: qn-inj ect ()

GRASP Routines: Stochastic background detection
7.I DataFi le: detectors.dat
7.2 Function: detector-site ()
7.3 Function: noise-power ()
7.4 Function: whiten0 . . .
7.5 Function: overlapQ . . .
7.6 Example: overlap program
7.7 Function: gret-rFOl-2 ()
7.8 Function: simul-ate-noise ()
7.9 Function: simul-ate-sb ()
7.10 Function: combine-data ()
7.11 Funct ion: monte-carloO . .
7.t2 Example: monte-carIo program
7.13 Function: test-da:.aL2 O . .
7.14 Function: extract-noise ()
7.i5 Function: extract-signaL ()
7.16 Funct ion: opt imal-f i lcer ()
7.17 Example: optimal-f ilter program
7.18 Discussion: Theoretical sisnal-to-noise ratio for the stochastic backsround . . .
7. 19 Function: cal-culaEe-var ()
7.20 Exanple: snr program
7 .21 Exarrryle: omegra-rnin program
7.22 Function: analyze() . .
7.23 Function: prelim-stats o
7.24 Function: st.atistics o

180
181
183
184
186
187
190
192
193
195
197
198
199
200

2rl
211
2t4
2t6
21,8
220
221
223
224
226
229
230
232
239
240
242
144

246
250
252
254
256
259
261
263

7.25 Example: simulationprogram - .264
7.26 Some output from the simuf ation program - 267

GRASP Routines: Supernovae and other transient sources

GRASP Routines: Feriodic and quasi-periodic sources

GRASP Routines: General purpose utilities
10.1 GRASP Error Handling

10.1.1 Reporting Errors In GRASP Code .
10.1.2 How GRASP Enor Reports Are Handled
10.1.3 Customizing The Default Handlers
10.1.4 Writing Custom Enor Handlers
10.1.5 Functions: GR-start-error (), GR-report-error (), GR-end-error ()

10.2 Function: grasp-open o
10.3 Function: awg-spec ()
10.4 Function: binshort ()
10.5 Function: is-gaussiano . . .
10.6 Function: clear ()
10.7 Function: prod.uct o
10.8 Function: productc ()
10.9 Function: ratio ()
l0.l0Function: graph ()
10.1 I Function: graph-double ()
lO.l2Function: grraph-shortO . .
l0.l3Function: sgraph ()
l0.14Function: audio ()
l0.l5Function: sound ()
10.16Example: translate .
I 0. 1 7 Multi-taper methods for spectral analysis
10.l8Function: slepian-tapers ()
10. l9Function: mul t itaper-spectrum ()
l0.20Function: mul t i taper-cro s s -spec trum ()
10.21 Structure: struct removed-lines
l0.22Function: fvalue-cmpO . .
l0.23Function: index-cmp ()
10.24Function: remove-spectral-1 ines ()
10.25Example: river
l0.26Example: i f o-clean
l0.27Example: tracker
10.28Example: trackerF .

References

270

10

271

n2
273
273
273
n4
n5
276
277
278
280
28r
283
284
285
'286

287
288
289
290
291
292
293
300
301
303
30s
306
307
308
309
3 1 1
314
3 1 8
320

32611

1 Acknowledgements

This work has been partially supported by National Science Foundation gants to: the University of Wiscon-
sin - Milwaukee PHY95-07740, the LIGO project PHY92-10038 and the LIGO visitors progrzrm PHY96-
03177. It has also benefited from the contributions of several individuals. Alan Wiseman wrote the chirp
generation routines with me in 1995, then entirely re-wrote them for GRASP. Joseph Romano took my
(AVS versions of the) stochastic background code, helped to fix a number of the problems, and produced
the stochastic background simulation routines contained in GRASP. Sathyaprakash generously provided me
with a copy of his routine grid4. f which eventually evolved into template-grid. Jolien Creighton
wrote and documented the section on black hole ringdown, and incorporated the FFTW optimized Fourier
transform routines. Jim Mason was "instrumental" in helping me to understand and document the data for-
mat used in the 40-meter prototype experiment. Fred Raab, Bob Spero, Stan Whitcomb, Kent Blackburn
and others have contributed many useful ideas and insights about how to understand the data stream from a
real interferometer. Kip Thorne and his research group provided or called attention to many of these ideas.

7

2.1

Introduction

The Purpose of GRASP

The analysis and modeling of data from gravitational wave detectors requires specialized numerical tech-
niques. GRASP was developed in collaboration with the Laser Interferometric Gravitational Observatory
(LIGO) project in the United States, and contains a collection of software tools for this purpose.

In order that this package be of the most use to the physics community, this package (including all
source code) is being released in the public domain. It may be freely used for any purpose with only one
condition: GRASP and its author must be acknowledged or referenced in any work or publications to which
GRASP made a contribution. This citation must specify the version number (for example, 1.0.0) of GRASP.
In addition, if the code has been modified in any way, this must also be stated. While the GRASP package is
available in the public domain, we do intend to regulate its distribution. You may request a copy of GRASP
for your personal use, or for use at your own institution, but you must not distribute it outside that group.
In addition, one person at each institution must be designated as the "responsible party" in charge of the
GRASP package.

GRASP is intended for a broad audience, including those users whose main interest is in running simu-
lations and analyzing data, and those users whose main interest is in testing new data analysis techniques or
incorporating searches for new rypes of gravitational wave sources. The GRASP package includes a "cook-

book" of documented and tested lowlevel routines which may be incorporated in user code, and simple
example progmms illustrating the use of these routines. GRASP also includes a number of high level user
applications built from these routines.

We are always interested in extending the capabilities of GRASP. Suggestions for changes or additions,
including reports of bugs or corrections, improvements, or extensions to the source code, should be commu-
nicated directly to the author.

2.2 Quick Start

If you hate to read manuals, and you just want to try something, here's a suggestion. This assumes that the
GRASP package has been installed by your local system administrator in a directory accessible to you, such
as / usr / local /GRASP and that some 40-meter data (old'format) has also been installed, for example in
/ usr / :-.ocal / GRASP / data.

If you want to try running a GRASP progrzrm, type
setenv GRASP-DATAPATH /:u,sr / local/GRASP/data/19nov94 . 3
to set up apath to the data, then go to the GRASP directory:
cd /usr/ Iocal/GRASP / src / examples/examples-40meter
and try running one of the executables:
- / lock1 is t
will print out a list of the locked data segments from run 3 on 19 November 1994. A more interesting
pro$am to run (in the same directory) is
- , /animate I *Sr -pipe

which will produce an animated display of the IFO oulput. Note that in order for this to work, you will need
to have the:angr graphing program in your path. @lease see the comment about:'cmgr in Section 3.8).

If you only have data that has been distributed in the FRAME format, rype
setenv GRASPjRAMEPATH / usr / Iocal /GRASP/data/ l-9nov9 4 .3. frame

to set up a path to the data, then go to the GRASP directory:
c d / usr / I oca 1 / GRAS P / src / exampl e s,/ exampl e sl rame
and try running one of the executables:

. / lock1 is t .F
will print out a list of the locked data segments from run 3 on 19 November 1994. A more interesting
program to run (in the same directory) is
. /animateF | *Sr -pipe

which will produce an animated display of the IFO output. Note that in order for this to work, you will need
to have the >angr graphing program in your path. (Please see the comment about :<mgr in Section 3.8).

If you want to try writing some GRASP code, a simple way to start is to copy one of the example
programs, and the Makefile, into your personal directory and edit that:
mkdir -/GRASP

cp / :usr / local /GRASP/ src / examples / examples-4 0meter / gwoutput . c - /GRASP
cp / usr / local /GRASP/ src / examples / examples-4 Ometer /Makef i le - / GRASP
cd -/GRASP

Now make editing changes to the file gwoutput . c, and when you a.re done, edit the Makef ile that you
have copied into your home directory. Find the line that reads:
all: gwoutput
and delete everything to the right of the colon except gwouput from that line (but leave a space after the
colon). Then type:
make gwoutput
to recompile this program. To run it, simply type:
gfwouEput.
In general, if you want to modify GRASP programs, this is the simplest way to starl

2.3 A few words about data formats

The GRASP package was originally written for analysis of data in the "old" format, which was used in the
Caltech 4O-meter IFO laboratory prior to 1996. Starting in 1997, the LIGO project, and a number of other
gravity-wave detector groups, have adopted the VIRGO FRAME data format. Almost every example in the
GRASP package has equivalent prog&rms to read and analyze data in either format. For example animate
and animateF are two versions of the same progmm. The first reads data in the old format, the second
reads data in the FRAME format. We have also included with GRASP a translation program that translates
data from the old format to the new format (see transrate in section 10.16).

After careful thought, the LIGO management has decided to only distribute the November 1994 data in
the FRAME format, except to a small number of groups (belonging to the Data Translation Group) who are
responsible for ensuring that the translated data set contains the same information as the original! The initial
distributions of GRASP will include both old-format and new-format code. However after a reasonable
period of time, the old-format data and code will be removed from the package. So please be aware that
the old-format material will be reaching the end of its useful lifetime fairly soon; we do not recommend
investing much effort in these.

If you want to develop or work on data analysis algorithms, you will want to have access to this data
archive. Because many people contributed to taking this data, and because the LIGO project wants to
maintain control of its use and distribution, this data set is NOT in the public domain. However, you may
request a copy for your use, or for use by your research group. Write to: Director of the LIGO Laboratory
Mail Stop 51-33, California Institute of Technology, Pasadena, CA 91125. The data set is available in tar
format on two Exabyte 8500c format tapes.

In order to use the data in the FRAME format, you will need to have access to the FRAME libraries.
These are available from the VIRGO project; they may be downloaded from the sire http : / / lapphp - :-n2p3 - fr /'
Contact Benoit Mours mours@l-app . in2p3 . f r for further information.

2.4 GRASP Hardware & Software Requirements

GRASP was developed under the Unix (m) operating system, on a Sun workstation network. The package
is written in POSDVANSI C, so that GRASP can be compiled and used on any machine with an ANSI C
compiler. A1l operating system calls are POSlX-compliant, which is intended to keep GRASP as portable
to different platforms as possible. The main routines could also be linked to user code written in other
languages such as Fortran or Pascal; the details of this linking, and the conventions by which Fortran and C
(or Pascal and C) routines communicate are implementation dependent, and not discussed here.

Several of the high-level applications in GRASP can be run on parallel computer systems. These
can be either dedicated parallel computers (such as the Intel Paragon or IBM SP2 machines) or a net-
work of scientific workstations. The parallel programming in GRASP is implemented with version 1.1 of
ttre Message Passing Interface (MPI) library specification [2]. All major computer system vendors cur-
rently support this standard, so GRASP can be easily compiled and used on virmally any parallel ma-
chine. In addition, there is a public-domain implementation of MPI called "mpich"

[3] which will run
MPl-based progftrms on networks of scientific workstations. This makes it easy to do "super-computing

at night" by running GRASP on a network of workstations. Further information on MPI is available
from the web site.http: //www.mcs-anl -gov/mpi/. The mpich implementation is available from
http:. / /wwr-mcs -an1-gov/mpi/rnpich/. By the way, if you don't have access to parallel ma-
chines (or have no interest in parallel computing) don't worry! The only parallel code in GRASP is fourrd in
"top-level" applications; all of the functions in the GRASP library, and most of the examples, can be used
without any modifications on a single processor, stand-alone computer.

GRASP makes use of a number of standard numerical techniques. In general, we use version 2.6 of
the routines from "Numerical Recipes in C: the art of scientific computing" [1]. These routines are widely
used in the scientific community. The full source code, examples, and complete documentation are provided
in the book, and are also available (for about $50) in computer readable form. Ordering information and
further details are available from http : / / cfaxa2.harvard- edu/numerical-recipes/. These
routines are extremely useful and beautifully-documented; if you don't already have them available for your
use, you should!

In general, output from GRASP is in the form of ASCtr text files. We assume that the user has graphing
packages available to visualize and interpret this output. Our personal favorite is :<rng:r, available in the
public domain from the site http://plasma-gate.weizmann.ac.illXmgr/ which also lists

mirror sites in Europe and USA. (Please see the comment about:<ngr in Section 3.8). In some cases we

do output 'tomplete graphs" for ><rngr. We do also output some data in the form of PostScript (tm) files.

Previewers for postscript files are widely available in the public domain (we like GhostView).

2.5 GRASP Installation

As we have just explained, GRASP requires access to Numerical Recipes in C hbraies and to MPI and

MPE libraries. These packages must be installed, and then within GRASP a path to these libraries must be

defined. This can be done by editing a single file, and then running a shell script. This section explains each

of these steps in detail.
All of the site-specific information is contained in a single file SiteSpecif ic in the top-level direc-

tory of GRASP. This file contains a number of variables whose purpose is explained in this section. These

variables must be correctly set before GRASP can be used; the definitions contained in SiteSpecif ic

(as distributed) are probably not appropriate for your system, and will therefore require modification.

2.5.1 GRASP File Structure

The code for GRASP can be installed in a publicly-available directory for example /usr/ local /GRASp.
(It can also be installed "privately" in a single user's home directory if desired.) The name of this top-level
directory must be set in the file SiteSpecific which is contained in the topJevel GRASP directory.
To do this, edit the file sitespecif ic and set the variable cRASPJIoMn to the appropriate value, for
example GRASP-HOME= /:u'sr / local /GRASP. Please note that the installation scripts are not designed to
"build" in one location and'lnstall" in a separate location. You should go through the installation procedure
in the same directory where you eventually want the GRASP package to reside.

Within this top level directory resides the entire GRASP package. The directories within this top level
are:

datal Contains (both real and simulated) interferometer data, or symbolic links to this data. See the
comments in Section 3 to find out how to obtain this data-

parameters / Contains parameters such as site location information, and estimated power spectra/whitening
functions of future detectors.

doc / Documentation (in TeX, PostScript, DVI, and PDF formats) including this users guide.

man/ This may be used in the future for UND(on-line manual pages.

testing/ This will eventually contain a suite of programs that test the GRASP installation.

include/ Header files used to define stnxctures and other common types in the code. This also include
the ANSI C prototypes for all the GRASP functions.

src,/ Source code for analyzing various aspects of the data stream, distributed among the following direc-
tories:

40-meter/ Reading data tapes produced on the Caltech 40 meter prototype prior to 1997.

inspiral / Binary inspiral analysis (including optimal filtering and vetoing).

ringdown/ Black hole horizon ringdown (including optimal filtering). This can be used to filter
for any exponentially-decaying sinusoid.

stochastic/ Stochastic background detection (including optimal filtering and simulated signal
production)

transient/ Supernovae and other transient sources.

periodic / Searches for pulsars and other periodic and quasi-periodic sources.

utility/ General purpose utility routines.

examples / The source code for all of the examples given in this manual (organized by section).

optimization/ Additional library routines for optimizing GRASP operation of specific plat-
forms (i.e., supercomputers).

1ib/ Object libraries.

bin/ Executable applications and programs.

2.5.2 Accessing Numerical Recipes rn C libraries

GRASP makes use of many of the functions and subroutines from Numerical Recipes in C lll. These
functions and subroutines are available in Fortran, Pascal, Basic, Kernighan and Ritchie (K&R) C, and
ANSI-C versions; you will need the ANSI-C routines. The source code for these functions (both * . c
and *.h files) must be installed in a directory (for example, /usr/1oca1lrecipes/src) and the
compiled object modules (* . o files) must be archived into a single library file (* - a file). The instmctions
for this are included in the distribution of the source code for Numerical Recipes. In the end, a file called
librecipes-c . a must be put into a directory where it is available to the linker for compilation. A good
place to put this library is in /usr/1oca1/recipes/1ib/librecipes-c.a. When you run the
command that installs GRASP, the linker needs to be able to find these libraries. The file SiteSpecif ic
must then contain the line RECIPESJIB = /usr/ local /recipes / 1 ib near the top of the file.

It is frequently useful, for debugging purposes, to be able to link with both "debug" and "profile" ver-
sions of the libraries. For this reason, we recommend that users actually create three separate libraries of
Nume rical Re cip e s functions :

/usr /Iocallrecipes/lib/librecipes-c. a: a library compiled for fast execution, with opti-
mization options (for example, -O3 or -xO4) turiied on during compilation.

/:usr/loca1lrecipes/lib/librecipes-cg.a: a library compiled fordebugging, with the'de-
bug option (typically, -g) turned on during compilation. Note that in order to use a debugger with
this library, and to be able to step "within" the Numerical Recipes functions, the debugger must be
able to locate the source code for Numerical Recipes. Thus, after Numerical Recipes is compiled and
installed, its *.c and *.h source files must be left in their original locations and not deleted or moved.

/ .usr/ Iocal, / recipes/1ib/ l ibrecipes-cp.a: al ibrarycompiledforprof i l ing,withtheprof i l -
ing option (typically, -pg or -xpg for "gprof' or -p for "prof') turned on during compilation.

One can then easily compile GRASPcode with the appropriate library by setting LRECTPESin SiteSpecif ic.
For example to run code as rapidly as possible one would set LRECIPES = recipes-c. However to
compile code for debugging it would be preferable to set LRECIPES = recipes-cg. (Note that rather
than recompiling the entire GRASP package in this way, one can simplify modify the value of LRECIPES
within the desired Makef iles and then recompile only the code of interest.)

We have encountered one minor problem with the Numerical Recipes in C routines. Unforrunately
the authors of these routines choose to nzrme one of their routines selectr () . This name conflicts with

a POSD(name for one of the standard operating system calls. In linking with certain libraries (for ex-
ample the MPI/IvIPE libraries) this can generate conflicts where the linker attaches the select () call

to the entry point from the wrong library. We suggest that you fix this as follows. Before building the

Numerical Recipes libraries, edit the source files recipes,/rofunc. c, recipes/select. c, and

recipes / select . c . origchan$ng each occurence of select (to NRsel-ect (. You will have to do

this in (respectively) three places, one place and one place in these files. Then edit the file include/nr . h

making the same change of sef ect (to NRselect (in one place. This will elminate the select () rou-

tine from the Numerical Recipes library, replacing it with a routine called NRselect () , and eliminating

any possible naming conflict from the library.

2.5.3 Accessing MPI and MPE libraries

To enable use of the parallel processing code included with GRASP, one needs to link the code with an

MPI function call library. (If you do not intend to use any of the multiprocessing code, we'll tell you

what to do.) For performance monitoring purposes, we also make calls to the Message Passing Envi-
ronment (MPE) library, which is included with mpich t3l. If these function libraries are not currently
available on your system, you should obtain the pubhc domain implementation mpich from the tiRL
given above, and follow the instructions required to build the MPI/1vIPE libraries for your system. After
the installation process is complete, the necessary libraries will be contained in a library archive, for ex-
ample /usr/1oca1/mpi/ l ib/ l ibmpi.aand /usr/ locaL/mpe/l ib l l ibmpe.a- The path to
these libraries is set in the file SiEeSpecif ic by means of the variable MPIJIBS. A typical line in
SiteSpecif ic might then read:
MPIIIBS=-L/usr / l -ocal/mpi/ I ib -1mpi - Impe.

You must also set BUILD-MPr= true in sitespecific. FinallS in order to include appropri-
ate header files in any MPI progr:rms, you will need to include a path to these header files in the file
SiLeSpecific. You can do this by setting MPI-INCLUDES in the file SiteSpecific. A typical
installation might have
MPI-INCLUDES = -T/usr / Iocal/mpi/ include.
NOTE: If you don't want to use any of rhe MPI code, just sec
BUILD-I{PI= false
in SiteSpecif ic. All the other MPl-specific defines are then ignored.

2.5.4 Accessing FRAME libraries

The LIGO and VIRGO detector projects have recently decided to standardize the format which their data will
be recorded in (see Section 2.3). The standard is called the FRAME format, and is still under development.
It appears quite possible that a number of other gravitational-wave detector gloups will also adopt this same
format. The GRASP package contains, for every example program, both FRAME format and old format
versions. It also contains an translation program which converts data from the "old 1994" format into the
new FRAME format.

Unless you are in one of the small number of groups rvith access to the old-format data" you will need to
obtain the FRAME libraries. These are available from the VIRGO project; they may be downloaded from the
sitehcup:/ / lapphp. in2p3.fr /vLrgolFramel.ContactBenoitMoursmours@lapp. in2p3.fr
for further information. In the SiteSpecif ic file, if you need the FRAME libraries, set a pointer to the
directory containing them. NOTE: If you don't need the FRAME libraries, jusr set:
BUILDJRAME = false
in SiteSpecif ic. All the other FRAME-specific defines are then ignored.

2.5.5 Real-time 4O-meter analysis

The analysis tools in the GRASP package can be used to nalyze data in real-time, as it is recorded by the
DAQ system. This facility is primarily for the use of experimenters working in the Caltech 40-meter lab.
and will probably not be ofuse to anyone outside ofthat group.

In order to use the GRASP tools in real time, one needs to link to a set of EPICS (Experimental Physics
and Industrial Control System) libraries, that are not otherwise needed. These permit the GRASP code to
intenogate the EPICS system to find out the names and locations of the most-recently written FRAMES of
data.

2.5.6 Making the GRASP binaries and libraries

To make the GRASP libraries and executables described in this manual, please follow these direcrions. It
should only take a few minutes to do this.

1 .Within the main GRASPdirectory is afile called SiteSpecif ic. Make acopy of sitespecif ic
called SiteSpecif ic . save. This way, if you mess up the installation, you can start over easily.

Now edit SiteSpecif ic so that enasp]IoME has the correct path, for example
GRASPJIOME= /usr / Iocal/GRASP.
This must be the name of the directory on your system in which GRASP resides. If you are not the
superuser and are installing GRASP only for your own use, you can set this path to point somewhere
in your own home directory and install GRASP there.

Find out where Numerical Recipes in C is installed on your system. Wthin SiteSpecif ic set
RECIPESI,IB to point to the directory containing these libraries. For example
RECIPESJTB= /usr / local /numerical-recipes / 1ib.
If Numerical Recipes in C is not installed on your system, you will have to obtain a copy, and in-
stall it, following the directions to create the library file librecipes-c . a. Note that as described
above, you might also want to create debugging libraries librecipes-cg - a and profiling libraries
I ibrecipes-cp. a.

Within SiteSpecif ic set LRECIPES to the name of the Numerical Recipes in C library you wish
to use, for example
IJK!iU J-.Hf,;5 =f eC l-PeS-C.

If you intend to use the MPI code, set BUrLD-t4pr= true, o*rerwise set it to f alse. In this latter
case, any MPi-specific defines are ignored, and no code that makes use of MPI/1vIPE function calls is
compiled. (This is a shame - these are some of the nicest progmms in the GRASP package. We urge
you to reconsider building the mpich package on your system!)

Within SiteSpecif ic set MPIJIBS to point to the directory containing the MPI/}IPE libraries,
and to specify the names of the link archives, for example
MPf_LIB=-L/ lusr / loca1/mpi/ I ib - Impi -1mpe.

Note ttrat if you use the version of mpi c c which is distributed with mp i ch you may not need to have
any of the MPI libraries referenced here; the compiler may find them automatically.

Within SiteSpecif ic set MPr-TNcLUDES to point to the directory which contains the MPI and
MPE header (* .h) files, for example
MPI-INCLUDES = -I /:usr / Iocal/mpi-/incl-ude.

Wthin SiteSpecif ic set MPIcc to the name of your local MPI C compiler, for example:
MPICC = /usr / Ioca l /b in /mp icc .
You can include any compilation flags (say, -s) on this line also.

If you intend to use the FRAME code, set BUILDJRAME = true, otherwise set it to false. In this

latter case, any FRAME-specific defines are ignored, and no code that makes use of FRAME function

calls is compiled.

Within SiteSpecif ic set FRAME-DIR to point to the directory which contains the LIGOA/IRGO

format FRAME software, for example
FRAME-DIR= /usr / loca1/frame.
This directory should contain lib/IibFrame-a and include/Framel.h. If you don't need

the FRAME libraries, just leave this entry blank.

4.

5.

)

J .

6.

7.

9.

10.

Within siteSpecif ic, if you want to use GRASP for real-time analysis in the Caltech 40-meter
lab, set EPrCS-TNcLUDES to point to the directory containing the EPICS * . h include files, and set
EPIcslrBS to point to the directory containig the EPICS libraries. Finally, you need to uncomment
the BUILDREALTIME define statement. If you do not intend to use your GRASP installation for
real-time analysis in the 40-meter lab, simply leave these three definitions commented out with a hash
sien (#).

At the bottom of sitespecif ic are several define statements, which are currently commented out.
These are primarily intended for production code; by undefining these lines you replace a cube root
function and some trig functions in the code with faster (but less accurate) in-line approximations. We
suggest that you leave these commented out. (You might want to consider uncommenting them if you
are burning thousands of node hours on a large parallel machine - but you do so at your own risk!)

There are also lines that are curently commented out, which allow you to overload functions defined
in the libraries and reference libraries of optimized functions. Once again, leave these commented out
unless you want to replace standard Numerical Recipes functions with optimized versions. Currently,
we suppoft three sets of optimized libraries:

The CLASSPACK optimized FFT's for the Intel Paragon.

The Sun Performance Library's optimized FFT for the Sun SPARC architecture.

The CraylSGI optimized FFT for the RS10000 and other MIPS architectures.

The FFTW (Fastest Fourier Transform in ttre West), which will run on any computer. This is a
public domain optimized FFT package, available from the web site:
http : / / t rheory. lcs -mit - edu/-f f tw
If you don't have an optimized FFT routine for your computer, we highly recommend this - it is
a factor of three (or more) faster than Numerical Recipes.

Further details may be found in the src/optimization subdirectory of GRASP. If you want to
use tiese optimized library routines, first go into the appropriate subdirectory of src /optimi zation
and build the optimized library routine using the makef iles's that you find there; then uncomment
the appropriate lines in SiteSpecif ic and follow the instructions given here.

14. Now, in the top level GRASP directory execute the shell script InstallGRASP, by typing the
commands:
chmod +x InstalLGRAsp
. / Ins ta l1GRASP
From here on, the remainder of the installation should proceed automatically. The Instal1GRASP
script takes information contained in the SiteSpecif ic file, uses it to create'Makef ile's in each
src subdirectory and runs make in each of those directories.

Theuakef i1e in each directory is constructed by concatenating the file Sitespecif ic with a file called
Makef ile. tail in each individual directory. If you want to try changing the compilation procedure, you
can modify the Makef ile in a given directory. However this will be created each time that you run
InstalIGFASP; for changes to become permanent they should either be made in SiteSpecif ic or in
the l takef i le. tai l 's.

Note that this installation procedure and code has been tested on the following types of machines: Sun 4
(Solaris), DEC AXP (OSF),IBM SP2 (AIX), HP 700 (HPUX),Intel (Linux), Intel Paragon. If you run into
problems with our installation scripts, please let us know so that we can fix them.

1 1 .

12.

13.

a

a

a

a

l 4

ff you want to experiment with GRASP or to write code of your own, a good way to start is to copy the
Makef ile and the example (*. c) programs from the srclexamples directory into a directory of your
own. You can then edit one of the example programs, and type "make" within your directory to compile a
modified version of the program.

If you wish to rnodify the code and libraries distributed with GRASP (in other words, modify the func-
tions described in this manual!) the best idea is to use cp -r to recursively copy the entire GRASP directory
structure (and all associated files) into a private directory which you own. You can then install your personal
copy of GRASP, by following the directions above. This will permit you to modify source code within
any of the src subdirectories; typing make within that directory will automatically re-build the GRASP
libraries that you are using. By the way, if you are modifying these functions to fix bugs or repair problems,
or if you have a "better way" of doing something, please let us know so that we can consider incorporating
those changes in the general GRASP distribution.

2.6 Conventions used in this manual

The conventions used in this manual are not strict ones. However we do observe a few general rules:

1. Words or lines that you might type on a computer (commands, filenames, names of C-language func-
tions, and so are) are generally indicated in telet]'pe f ont-.

2. When a function is described, the arguments which are inputs and those which are outputs (or those
which are both) are indicated. Thus, for example the function
add(int a, int b, int* c) whichsets *c = a*bisdescribedby:

a: Input. One of the two integers that are added together.

b: Input. The second ofthese integers.

c : Output. Set to the sum of a and b.

Note ttrat technically this is incorrect, because of course in C even the "output arguments" are really
just inputs; they are pointers to an address in memory that the routine is supposed to modify. And
technically, the statement that "c is set to..." is not correct, since in fact it is the integer pointed to

by c (denoted *c) that is set. However we find that this convention makes it much easier to read the
function descriptions!

3. Most of the time, the example programs using GRASP functions are given explicitly in the manual,

so you can see the GRASP functions "in use". Because these examples are illustrative, they are
generally "pared down" as much as possible (for example, default values of adjustable parameters are

hard-wired in, rather than prompted for).

4. Routines and example progmms in GRASP generally begin with the line:
+ ; - ^ ' l r r A a r r d r ^ q n h t l
t r l l l u l g g g : j ! s p } / . r r

which includes the protofypes for all GRASP functions as well as the library header files stdio . h,

std.I ib.h, math.h, values.h, and t ime.h. The GRASP include f i le "girasp.h" can be

found in the include subdirectorv of GRASP.

3 GRASP Routines: Reading/using Caltech 40-meter prototype data

There is a good archive of data from the Caltech 4O-meter prototype interferometer. Although the inter-
ferometer is only sensitive enough to detect events like binary inspiral within = 10kpc (the distance to the
galactic center) its output is nevertheless very useful in studying data analysis algorithms on real-world in-
terferometer noise. This data was taken during the period from 1993 to 1996; for our purposes here we
will concentrate on data taken during a one-week long observation run from November 14-21,1994. The
original data is contained on 11 exabyte tapes with about 46 total hours of data; the instrument was in lock
about 88% of the time. The details of this run, the status of the insffument, and the properties of this data
are well-described in theses by Gillespe [19] and Lyons [20].

The GRASP package includes routines for reading this data. The data is not read directly from the
tapes themselves; the data instead must be read off ttre tapes and put onto disk (or into pipes) using a
program called extract. The GRASP routines can then be used to read the resulting files. While the
GRASP routines can be used without any further understanding of the data format, it is very helpful to
understand this in more detail. Note that these data formats and the associated structures were defined
years before GRASP was written; we did not choose this data format and should not be held accountable
for its shortcomings. We have included a preliminary translator that translates the data fr_qrn this old 1994
format into the new LIGO/VIRGO frame format. The program translate may be found in the GRASp
src/examples/examples-utility directory and is documented in the Section on GRASP gen'eral
purpose utilities.

If you want to develop or work on data analysis algorithms, you will want to have access to this data
archive. Because many people contributed to taking this data" and because the LIGO project wanrs to
maintain control of its use and distribution, rftrs data set is NOT in the public domain. However, you may
request a copy for your use, or for use by your research group. Write to: Director of the LIGO Laboratory
Mail Stop 5l-33, California Institute of Technology, Pasadena, CA 91125. The data ser is available in rar
format on two Exabyte 8500c format tapes. Each directory (for a different run on a different day) occupies
the following amount of space (in mbytes):

1 4 n o v 9 4 . 1 6 4 7
]-4nov94.2 913
1 8 n o v 9 4 . 1 i - 0 4 1 -
L8nov94 -2 1_ I2 t
1 9 n o v 9 4 . l _ t _ 5 5 4
L9nov9 4 .2 J.07 4
1 9 n o v 9 4 . 3 I Z 5 0
l _ 9 n o v 9 4 . 4 L 2 0 6
20nov94. 1 i .L46
20nov9 4 .2 1_1_7 3
2 0 n o v 9 4 . 3 1 5 4 3

Each of these directories contains the channel - * files and the swept-sine. ascii swept-sine calibra-
tion files. In this manual, we assume that these directories (or links to them) have been placed where you can
access them. The GRASP programs that use this data determine its location by means of the environment
variable GRASP-DATAPATH. You can set rhis by typing (for example)

set,env GRASP_DATAPATH / usr / local/data/ 19nov94 . 3
to access the data from run 3 on November l9th. System administrators: after installing these directories in
a convenient place on your machine, we recommend that you install a set of links to them in the directory
data within the GRASP home directory. This way your users can find them without asking you for the
location!

WARNING: this data was written on a "big-endian" machine (the sun-4 workstation is an example of
such a machine). The floats are in IEEE 754 floating-point format. Attempts to read the data in its distributed
form on a "little-endian" machine (such as Intel 80*86 computers) will yield garbage unless the bytes are
properly swapped. The routines used to read data (in particular, the function readJclock ()) test the byte
order of the machine being used, and swaps the byte order if the machine is "little-endian". This introduces
some inefficiency if you are running on a "little-endian" machine, but is preferrable to having two copies of
the data, one for each architecture. If you are doing all of your work on a "little-endian" machine and you
want to avoid this inefficiency, write a progam which properly swaps the byte orders of the header blocks
(which are in 4-byte units) and then also properly swaps the byte order of the data blocks (which are 2-byte
units) and reformat the raw data files. Then modify the readJclock () data so that it no longer swaps the
bytes on your machine.

3.1 The data format

Data is written onto the exabyte tapes in blocks about I/2 megabyte in size. The format of the data on the
tapes is as shown in Table 1. The tape begins with a main header (denoted "mh" in the table). This is

Table 1: Format of Exabyte data tapes (first row: content, second row: length in bytes).

followed by a set of zeros, padding the length of the header block to 1024 bytes. There is then an empty
block of 1024 bytes containing zeros. This pattern is repeated until the first block containing actual data.
This is signaled by the appearance of a main header, followed by a gravity header (denoted "gh" in the figure
above). These two headers are padded with zeros to a length of 1024 bytes. This is then followed by a set
of data (the length of this set is a multiple of 1024 bytes). Information about the length of the data sets
is contained in the headers. The data sets themselves consist of data from a total of 16 channels, each of
which comes from a 12-bit A to D converter. Four of the 16 channels are fast (sample rates a bit slower than
10kHz) and the remaining 12 channels are slow (sample rates a bit slower than lkHz). The ratio of sample
rates is exactly 10 : 1. Within the blocks labeled "datd', these samples are interleaved. The information
content of the different channels is detailed on page 136 of Lyon's thesis [20], and is summarized in Table 3.

The program extract reads data offthe tapes and writes them into files. One file is produced for each
channel; typically these files are named channel.0 --+ channeI. L5. The complete set of these files for
the November 1994 run fits onto two Exabyte tapes (in the 8500c compressed format). The information in
these files begins only at the moment when the useful data (starting with the graviry header blocks) begins
to arrive. The format of the data in these channel . * files is shown in Table 2. Here the main headers are

Table2: Format of a channel - 0--+15 file (fint row: block number, second row: content, third row: length
in bytes).

the same as before, however the headers that follow them are called binary headers (denoted by "bh" in the
table). The length of the data stream (in bytes) is called the "chunksize" and is denoted by "cs" in Table 2.
We frequently reference the data in these files by "block number" and "offset". The block number is an
integer) 0 and is shown in Table 2. The offset is an integer which, within a given block, defines the offset

I7

of a data element from the first data element in the block. In a block containing 5000 samples, these offsets
would be numbered from 0 to 4999.

The structure ofthe binary headers is
struct ldJcinheader {

f loat elapsed-time: This is the total elapsed time in seconds, typically stafting from the first valid
block of data from the beginning of the run.

f loat datarate: This is the sample rate of the channel, in Hz.

) ;
The structure of the main headers is

slruct ld-rnainheader {

int chunksize : The size of the data segment that follows, in bytes.

int filetlpe: Undocumented; often I or2.

int epoch-time-sec: The number of seconds after January I, 1970, Coordinated
(UTC) for the first sample. This is the quantity returned by the function time O in
librarv.

int epoch-time-rnsec : The number of millseconds which should be added to the previous quantity.

int tod-second: Seconds after minute, 0-61 for leap second.

int tod-rninute: Minutes after hour 0-59.

int tod-trour: Hour since midnight0-23.

int d.ate-day: Day of the month, 1-31.

int date-rnonth: Month of the vear. 0-11 is Januarv-December.

i n i A a l - a t t a = r .-r es.. Years sin"" tq0O.

int date-dow: Days since Sunday, 0-6.

int. sub-Lrd.r-f lag : Undocumented.

); Note: in the original headers, these int were declared as 1ong. They are in fact 4-byte objects, and on
some modern machines, if they are declared as long they will be incorrectly interpreted as 8-byte objects.
For this reason, we have changed the header definitions to what is show above.

For several years, the extract program contained several bugs. One of these caused the channel . *
to have no valid header information apart from the elapsed time and datarate entries in the binary
header, and the chunksize entry in the main header. All the remaining entries in the main header were
either incorrect or nonsensical. This bug was corrected by Allen on 14 November 1996; data files produced
from the tapes after that time should have valid header information.

There was also a more serious bug in the original versions of extract. The typical chunksize of most
slow channels is 10,000 bytes (5,000 samples) and the chunksize of most fast channels is 100,000 bytes
(50,000 samples) but until it was corrected by Allen on 14 November 7996, the extract program would
in apparently unpredictable (though actually quite deterministic) fashion "skip" the last data point from the
slow channels or the last ten data points from the fast channels, giving rise to sequences of 4,999 samples

Universal Time
the standard C

l 8

from the slow channels, and correspondingly 49,990 samples from the fast channels. Not surprisingly, these
missing data points gave rise to stmnge "gremlins" in the early data analysis work; these are described in
Lyon's thesis [20] on pages 150-151. These missing points were simply cut out of the data stream as shown
in Figure 1; rather like cutting out 1 millisecond of a symphony orchestra every 5.1 seconds; this gives rise
to "clicks" which excited the optimal filters. This problem is shown below; data taken off the tapes after 14
November 1996 should be free of these problems.

There are a couple of caveats regarding use of these "raw data" files. First, in the channel . * files,
there can be, with no waming, large segments of missing data. In other words, a block of data with time
stamp 13,000 sec, lasting 5 sec, can be followed by another data biock with a time stamp of 14,000 sec
(i.e., 995 sec of missing data). Also, the time stamps are stored in single precision floats, so that after about
10,000 sec they no longer have a resolution better than a single sample interval. When we read the data,
we typically use the time-stamp on the fint data segment to establish the time at which the first sample was
taken. Starting from that time, we then determine the time of a data segment by using elapsed-time,
since the millisecond time resolution of epoch-timelnsec is not good enough. (See the comments in
Section ss :timestamp).

For our purposes, the most useful channels are channel. 0 and channel.l-0. Channel 0 contains
the actual voltage output of the IFO. This is typically in the range of *100. Later, we will discuss how to
calibrate this signal. Channel 10 contains a TTL locked level signal, indicating if the interferometer was
in lock. This is typically in the range from 1 to 10 when locked, and exceeds sevgral hundred when the
interferometer is out of lock. Note: after coming into lock you will notice that the IFO ouput is often zero
(with a bit of DC offset) for periods ranging from a few seconds to a minute. This is because the instrument
output amplifiers are typically overloaded (saturated) when the instrument is out-of-lock. Because they are
AC coupled, this leads to zero output. After the instrument comes into lock, the charge on these amplifiers
gradually bleeds off (or one of the operators remembers to hit the reset button) and then the ouput "comes

alive". So don't be puzzled if the instrument drops into lock and the output is zero for 40 seconds afterwards !
The contents of the channel . * files was not the same for all of the runs. Lyon's thesis [20] gives a

chart on page 136 with some "typical" channel assignments. The channel assignments during these Novem-
ber 1994 data runs are listed in a log book; they were initialiy chosen on November 14, then changed on
November 15th and again on November i8th; these assignments are shown in Table 3. (Note that the chart
on page 136 of Lyon's thesis describes the channel assignments on 15 November 94, a day when no data
was taken.)

t 9

Channel Nurnber Description S 14 Novemb,er 94 Desenpdon) 18 November 94
0
1
2
J

IFO output
unused
unused

microphone

IFO output
magnetometer
microphone

unused
4
)
6
7
8
9
10
1 1
L2
13
t4
15

dc sfrain
mode cleaner pzt

seismometer
unused
unused
unused

TTL locked
arrn 1 visibility
arm 2 visibility

mode cleaner visibility
slow pzt

arm I coil driver

dc strain
mode cleaner pzt

seismometer
slow pzt

power stabilizer
unused

TTL locked
arm 1 visibility
arm 2 visibility

mode cleaner visibility
unused

ann I coil driver

Table 3: Channel assignments for the November 1994 data, runs. Channels 0-3 are the "fast" chailnels,
sampled at about 10 kl{z; the remaining twelve are the "slow" channels, sanopled at about 1KI{2.

Data Dropouts
19 November 94 tap6 3

100.o

-100.o
50.660

elapsed time (sec)

Figure 1: This shows the appearance of chanlel . 0 before and after the ext.ract program was repaired
(on 14 November 1996) to correctly extract data from the Exabyte data tapes. The old version of extract
dropped the ten data points directly above the words "rnissing data"; in effect these were interpolated by tbe
diagonal line (but with ten times the slope shown since everything in between was missing).

&
I
I
fr
r
t
I
r
r
I
r
T
T

I
I
*

T
I

$
r
n

50.0

o

(s
o
; 0.0
3

o

IL

I 1 1'*nA/\l
f l l ' ' \' i i

I

mnilr' i l

Missing data

li
li

3.2 Function: readlclock ()

in t read- lc lock(FILE * fp , shor t **here, in t *n, f loat * ts tar t , f loat *srate, in t
a ' l ' l aa=f a i - r *na l loc , in t seek , s t ruc t ldS inheader* bh ,s t ruc t 1d :na inheader*
mh)
This function ef6ciently reads one block of data from one of the channel . * data files, operating in sequen-
tial (not random) access. On first entry, it detects the byte-ordering of the machine that it is running on, and
swaps the byte order if the machine is "little-endian" (the data was originally written in "big-endian" format,
and is distributed that way). It will also print a comment (on first entry) if the machine is not big-endian.

The arguments are:

fp: Input. A pointer to the channel . * file being read.

here: Input/Output. A pointer to an array of shorts, which is where the data will be found when
read. lc lockO returns. I f al locate=0,thenthispointer is input. I f al locateisnon-zero,
then this pointer is output.

n: Output. A pointer to an integer, which is the number of data items read from the block, and written to
*here. These data items are typically short integers, so the number of bytes output is twice xn.

tstart: Output. The time stamp (elapsed time since beginning of the run) at the start of the data block.
Taken from the binary header.

srate: Output. The sample rate, in Hz, taken from the binary header.

aI locate: Input. The read-block () function will place the data that it has read in a user defined array
if al-locateis zero. If allocateis set, itwillusemalloc O to allocate ablock of memory and
set *here to point to that block of memory. Further calls to readlclock () will then use calls to
realloc () if necessary to re-allocate the size of the block of memory to accommodate additional
data points. Note ttrat in either case, readlclock () puts into the anay only the data from the next

block; it over-writes any existing data in memory.

nalloc: Input/Output. If allocate is zero, then this is used to tell readlcl-ock () the size (in shorts)

of the array *here. An error message will be generated by read.Jclock () if this a:ray is too small

toaccommodatethedata. If allocateisnonzero,thenthisintegerisset(andreset,if needed)tothe

number of array entries allocated by ma1loc () /realloc () . In this case, be sure that *na11oc

is zero before the first call to read.lclock () , or the function will think ttrat it has already allocated

memory!

seek: Input. If seek is set to zero, then the function reads data. If seek is set nonzero, then

read.Jclock () does not copy any data into *here. Instead it simply skips over the actual data.

bh: Output. A pointer to the binary header structure defined above.

mh: Output. A pointer to the main header structure defined above.

This is a lowlevel function, which reads a block of data. It is designed to eittrer write the data into a

user-defined array or block of memory if allocate is off, or to allocate the memory itself. In the latter

mode,thefunctionusesnalloctotracktheamountof memoryallocated, andreallocates if necessary. Itis

often useful to be able to quickly skip over sections of data (for example, just after the interferometer locks,

a few minutes is needed for the violin modes to damp down). Or if the IFO is out of lock, one needs to

21

quickly read atread to the next locked section. If seek is set, then this routine behaves exactly as it would
in normal (read) mode but does not copy any data.

The function readJclock () retums the number of data items that will be returned on the next call
to readlclock () . It returns -1 if it has just read the final block of data (implying that the next call will
retum 0). It returns 0 if it can not read any further data, because none remains.

Notethatiftheuserhassetallocate,thenthereadjclockO willallocatemernoryusingmalloc O /real�.
It is the users responsibility to free this block of memory when it is no longer needed, using f ree () .

Author: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: This function was designed for variable-length blocks. It might be possible to simplify it for
fi xed-length block sizes.

22

3.3 Example: reader program

This example uses the function readjlock () described in the previous section to read the first 20 blocks
out of the file channel . 0. It prints the header information for each block of data" and the 100th data item
from each block, along with the time associated with that data item.

The data is located with the utiliry function grrasp-open (), which is documented in Section 10.2. In
order for this example progam to work, you must set the environment variable GRASP-DATAPATH to point
to a directory containing 40-meter data. You can do this with a command such as

setenv GRASP-DATAPATH /usr/Iocal / dat a/ L9nov94. 3
to access the data from run 3 on November 19th.

/* GRASP: Copyright 1997, Bruce Allen *,/
* i -nc lude 'g rasp .h '

i n l - n a i n t l f

FILE x fP ;

short r.data;
f loa t tb lock , t ime, s race ;
in t code,num, s ize=0, count=O,wh ich=1O0 ;
struct 1d-binheader bheader;
struct ld-:nainheader mheader;

/* open the IFO channel for reading */

fp=grasp-open (' GRASP*DATAPATH', " channel . 0 ") ;

f * readthe first 20 blocks of lock data * /
wh i le (count <20) {

f * reada block of data r" /
code= read-block (fp, &data, &num, &tblock, &srate, 1, &size, 0, &bheader, &mheader) ;

/* if there is no dau left, then break */

i f (c o d e = = 0) b r e a k ;

/x print some information about the data.*/
n r i n l - f (" D a t a b l o c k * d f r o m f i l e c h a r r n e l . 0 s t a r t s a t t = ? f s e c - \ n ' . c o u n t , t b l o c k) ;
p r in t f ("Th is b lock sampled a t * f Hz and conta ins 8d shor ts . \n ' , s ra te ,num) ;

/* print out some information about a single data point from block *./

t ime=tblock+ (which- L . 0) /srate ;
p r i n t f (" D a t a i t e m * d . a t t i m e B f i s 8 d - \ n " , w h i c h , t i m e , d a t a t w h i c h - L l) ;
p r i n t f (" T h e n e x t b l o c k o f d a e a c o n t a i n s 3 d s h o r t s - \ n \ n ' , c o d e) ;

/* increment count of # of blocks rcad.* f
counE.++;

)

/* print information about the largest memory block allocated x/
pr in t f ('The largest memory b lock a l located by read b lockO was 8d shor ts long\n" ,s ize l ;

/*, free the array allocated by read-blockQ x/
f ree (data) ;
return 0;

23

3.4 Function: f ind.-locked ()

in t f ind- locked(FILE * fp , in t *s -o f fse t , in t *s lc lock , in t *e -o f fse t , in t *e lc lock ,
* ts t .a r t , f loa t * tend, f l_oa t *s ra te)

This midlevel function looks in a TTllocked signal channel (typically, channel. L0) and finds the re-
gions of time when the interferometer is locked. The first time it is called, it returns information identifying
the start and end times of the first locked region. The second time it is called it returns the start and end
times of the second locked region, and so on.

The arguments are:

fp: Input. A pointer to the file containing the TTL lock signal. A rypical file name might be "channel . 10".

s-of f set: Output. The offset (number of shorts) into the block where the IFO locks. This ranges from
0 to n-l where the number of data items in block slclock is n. This offset points to the first locked
point.

sJclock: Output. The number of the data block where the IFO locks. This ranges from 0 to n-l where
the total number of data blocks in the file is n. -.

e-of f set: Output. The offset (number of shorts) into the block where the IFO loses locks. This ranges
from 0 to n-l where the number of data items in the block eJclock. This offset points to the last
locked point (not to the first unlocked point).

eJclock: Output. The number of the data block where the IFO loses lock. This ranges from s-block to
n-l where the total number of data blocks in the file is n.

tstart: Output. The elapsed time in seconds, since the beginning of the run, of the data block in which
the first locked point was found. Note: This is not the time of lock acquisition!

tend: Output. The elapsed time in seconds, since the beginning of the run, of the data block in which the
last locked point was found. Note: this is not the time at which lock was lost!

srate: Output. The sample rate of the TTllocked channel, in Hz.

This routine uses readlclock O to examine successive sections of the channel.l-0 data file. It
looks for continuous sequences of data points where the value lies between limits (inclusive) LoCKL=l- and
LoCKH= l- 0. It returns the start and end points of each successive such sequence. The upper and lower limits
can be changed in the code, ifdesired, however these values appear to be reliable ones.

The integer retumed by find.-lockedO is the actual number of data points inthefast channels,
during the locked period. It returns 0 if there are no remaining locked segments.

If there is a gap in the data stream, arising not because the instrument went out of lock, but rather
because the tape-writing program was interrupted and then later restarted, f ind-locked () will print out
a warning message, but will otherwise treat this simply as a loss of lock during the period of the missing
data.

Author: Bruce Allen, ballen @ dirac.phys.uwm.edu

Comments: This function was designed for variable-length blocks. It might be possible to simplify it for
fi xed-length block sizes.

3.5 Example: locklist program

This example uses the function f ind.-locked described in the previous section to print out location infor-
mation and times for all the locked sections in the file channeI.10. Note that this example only prints
out information for locked sections lonser than 30 sec.

/* GRASP: Copyright 1997, Bruce Allen x/
inc lude "grasp.h"

i n t n a i n t l f
t

f loa t ts ta r t , Eend, s raee, to ta l t ime,beg in , end;
int start-of f set, s tart-bI ock, end.-of f set, end_block, points ;
.r .r-L!; *rplocK;

/x Open the file for reading */
fplock=grrasp-open (' GRASP_DATAPATH ", . channel . L 0',) ;

avrnr_re (.L) t

/'t find the next locked section of the data * f
points = f ind-locked (f p1ock, &start-of f se t, ,

&start-block, &end.-of f set, &end-b1ock, &ts tart, &tend, &srate) ;

/x if no data remains, then exit *./
i f (P o i n t s = = Q 1

break;

/* calculate start and end of lock times */
begin=t.start+s tart-of f set/srate ;
end=tend+end-o f f s e t/s rate ;
total t ime=end-begin;

/* print out info for lock intervals) 30 seconds */ .
i f / t ^ l - ^ ' l t i m a . > ? O o \ {

p r i n t f (" L o c k e d f r o m t = * f t o * f f o r * f s e c \ n " , b e g i n , e n d , t o t a l t i m e) ;
p r i n t f (" N u m b e r o f d a t a p o i n t s i s ? d \ n " , p o i n t s) ;
p r in t f ('S ta r t b lock : td End b lock : *d \n ' ,s ta r t -b lock ,end3 lock) ;
p r i n t f (" S t a r t o f f s e t : * d E n d o f f s e t t d \ n \ n " , s t a r t - o f f s e t , e n d - o f f s e t) ;

)
)
return 0;

25

3.6 Function: get-data o

i n t ge t -da ta(F fLE * fp ,F ILE * fp lock , f loa t * ts ta r t , in t npo in t ,shor t * loca t ion , in t
* rem, f loa t *s ra te , in t seek)
This high-level function is an easy way to get the IFO output (gravity wave signal) during periods when rhe
IFO is locked. When called, it returns the next locked data section of a user-specified length. It also specifies
if the section of data is part of a continuous locked stream, or the beginning of a new locked section.

The arguments are:

fp: Input. Pointer to a file (typically channel - 0) containing the channel 0 data.

fplock: Input. Pointer to a file (typically " channel- - 10 ') containing the TTL lock signal.

tstart : Output. The time of the zeroth point in the retumed data.

npoint : Input. The number of data points requested by the user.

location: Input. Pointer to the location where the data should be put.

rem: Oufput. The number of points of data remaining in this locked segment of data.

srate : Output. The sample rate of the fast data channel, in Hz-

seek: Input. I f this iszero,thenthedataisreturnedinthearraylocat ion[] .Howeveri f this input is
non-zero, then get-daLa performs exactly as described, except that it does not actually read any data
from the file or write to location [] . This is useful to quickly skip over un-interesting regions of
the data, for example the first several minutes after the interferometer acquires lock.

This function retums 0 if there is no remaining locked data stream of the requested length. It returns 1 if
it is just starting on a new locked section of the data stream, and it returns 2 if the data is part of an on-going
locked sequence.

Author: Bruce Allen, ballen @dirac.phys.uwm.edu

Comments: This function was designed for variableJength blocks. It is possible to simplify it for fixed-
length block sizes. It should also be modified to return a complete set of different channels, by adding
additional arguments to specify which channels are desired and where the data should be placed. This
could also be used to eliminate the seek arsument.

3.7 Example: gwoutput program

This example uses the function get-data O described in the previous section to print out a two-column
file containing the IFO output for the first locked section containing 100 sample points. In the output, the
left column is time values, and the right column is the actual IFO output (note that because this comes
from a 12 bit A-D converter, the output is an integer value from -2047 to 2048). The program works by
acquiring data 100 points at a time, then printing out the values, then acquiring 100 more points, and so on.
Whenever a new locked section begins, the program prints b banner message to alert the user. Note that
typical locked sections contain x I07 points of data, so this program should not be used for real work - it's
just a demonstration!

/* GRASP: Copyright 1997, Bruce Allen x/
inc lude "grasp.h"

main() {
f

' l
a a l - F c i : r i - F i__me, s race i

i n F r a m : i n i n n a i n t s a n A a .
, : r . . y v * . . e , v v u v ,

FILE * fp ,x fp lock ;
short *data;

f* open the IFO output file and lock file x/
fp=grasp-open (" GRASP_DATAPATH', " channel - 0 ") ;
fplock=grasp-open ("GRASP_DATAPATH', " channel . L0 ") ;

l* specify the number of points of output & allocate anay *f
r * n i n F - 1 h n .r r Y v r s . ! - r v v ,

data= (shor t *)ma] loc (s izeo f (shor t) *npo in t) ;

wh i .1e (L) {
/* flll the array with npoint points ofdata */
s6flg=get-data (fp, fplock, &cstart, npoint, data, &remain, &srate, 0) ;

/x if no data remains, exit loop x/
i f (code==O) break ;

/* if starting a new locked segment, print banner x/
i f (c o d e - = 1) {

n r i n f f / " NTFI^7 T.nnTaFT.) eF/:MFNrql \ n \ n ') ;
h r i n F f / " . F i n a l < a a \ \ l . T E O n r r i n t r l - \ n ' r ' l .
v t r r r e ! \ r 4 r r r s \ v s e / \ v v q e y s e \ r r , ,

I)
/x now output the dat^ '(f
f o r (i = 0 ; i < n p o i n t ; i + + 1 {

t ime=ts ta r t+ i /s ra te ;
p r i n t f (' B f \ t B d \ n " , t i m e , d a t a l i l) ;

i
])
/x close the data files, and return {./
f a l n e a I F n \ .
- v - v v v \ l F l ,

f c l n < a I f n l a a l t l -

r a l - r r 1 s n .

27

3.8 Example: animate program

This exanrple uses the fi:nction get-data () described in the previous section to produce an animated
display showing the time series output of the IFO in a lower window, and a simultaneously calculaied FFT
power specfrum in the upper window. This output from this program must be piped into a public domain
graphing program called:cngr. This may be obtained from http z / /pLasma-gate . wei zmann . ac . i 1/)hgr/.
(This lists mirror sites in the USA and Europe also). Some sample output of animate is shown in Figure 2.

Spechum

1000,0 2000.0 s000.0
'

f (Hz)

E
I
I
E
I
I
I
I
d
I
I
I
I
I
I
I

0 L
0.0

200.0

100.0

0.0

-100.0

-200,0 L
22.00

IFO output 4

ilr
,ti,t,iIi

22.10 22.20
t (sec)

22.30

Figure 2: Snapshot of output from animate. This shows the (whitened) CIT 40-meter IFO a few seconds
after acquiring lock, before the violin modes have damped down

After compilation, to run the program type:
animate I or,gr -pipe &

to get an animated display showing the data flowing by and the power spectrum changrng, starti:rg from the
first locked data. You can also use this program with command-line arguments, for example

a n i m a t e 1 0 0 4 5 0 0 7 9 0 0 1 . 5 l * S r - p i p e &
wi l lshowthedataf romt imet :100tot imet :LDfseconds, thenfromt:500tot :507, thenfrom
t : 900 to f : 901.5. Notice that the sequence of start times must be increasing.

Note: The rangir prograrn as commonly disfributed has a simple bug that needs to be repaired, in order
for the frequency scale of the Fourier ffansforrr to be correct The corrected version of :<nrgr is shown in

I

28

==)
= = >

c a s e 0 :
d e l t = (x I i l e n - 1 -] - x [0]) / (i l e n - 1 . 0) ;
T = (x l i l e n - l - l - x [0]) ;
se t lengEh(cg , specset , lLen /2 \ i
x:{=getx (cg, specseE) , '

c a s e 1 :
d e l t = (x l i l e n - 1 1 - x [0]) / (i l e n - l - . 0) ;
T = (x l i t e n - l - l - x [0]) ;

Figure 3: The corrections to a bug in the :sngr program are indicated by the arrows above. This bug is

the routine do-fourier () in the file computils. c.

Figure 3.

/x GRASP: Copyright 1997, Bruce Allen *,/

inc lude "gr rasp .h '

int main(int argc,char *xargrv) {
vo id g raphout (f1oat , f loa t , in t) ;
f loa t ts ta r t= l - - e35. s ra te= l . e -30 , tm in , Cmax, d t , '

double t ime;
in t remain , i , seq=g, code,npo in t=4096, seek ;
F ILE r . fp , * fp lock ;

short. *d.ata;

/* open the IFO output file and lock file */

fp=grasp-open (" GRASP-DATAPATH ", " channel . 0 ") ;
fplock=grasp-open (" GRASP-DATAPATH' , " channel . L0 ") ;

/* allocate storage space for data */

da ta= (shor t x)mal loc (s izeo f (shor t) xnpo in t) ;

/* handle case where user has supplied t or dt arguments x/

i f (a r g c = = 1) {
t m i n = - 1 . e 3 0 ;
d t = 2 . e 3 0 ;
a r g c = - 1 ;

)
1,r. now loop ... *1
seq-argc ;
w h i l e (a r g c l = 1) {

/x get the next start time and dt */

i f (a r s c t = - 1) {
sscanf (a rw[seq-argc+1] , "4 f " , & tn in) ;
s s c a n f (a r g v I s e q - a r g c + 2] , " z f " , & d t) ;
a r$c-=2;

)
/x calculate the end of the observation interval, and get data */

tmax=tmin+dt;
w h i l e (1) {

i f (t s ta r t (tm in- (npo in t+z0-) /s ra te) seek= l - , ' e lse seek=O;

29

sedg=g'et-data (fp, fplock, &tstarL, npoint, d.at,a, &remain, &srate, seek) ,-
/x if no data left, return x/
i f (code==O) re tu rn 0 ;

/* we need to be outputting now... */
i f (trnin(-tstarts) {

f o r (i = 0 ; i (n p o i n t ; i + + 1 {
t ime=ts ta r t+ i /s ra te ;
p r i n t f (" 8 f \ t * d \ n ' , t i m e , d a t a I i]) t

)
/* put out information for the graphing program */
graphout (tstarL, tstart+npoint/srate, (argc==L && t ime>=tmax)) ;

)
/x if we are done with this interval, try next one x/
i f (t ime)=tmax) break;

I
/* close files and retum */, .
f n l n e a l € n \ .
- Y - v v v r . y , ,

r a f r r r n O .

\

/* This routine is pipes output into the xmgr graphing program x/
vo id g raphout (f loa t x1 . f1oaL x2 , inE las t) {

s ta t i c in t count=0;
printf (' &\n ') ; /+ end of set marker *. /
/* first time we draw the plot */
i f (count -=O) {

printf ('Gdoublebuffer true\n") ; /x keeps display from flashing */
p r i n t f (' @ s 0 c o l o r 3 \ n ") ; / * I F O g r a p h i s g r e e n x /
p r i n t f (" @ v i e w 0 . 1 - , 0 . L , 0 - 9 , 0 . 4 5 \ n ' ,) ; f * s e t t h e v i e w p o r t f o r l F O * /
printf (" @wit,h gl-\n") ; /* reset the current graph to FFT */
p r i n t f (" G v i e w 0 . 1 , 0 - 6 , 0 - 9 , 0 . 9 5 \ n , ,) ; / * s e t t h e v i e w p o r t F F T x /
printf (" ewiLh g0\n") ; /* reset rhe current graph ro IFO */
n r i n t - f r i l a r . ' ^ r l d : c n i n g f \ n . , x 1) ; / x s e t m i n x * /\ 3 . ' ^ . /

nr i nt€ t d at . ,^ t ld :<rnax * f \n, , ,x2) ; / * Set max X , r , /\ . ' , ^ . / .
print.f ('eautoscale\n") ; /* autoscale firsttime through +/
printf (" Gf ocus of f \n") ; /* turn offthe focus markers */
p r in t f (" @xax is 1abe l \ " t (sec) \ ' \n ') ; / x lFO ax is labe l x /
p r i n t f (" @ f f t (s 0 , 1) \ n ' ,) ; / * c o m p u t e t h e s p e c t r u m * , /
p r i n t f (" G s 1 c o l o r 2 \ n ") ; / * F F T i s r e d * /
printf (" Gmove g0 . s1 to 91 . s0 \n' ,) ;
p r i n t f (" @ w i t h g L \ n ') ;
p r i n t f (" G 9 1 t y p e f o g r y \ n ') ;
p r in t f (" @autosca le \n") ;
p r in t f ('@subt i t le \ "Spec t rum\ " \n ") ;
p r i n t f (" G x a x i s l a b e l \ , ' f (H z) \ , , \ n ' ,) ;
p r i n e f (" e w i t h g 0 \ n ') ;
p r in t f (" @subt i t le \ ' IFO outpu t ?d \ ' , \n , ,
i f (! l a s t) p r i n c f (" e k i f 1 s 0 \ n , ,) ;

t

e l s e {
/x other times we redraw the plot */
p r i n t f (" G s 0 c o l o r 3 \ n ") ;
p r i n t f (' G f f r (s 0 , 1) \ n ,) ;
p r i n t f (" @ s 1 c o l o r 2 \ n ") ;

p r i n t f (" G w o r l d : s n i n % f \ n , , . x 1) ;
p r in t f ("Gwor ld :< rnax ? f \n " .x2) , -
p r in t f ("Gautosca le yaxes \n") ;

/* move FFT to graph I */

/x set the focus on FF-l */

/* set FFT to log freq axis */

/x autoscale FFT x/

/x set the subtitle */

/* FFT axis label */

/x reset the current graph IFO 'r/

. count++) ,- /x set IFO subtitle */

/* kill IFO; ready to readagain *f

/* set IFO green x/

/xFF-t it 'r/

/* set FFTred */

/rr set min x */

/* set max x *./

/* autoscale IFO,r./

p r i n t f (" @ m o v e 9 0 . s 1 - t o 9 1 - s 0 \ n ,) ; / * m o v e F F T t o g r a p h l x /
p r in t f ("@subts i t1e \ " IFo ou tpu t zd \ " \n " , count++) ; / xse t IFOsubt i t le x /

p r i n t f (' G c l e a r s t a c k \ n ") ;
i f l t l a < t - l n r i n l - f t ' A L i 1 1 c r } \ n " \ .

p r i n t f (" G w i t h g 1 \ n ") ;
printf ('Bg1 t lzpe logy\n') ;
p r in t f ('Gc lear s tack \n") ;
i f (! l a s t) p r i - n t f (" e k i 1 I s 0 \ n ') ;
p r i n E f (" e w i t h g 0 \ n ') ;

]
return;

/* clear the stack */

/* kill IFO data */

/* switch to FFT */

/x set FFT to iog freq axis */

/* clear stack */

/* kill FFT */

f * rcady to read IFO again */

3.9 Function: read-sweptsine ()

void read.-sweptsine (FILE *fpss, int *n, f loat **freq, f loat **real , f loat ** imagr)

This is a low-level routine which reads in a 3-column ASCtr file of swept sine calibration data used to cali-
brate the IFO.

The arguments are:

fpss: Input. Pointer to a file in which the swept sine data can be found. The format of this data is
described below

n: Output. One greater than the number of entries (lines) in the swept sine calibration file. This is because
the read-sweptsine returns, in addition to this data, one additional entry at frequency "f : 0.

f req: Output. The array * f reg [1- . . *n- lJ contains the frequency values from the swept sine cali-
bration file. The routine adds an additional entry at DC, *freq[0] =0. Note: the routine allocates
memory for the array.

real : Output. The array *real []- . . *n-l- I contains the real part of the response function of the IFO.
The routine adds *real [0] =0. Note: the routine allocates memory for the array.

imag: Output. Thearray *imag[1- . *n-1] contains theimaginarypartof theresponsefunctionof the
IFO. The routine adds * imag [0 ; = g. Note: the routine allocates memory for the array.

The swept sine calibration files are 3-column ASCtr files, of the form:

TL

Trn

where the /r' are frequencies, inHz, and ri and i.i are dimensionless ratios of voltages. There are typically
rn : 801 lines in these files. Each Iine gives the ratio of the IFO output voltage to a calibration coil driving
voltage, at a different frequency. The r; are the "real part" of the response, i.e. the ratio of the IFO output
in phase with the coil driving voltage, to the coil driving voltage. The ii are the "imaginary part" of the
response, 90 degrees out of phase with the coil driving voltage. The sign of the phase (or equivalently, the
sign of the imaginary part of the response) is determined by the following convention. Suppose that the
driving voltage (in volts) is

%oil : 10cos(a.,t) : l0ftet't (3.9.1)

where a : 2r x 60 radians/sec is the angular frequency of a 60 Hz signal. Suppose the response of the
interferometer output to this is (again, in volts)

I

J 2

2 1

; ^

,imf
J T N

7Ir'o : 6.93 cos(a.'t) +a sin(r,rt)
: 6 .93 cos(cut) -4 cos(c. r t+n12)
: g g"i(ut-r/6) (3.e.2)

This is shown in Figure 4. An electrical engineer would describe this situation by saying that the phase of
the response Trro is lagging the phase of the driving signal %o1 by 30'. The corresponding line in the swept
sine calibration file would read:

0.693;

32

60.000

Figure 4: This shows a driving voltage I/"o1 (solid curve) and the response voltage fipg (dotted curve) as
functions of time (in sec). Both are 60Hz sinusoids; the relative amplitude and phase of the in-phase and
out-of-phase components of Vtpo are contained in the swept-sine calibration files.

Hence, in this example, the real part is positive and the imaginary part is negative. We will denote this entry
in the swept sine calibration file by 5(60) : 0.8 "-itt/6 : 0.693 - 0.400i. Because the interferometer
output is real, there is also a value implied at negative frequencies which is the complex conjugate of the
positive frequency value: 5(-60) : S.(60) : 0.8 e"/6 : 0.693 + 0.400i.

Because the interferometer has no DC response, it is convenient for us to add one additional point at
frequency f : 0 into the output data arrays, with both the real and imaginary parts of the response set to
zero. Hence the output arrays contain one element more than the number of lines in the input files. Note
that both of these arrays are arranged in order of increasing frequency; after adding our one additional point
they typically contain 802 points at frequencies from 0 Hz to 5001 Hz.

For the data runs of interest in this section (from November 1994) typically a swept sine calibration
curye was taken immediately before each data tape was generated.

We will shortly address the following question. How does one use the dimensionless data in the
channel - 0 files to reconstruct the differential motion Al(t) (in meters) of the interferometer arms? Here
we address the closely related question_: given V1pg, how do we reconstruct I/"o1? We choose the sign
convention for the Fourier transform which agrees with that of Numerical Recipes: equation (L2.I.6) of [].
The Fourier transform of a function of time V(t) is

V(il: I u'"ot'vp1at. (3.e.3)

(3.e.4)

(3.e.5)
(3.e.6)

The inverse Fourier transform is

v(t):
|

"-'"uftvfidf .

With these conventions, the signals (3.9.1) and (3.9.2) shown in in Figure 4 have Fourier components:

%oir(60) : 5 and

Yrro(60) - 4"ir/6 and

At frequencY fo :60 Hz the swept sine file contains

5(60) :9.3 "-zz'16 => 5(-60) : S.(60) :0.8 et ' l6

%ol(-60; :5 ,

Yrro(-60) - 4e-i7t/6

since 5(-/) : S.(/).

J J

(3.e.7)

With these choices for our conventions, one can see immediately from our example (and generalize to
all frequencies) that

; , r . \ VIPO
Ycoit("r): ?;Uf .

U \ J]

(3.e.8)

In other words, with the Numerical Recipes [1] conventions for forward and revene Fourier Transforms,
the (FFT of the) calibration-coil voltage is the (FFT of the) IFO-output voltage divided by the complex
conjugate ofthe swept sine response.

Author: Bruce Allen, ballen @ dirac.phys.uwm.edu

Comments: The swept-sine calibration curves are usually quite smooth but sometimes they contain a
"glitch" in the vicinity of i kHz; this may be due to drift of the unity-gain servo point.

3.10 Function: calibrate o

vo id ca l ib ra te (F ILE * fpss , in t num, f loa t *complex , f loa t s ra te , in t method. , in t
order)
This is a intermediatelevel routine which reads in a 3-column ASCII file of swept sine calibration data
used to calibrate the IFO, and ouputs an array of interpolated points suitable for calibration of FFT's of the
interferometer output.

The arguments are:

fpss: Input. Pointer to the file in which the swept sine data can be found. The format of this data is
described below.

srate: Input. The sample rate .Fr"r,,oy" (in Hz) of the data that we are going to be calibrating.

num: Input. The number of points N in the FFT that we will be calibrating. This is typically N : 2k
where k is an integer. In this case, the number of distinct frequency values at which a calibration

is needed is 2e-1 * 1 : N /2 + 1, corresponding to the number of distinct frequency values from

0 (DC) to the Nyquist frequency .fNyquist. See for example equation (12.1.5) of reference [1]. The

frequencies fre ft - fr4r-pr" for i : 0,.' ., N f2.

complex : Input . Po in te r toanar raycomplex t0- .s l where s :2k* l .Therout inecat iUra teo
fills in this anay with interpolated values of the swept sine calibration data, described in the pre-

vious section. The real part of the DC response is in complex[0], and the imaginary part is in

complex t 1l . The reaVimaginary parts of the response at frequency h ate in complex [2] and

complex t3I and so on. The last two elements of complex [] contain the reaVimaginary parts

of the response at the Nyquist frequency F". 6"f 2.

method: Input. This integer sets the type of interpolation used to determine the real and imaginary part of

the response, at frequencies that lie in between those given in the swept sine calibration files. Rational

function interpolation is used if rnethod=0. Polynomial interpolation is used if method=l. Spline

interpolation with natural boundary conditions (vanishing second derivatives at DC and the Nyquist

frequency) is used if method.=2.

ord.er : Input. Ignored if spline interpolation is used. If polynomial interpolation is used, then order is

the order of the interpolating polynomial. If rational function interpolation is used, then the numerator

and denominator are both polynomials of order orderl2lf order is even; otherwise the degree of

the denominator is (order+l/2 and that of the numerator is (order-l)/2.

The basic problem solved by this routine is that the swept sine calibration files typically contain data at a

few hundred distinct frequency values. However to properly calibrate the IFO ouQut, one usually needs this

calibration information at a large number of frequencies colresponding to the distinct frequencies associated

with the FFT of a data set. This routine allows you to choose different possible interpolation methods. If

in doubt, we recommend spline interpolation as the first choice. The interpolation methods are described in

detail in Chapter 3 ofreference [1].

Author: Bruce Allen, ballen@ dirac.phys.uwm.edu

Comments: It might be better to interpolate values of /2 times the swept-sine response function, as this is

the quantity needed to compute the IFO response function.

35

3.1L Example: print-ss program

This example uses the function calibrate () to read in a swept sine calibration file, and then prints our
a list of frequencies, real, and imaginary parts interpolated from this data. The frequencies are appropriate
for the FFT of a4096 point data set with sample rate srate. The technique used is spline interpolation.

/* GRASP: Copyright 1997, Bruce Allen */
inc lude "grasp.h ,

#define NPOINT 4096

in t ma ino {
f loat cplx [Npoffm+2] , sratse, freq;
i * r s - ^ . 1 - rr t t ! t r }Jurr j . C , f - ;

FILE * fp ;

/* open the swept-sine calibration file */
fp=grasp-open (.GRASP_DATAPATH"

, . swepL-sine - ascii,') ;

/,r. number of points of (imagined) FFT x/
npoint=NpOINT;

/* a sample rate often used for fast channels */
srate=98 6 I - 42 089 I 43'7 5 ;

/* swept sine calibration filename is first argument */
ca l ib ra te (fp ,npo in t , cp lx , s ra te , 2 , 0) ;

/x print out frequency, real, imaginary interpolated values */
p r in t f ("# Freq (Hz) \ tRea1\ t \ t l rnagr \n ,) ;
f o r (i = 0 ; i (= N P O I N T / 2 ; i + + 1 1

freq=ia5;-te/NPOINT;
p r i n t f (' B e \ t * e \ t t e \ n , , , f r e q , c p 1 x t 2 * i l , c p l x [2 * i + L]) ;

J
r a f r r r n n .

3.12 Function: normalize-gw ()

void normal ize-gw(FILE *fpss, int npoint, f loat srate, f loat *response)

This routine generates an array of complex nurnbers R(/) from the information in the swept sine file and
an overall calibration constant. Multiplying this array of complex numbers by (the FFT of) channel - O
yields the (FFT of the) differential displacement of the interferometer arms Al, in meters: A/(/) :

Aff)Co(f).The units of rR(/) are meters/ADC-count.
The arguments are:

fpss : Input. Pointer to the file in which the swept sine normalization data can be found.

npoint: Input. The number of points .l[of channel.0 which will be used to calculate an FFT for
normalization. Must be an integer power of 2.

srate: Input. The sample rate in Hz of channel . 0.

response: Outpu t . Po in te r toanar ray responset0 . .s l w i ths : N* l inwh ich^R(/) w i l lbe
returned. By convention, .R(0) : 0 so that response[0]=response[]-l=0. Array elements
response l2iJ and response t2i+L) contain the real and imaginary parts of l?(/) at frequency

"f : israte/N. The response at the Nyquist frequency response [N] =0 and response [N+1,] =0

by convention.

The absolute normalization of the interferometer can be obtained from the information in the swept sine
file, and one other normalization constant which we denote by Q. It is easy to understand how this works.
In the calibration process, one of the interferometer end mirrors of mass rn is driven by a magnetic coil. The
equation of motion of the driven end mass is

where F(t) is the driving force and Al is the differential length of the two interferometer arms, in meters.
Since the driving force F(t) is proportional to the coil current and thus to the coil voltage, in frequency

space this equation becomes

t)
n -

m *:LI : F(t)
clt'

(-2ni,fl2f: consta"nt x %ol = constant ,. 5n." " s.(/) '

(3.r2.r)

(3.12.2)

We have substituted in equation (3.9.8) which relates Vrro and %o1. The IFO voltage is directly proportional

to the quantity recorded in channel . 0: Vrro : ADC x Cs, with the constant ADC being the ratio of the

analog-to-digital converter's input voltage to output count.
Putting together these factors, the properly normalized value of Al, in meters, may be obtained from the

information in channel- . 0, the swept sine file, and the quantities given in Table 4 by

N: n(f) "do with R(l) = Q x A D C (3.r2.3)
-47T2 f2S*(f) '

where the-denotes Fourier transform, and / denotes frequency in Hz. (Note that, apart from the complex

conjugate on ^9, the conventions used in the Fourier transform drop out of this equation, providqd that

identical conventions (3.9.3,3.9.4) are applied to both Al and to Co). The constant quantity Q indicated in

the above equations has been calculated and documented in a series of calibration experiments carried out

by Robert Spero. In these calibration experiments, the interferometer's servo was left open-loop, and the

end mass was driven at a single frequency, hard enough to move the end mass one-half wavelength and shift

J I

Table 4: Quantities entering into normalization of the IFO output.

Description
signal (channeI. 0) ADC counts

A-+D converter sensitivitv Vpo (ADC counts)-
Swept sine calibration Vrro (V"ol)-
Calibration constant meter Hzz (Y"os)-

the interference fringe's pattern over by one fringe. In this way, the coil voltage required to bring about a
given length motion at a particular frequency was established, and from this information, the value of Q
may be inferred. During the November 1994 runs the value of Q was given by

t/9.35 Hz . 'n.ter Hz2
Q: -T:1.428 x tO-+'*t;; ; -

Author: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: See comment for calibrate () .

where e : Zregg--.-.]&4-.
meter Hz3/2'

(3.r2.4)

38

3.13 Exarmpie: power-spectrum progracn

This example uses the fi.urction normali ze-w () to produce a norrnalized, properly calibrated power
spectum of the interferometer noise, using the gravity-wave signal from channel . 0, the TTL-lock signal
from channel . 1-0 arad a swept-sine calibration curve.

The output of this proglam is a 2-column file; the first column is frequency and the second column is
the noise in units of meters//Hz.

A couple of comnents are in order here:

1. Even though we only:reed the modulus, for pedagogic reasons, we explicitly calculate both the real and
imaginary pa$s of ar(71 : R(f)co(f).

2. The fast Foruier fiansfomn of Al, which we denote FFT[44, has the same units (meters!) as Al. As can
be immediately seen from. Numerical Recipes equation (L2.1.6) the Fourier transform AI has units of
meters-sec and is given by Ll : Lt FFT[44, where At is the sample interval. The (one-sided)

power spectrum of Ai in metercf tffi is P : tl&t&t where T : N Lt is the total length of the
observation interval. in seconds. Hence one has

lFFr[A41. (3.13.1)

This is the reason for the factor which appears in this example.

3. To get a spectrum with decent frequency resolution, the time-domain data must be windowed (see the
example program calibrate and the function avg-spec () to see how this works).

A sample of the output from this prograrn is shown inFigure 5.

Displacement Spectrum
19 Nov 94 run 3

100
Frequency (Hz)

Figure 5: An example of a power spectrum curve produced with power-specLrum. The spectum pro-
duced offa data tape (with 100 point smoothing) is compared to that produced by the IIP spectrum analyzer
in the lab.

IT
, :

I N*Ar lFFTlAfll :

1 o-ro

1o-tt

1 o-t'

1 o-1"

! 10-'n

E,t"
S 1o-"

1 o-t7

1 o-rt

1 o-tt

1 o-20

2Lt
iV

39

/* GRASP: Copyright 1997, Bruce Allen */
4 i n a] r r i o t r - r r e n h '

#define NPOTNT 55536

i n l - m a i n t l I
t

v o i d r e a l f t (f l o a t x , u n s i g n e d 1 o n g . i n t) ;
f loa t response[NPOINT+21 ,da ta INPOINT] , t s ta r t , f req t
f l o a E r e s - r e a 1 , r e s - i m a g , d l - r e a l , d 1 - i m a g , c 0 - r e a 1 , c 0 - i m a g , s p e c t r u m , s r a t e , f a c t o r ;
? T T . F * f n i f n * f n ! 6 9 l < , * f p S S ;

i n t i , n p o i n t , , r e m a i n ;
short daEas INPOINT] ;

/r. open the IFO output file, lock file, and swept-sine file */
f pi f o=grasp-open (" GRASP_DABAPATH ", " channe l . 0 ") ;
fplock=qrasp-open(-GRASP_DATAPATH', "channel. 10 ") ;
fpss=grasp-open ('GRASP_DATAPATH", " swept-sine. asci i ") ;

/* number of points to sample and fft (power of 2) * /
npoi-nt=NPOfN?;

/* skip 200 seconds into locked region (seek=l) x/
w h i l e (t s t a r t (2 0 0 . 0)

ge t -da ta (fp i fo , fp lock , & ts ta r t r , npo in t , da tas . &remain , &sra te , 1) ;
/x and get next stretch ofdata from TTL Iocked file (seek=0) */
gec-da ta (fp i fo , fp lock , & ts ta r t , npo in t , da tas , &remain , &sra te , 0) ;
/* convert gw signal (ADC counts) from shorts to floas */
f o r (i = 0 ; i < N p O l i V t ; i + +) d a t a I i] = d a t a s I i] ;
/+, FFTthe data*f
rea l f t (da ta- i . , npo in t , l -) , .

/x get normalization R(f) using swept sine file */
normalize-giw (fpss , npoint., srate , response) ;
/t one-sided power-spectrum normalization, to get meters/rHz x/
fac to r=sqrL(2 -0 I (s ra te*npo in t)) ;
/* compute dl. Leave off DC (i=0) or Nyquist (i=npoint/2) freq x/
f o r (i = 1 ; i (n p o i n t / 2 ; i + +) {

fxfrequency xf
f req= iasss te /nPo in t ;

/x real and imaginary parts of tilde c0 x/
c0- rea l=data [2* i] ;
c 0 - i m a g = 6 a t a [2 * i + 1] ;

/x real and imaginary parts of R x/
res-real=response 12* i) ;
res-imag:=aesponse [2xi+1-] ;
/* real and imaginary parts oftilde dl */
dl-rea1 =c 0-rea1*res-rea1 - c 0_imag*res_imag ;
dl- imag=q Q-rea1 *res-i .magi+ c 0-imag:*res-reaI ;
/* ltilde dll */
spec trum=f ac torr.s grt (dI_real *dI_rea1 +dl_imagxdl_imag) ;
/*. output freq in Hz, noise power in mete$f rHz *f
p r i n t . f (" ? e \ t % e \ n " , f r e q , s p e c t r u m) ;

)
reLurn 0 ;

T
T
I

Author: Bruce Allen, ballen @ dirac.phvs.uwm.edu

40

Comments: The IFO output typically consists of a number of strong line sources (harmonics of the 60
Hz line and the 180 Hz laser power supply, violin modes of the suspension, etc) superposed on a
continuum background (electronics noise, laser shot noise, etc) In such situations, there are better
ways of finding the noise power spectrum (for example, see ttre multi-taper methods of David J.
Thompson 1241, or the textbook by Percival and Walden [25]). Using methods such as the F-test
to remove line features from the time-domain data stream might reduce the sidelobe contamination
(bias) from nearby frequency bins, and thus permit an effective reduction of instrument noise near
these spectral line features. Further details of these methods, and some routines that implemen them,
may be found in Section 10.17.

A 1
- l

3"\4 tsxample: calibrate proEram

This exarnple uses the function no rma I i z e-gtw () and avg-spe c () to produce an animated display,
showing the properly normalized power specfrum of the interferometet with a 30-second characteristic
time moving average. After compilation, to run the program type:

calibrate I rcmgr -pi-pe &
to get an animated display showing the calibrated power spectrum chauging. An example of the output from
calibrate is shown in Figure 6. Note that most of the execution time here is spent passing data down the
pipe to r<mgr and displaying it. The display can be speeded up by a factor of ten by binning the output values
to reduce their number to a few hundred lines (the example program salibratelcinned. c implements
this technique; it can be run by typing calibratebinned. | *sr -pipe).

Calibrated IFO Spectrum
80.521 896 sec since last lock t = 80,521896 sec.

x
t
T
I
T
t
t
I
I
I
t
r
I
t
T
T
I
I
t

1001 0

1o-t

1 oto

1 o-tt

1 o-t'

+ 10t"

B ro"n
E ro-"

lotu

1 o-tt

'l o-tu

1 o-tt

t (Hz)

Figure 6: T'his shows a snapshot of the output from the program calibrate which displays an animated
everage power spectum (Welch windowed, 3O-second decay time).

/* GRASP: Copyright 1997, Bruce Allen */
#include "g'rasp.h,

#define NPoINT 4095

int main(int argc,char *xargv) {
void. graphout (J-nt, float, float) ;
void realf t (f loat*, unsigrned long, int,) ;

- float data [NPOIIflI] , averag'e INPOfNT] , response [2*NPOIIflI+4] ;
float spec, d.ecaytirne;
f loat srate, t ,start,=0 , freq, t lock;
FILE *fpifo, *fpss, *fplock;
in t i , j , code,npo in t , remai -n , i r , i i , rese t=0,pass=0 ;
short datas INPOINT] ;
' {ar r}r1 a man '

/* open the IFO output EIe, lock file, and swept-sine file */
fpif o=grasp-open ('GRASP_DATAPATHu , ,,channel . 0 ,,) ;
fplock=grasp-open (" GRASP_DATAPATH', u channel . L0',) i
fpss=grasp-open (" GRASP_DATAPATII' , " swept-sine. aseii,,) ;

/x number of points to sample and fft (power of 2) * /
npoint=NPOINT;

/* set the decay time (sec) */

d e c a y E i m e = 3 0 . 0 ;

f* getdata 'rf

whi le 1 1 "o6g=get-data (fpifo, fplock, &cstart. npoint, datas, &remain, &srate, 0)))

/x put data into floats */

f o r (i = 0 ; i (n p o i n t ; i + +) 4 3 1 - [i] = d a t a s I i] ;

/x get the normalization x/
i f I I n a c c + + \

normalize-gw (fpss, 2xnpoint, srate, response) ;

/* Reset ifjust locked *,/
i € / ^ ^ t ^ - - r \a ! t coc re== rJ t

r e s e t = 0 ;
t lock=ts ta r t ;
avg-spec (data, average, npoint, &reset, srate, decaytime, 2) ;

] o l c a {

/* track average power spectrum, with Welch windowing. */

avg-spec (data, average, npoint, &reset, srate, decaytime, 2) ;

/x Ioop over all frequencies except DC 0=0) & Nyquist (J=nPoint/Z) */

f o r (j = 1 ; j (n p o i n t ; j + +) {
/* subscripts of real, imaginary parts {./
i i - 1 1 ; = j + j) + 1 ;

/* frequency of the point x/
freq= g' 5*sraee*j /n'oinc ;

/* determine power spectrum in (meters/rHz) & print it */

mod=response I i r] *response I i r] +response I i i] ' r .response I i i] ;
spec=sqrt (average 1j I *mod) ;
p r in t f (. *e \ t te \n" , f req , spec) ;

)
/x print out useful things for xmgr program .. . */
g raphou t (0 , t s t a r t , t l o ck) ;

1

j
r o F r r r n O .

)

v o i d g r a p h o u t (i n t l a s t , f l o a t t i m e , f l o a t t l o c k) {
s ta t i c in t count=0;
* v i * F F / u . R , \ - u l .
y r f r . e ! \ q \ r r / ,

/x first time we draw the plot x/

i f (c o u n t + + = = 0) {
p r in t f ("@doub lebuf fe r t rue \n") ;
p r i n t f (" G f o c u s o f f \ n ") ;
p r i n t f (" G s O c o l o r 2 \ n ") ;
^ - ; - f € / . , A d n t r m a I a a q r \ n . \ .
! , r r r r u ! \ s v v u J } / s f v y ^ J \ r r / ,

pr in t f ("@autosca le \n ") ;
p r i n t f (' @ w o r l d r c n i n * e \ n " , 1 0 . 0) ;
p r inL f ("@wor1d :<nrax 8e \n" ,5000.0)
p r i n t f (" G w o r l d y m i n B e \ n ' , L . e - 1 - 9)
p r i n t f (' G w o r l d y m a x t e \ n " , t - e - 9 1 ;
n r i n f f (" (Awax i s t i ck minor on \n") ;
p r in t f ("Gyax is c ick major .on \n") ;
p r in t f ('@yax is t i ck minor 2 \n") ;
p r in t f ('Gyax is t i ck ma jor l - \n ") ;
p r in t . f ("Gredraw \n") ;

/x end of set marker x/

/* keeps display from flashing x/

/* turn offthe focus markers */

/x FFT is red */

/'r set graph type to log-log */

/*, autoscale FFT x/

/*.set min x r, /

i /* set max x x/

; /* set min Y x/

f x setmaxy xf

/* tum on tick marks */

/* tum on tick marks */

/* um on tick marks x/

/* turn on tick marks */

f + redraw graph */

43

pr in t f ("Gxax is labe l \ " f (Hz) \ " \n ') ; / *FFThor izon ta lax is labe l x /
printf ("@yaxis label \ 'meEers/rt tz\" \n") ; /* FFTvenical axis label x/
princf (" @tit le \ "Calibrated IFO Spectrum\ " \n') ; /x set t i t le */

/x set subtitle x/
p r i n c f (" @ s u b t i t l e \ " * . 2 f s e c s i n c e l a s t l o c k . t = * . 2 f s e c . \ " \ n ' , t i m e - t l o c k , e i m e) ;
i f (l l as t) p r in t . f ('@k i11 sO\n ') i / * k i l lg raph; ready toreadagu* f

]
e l s e {

/x other times we redraw the plot */

/* set subtitle x/
p r i n t f (" @ s u b t i t . l e \ " * . 2 f s e c s i n c e l a s E l o c k . t = * . 2 f s e c . \ " \ n " , t i m e - t l o c k , t i m e) ;
* - i - F € t i a ^ d ^ ^ a
1, l r r rL! \ s>v seror 2\n") ; / * FFTis red * . /
printf (" @90 t]4>e logxy\n "

) ; /* set graph type to log-log ,i/

pr in t . f ("@wor ld :cn in Be\n" , 10 . 0) ;
p r in t f ("@wor ld . :<nrax Be\n" , 5000. 0) ;
p r in t f (" @wor ld ymin ?e \n" , L . e -19) ;
p r i n t f (" @ w o r I d y m a x ? e \ n " , 1 . e - 9) ;
p r i n t f (" @ y a x i s t i c k m i n o r o n \ n ') ;
p r in t f ("@yax is t i -ck ma jor on \n") ;
print, f (" Gyaxis t ick minor 2 \n") ;
p r in t f ("Gyax is t i ck ma jor l - \n ') ;
pr int. f ("@redraw\n") ;
i f (! l a s t) p r i n t f (" e k i 1 1 s 0 \ n ') ;

)

/* set min x *./

/* set max x */

/x set min y */
/* set max y */

/* tum on tick marks */
/* tum on tick marks */

/* tum on tick marks x/

/* tum on tick marks */
f * rcdraw the graph */

/i kill graph, ready to readagun,rf

Author: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: See comments for power-spectrum example program.

3.15 Example: d.iag program

This program is a frequency-domain 'hovelty detector" and provides a simple example of a time-frequency
diagnostic method. The adual code is not printed here, but may be found in the GRASP directory src / exampl e s ,/ exal
in the file diag. c.

The method used by diag is as follows:

A buffer is loaded with a short stretch of data samples (2048 in this example, about 1/5 of a second).

A (Welch-windowed) power spectrum is calculated from the data in the buffer. In each frequency bin,
this provides a value 5(/).

Using the same auto-regressive averaging technique described in avg-spec O the mean value of
S(/) is maintained in a time-averaged spectrum (S(/)). The exponential-decay time constant for this
average is ave-TIuE (10 seconds, in this example).

The absolute difference between the current spectrum and the average AS(/) = lS(/) - (5(/)) | is
determined. Note ttrat the absolute value used here provides a more robust first-order statistic than
would be provided by a standard variance (A,,5(/))2.

Using the same auto-regtessive averaging technique described in avg-spec () ttre value of AS(/)
is maintained in a time-averaged absolute difference (AS(/)). The exponential-decay time constant
for this average is also set by AVG-TIME.

In each frequency bin, AS(/) is compared to (AS(/)). If AS(/) > THRESHoTo x (AS(/)) then
a point is plotted for that frequency bin; otherwise no point is ploued for that frequency bin. In this
example, THRESHOLD is set to 6.

In each frequency bin, AS(/) is compared to (AS(/)). If AS(/) < INcLUDE x (AS(/)) then
the values of S(/) and AS(/) are used to "refine" or "revise" the auto-regressive means described
previously. In this example, INcLUDE is set to 10.

Another set of points (1024 in this example) is loaded into the end of the buffer, pushing out the oldest
1024 points from the start of the buffer, and the whole loop is restarted at step 2 above.

The diag progmm can be used to analyze any of the different channels of fast-sampled data, by set-
ting CIIANNEL appropriately. It creates one output file for each locked segment of data. For example if
cHANNEL is set to 0 (the IFO channel) and there are four locked sections of data, one obtains a set of files:
ch0d iag . 0 00 , chOdiag . 001- , chOdiag - 002, and ch0d iag . 003.
In similar fashion, if ciramrgsl, is set to I (the magnetometer) one obtains files:
chldiagr - 0 00, ch1d. iag. 001-, chldi-ag . 002,and chld. iagr. 003.
These files may be used as input to the ><nrgr graphing prognlm, by typing:
)sngrr chOd.iag. 000 chl-diag. 000
(one may specify as many channels as desired on the input line). A typical pair of outputs is shown in

Figures 7 and 8. By specifying several different channels on the command line for starting)cngir, you can

overlay the different channels output with one another. This provides a visual tool for identifying correla-

tions between the channels (the graphs shown below may be overlaid in different colors).

Author: Bruce Allen, ballen@ dirac.phys.uwm.edu

Comments: This type of time-frequency event detector appears quite useful as a diagnostic tool. It might

be possible to improve its high-frequency time resolution by being clever about using intermediate

1 .

2.

3.

A-.

5.

6.

7.

8.

45

19 November 1994 run 1
Time/Frequency statistics for channel 0

5000.0

4000.0

0.0 ' '' t80.0 280.0 380.0
Time (sec)

Figure 7: A time-frequency diagnostic graph produced by d.iag. The vertical line pointed to by the arrow
is a non-stationary noise event in the IFO output, 325 seconds into the locked section. It sounds like a "drip"

and might be due to off-axis modes in the interferometer optical cavities.

information during the recursive calculation of the FFT. One should probably also experimenr with
using other statistical measures to assess the behavior of the different frequency bins. It would be nice
to modify this program to also examine the slow sampled channels (see comment for get-data ()).

N
I

o)

ll- 2000.0

1000.0

N
T

o

o

u
E

tl.

5000.0

4000.0

3000.0

2000.0

19 Novenrber 1994 run 1
Time/Frequency statistics for channel 1

280.0
Time (sec)

1000.0

0.0
180.0 380.O

Figure 8: A time-frequency diagnostic graph produced by diag. This shows the identical period as the
previous graph, but for &e magnetometer output. Notice that the spurious event was not caused by magnetic
field fluctuations.

47

4 GRASP Routines: Reading/using FRAME format data

The LIGO and VIRGO projects have recently adopted a data format standard called the FRAME format for
time-domain data. The 4O-meter laboratory at Caltech implemented this data format in Spring 1997: data
taken after that time is in the FRAME format. The FRAME libraries are publicly available frorn the VIRGO
project; theymaybedownloadedfromthesitehttp: / / lapphp. in2p3.fr /v irgolFramel.Con-
tact Benoit Mours mours@Iapp . in2p3 . fr for further information.

The GRASP package includes routines for reading and using data in the FRAME format. Also included
in the GRASP package is a translator (see Section 10.16) which translates data from the old data format
used in

'!'994to
the new FRAME format. Data distributed for use with GRASP will primarily be distributed

in this new FRAME format, and over a period of time we will remove from the GRASP package all of the
code and routines which make use of the old format. In order to help make the Fansition from old format to
FRAME format as smooth as possible, the GRASP package currently contains both old format and FRAME
format versions of all of the example prog&lms. For example animate and animateF are two versions
of the same program. The first reads data in the old format, the second reads data in the FRAME format. If
you arc new to GRASP, we don't recomend that you waste your time with the old data format; start using
the FRAME format immediately.

Data disributed in the FRAME format may not be compatible with future releases of the FRAME ti-
brary, so if the FRAME libraries are updated you may need to obtain a new copy of the standard 4O-meter test
data set from November 1994. The data that has been distributed and is currently being distributed makes
use of either version 2.20 or 2-30 of the FRAME library. Only two files in the GRASP package (src/-
ut i 1 i tyl f rame interf ac e . c and s rc,/ exampl es,/ exampl es-ut i 1 i tyl trans late . c) de-
pend upon the version of the FRAME library. We disnibute GRASP with versions of these files appropriate
for different releases (cunently 2.20, 2.30, and 2.33) of the FRAME library. The version 2.30 FRAME
library data format is compatible with versions 2-30 and2.33 of the FRAME library.

In order to glve the 1994 40-meter data aform as similar as possible to the data being taken in 1997 and
beyond, the channel ntlmes used have been given equivalent "FRAIVE" forms. These are shown in Table 5.

Note that new data created in the frame format will attempt to address at least a couple of the problems
in the "old format" data. In particular, new frame format data (i.e., post 1996) has sample rate in Hz always
being powers of 2, for example, 4,096 Hz or 16 Hz or 16,384 Hz. In addition, each frame always contains
a power-of-two number of seconds of data- These conventions will make it easy to "match up" sample of
channels taken at different rates, and to do FFT's of the channels. However the 1994 data does not conform
to either of these conventions: each frame of 1994 data contains 5000 samples of the slow channels, and
50,000 samples of the fast channels, during a 5.06666 . . . second, interval.

Channel # (14 Nov 94 FRAME name > 18 Nov 94 FRAME name
0
I
2
3

IFO output
unused
unused

microphone

IFO.DMRO

IFOlvlike

IFO output
magnetometer
microphone

unused

IFO-DMRO
IFOJVIag-x
IFOlvlike

4
5
6
7
8
9
10
1 1
12
13
I4
15

dc strain
mode cleaner pzt

seismometer
unused
unused
unused

TTL locked
arm I visibility
arrn 2 visibility

mode cleaner visibility
slow pzt

arm I coil driver

IFO-DCDM
PSLi\,IC-V
IFOSeis-1

IFOl-ock
IFO-EAI
IFO.SAI
IFO]4CR
IFOSPZT

SUS-EE-Coil-V

dc strain
mode cleaner pzt

seismometer
slow pzt

power stabilizer 1

unused
TTL locked

arm 1 visibility
arm 2 visibility

mode cleaner visibility
unused

arm 1 coil driver

IFO-DCDM
PSLtdC_V
IFO-Seis-1

PSLJPZT-V
PSL-PSS 1

IFO-I-ock
IFOISAI
IFO-SAT
IFO]4CR
IFO-SPZT

SUSiE-Coil-V
I 1994 run I this was accidentallv disconnecte'un approx

1 .

Table 5: Channel assignments for the November 1994 data runs. Channels 0-3 are the "fast" channels,
sampled at about 10 kHz; the remaining twelve are the "slow" channels, sampled at about lKHz. The
equivalent "IIRAIWE" format names are also given.

4.1 Time-stamps in the November L994 data-set

There is a serious problem in the original data format used in November 1994. To understand the nature of
this problem, remember that the individual data samples (fast channels) are taken at about lOkHz, so that
the time between samples is about 100 psec. Ideally, the time-stamps of the individual blocks should be
recorded with a precision which is substantially greater than this, i.e. a few psec at the most. However the
November 1994 time stamps are recorded in two ways: as an integer number of seconds and msec (with
1000 prsec resolution) and as a floating point elapsed time. This laner quantity has a resolution of less than
one psec at early times, but a resolution of about 2000 psec at late times (say 15,000 sec into a run).

Thus, in translating the November 1994 data into frames (which have 1 nanosec resolution time-stamps),
a reasonable effort was made to "correct" these time-stamps as much as possible, and to specify the time at
which each data block begins as precisely as possible. After some research, we believe that the each block
of old-format data is precisely 76/15: 5.0666666 . . . seconds long. So we have correcred the time stamps
accordingly. One can show that in general, our time stamps agree with those in the original data, when they
are expressed as floats, i.e. with the precison recorded in the original data set. There are some blocks where
there is an enor in the least-significant bit of the cast-into-float quantity; we do not understand this as well
as we would like.

Please, be warned that the absolute time indicated by these stamps is not correct! These time stamps
were not taken with a modem GPS clock system, or even with an old-fashioned WWV system. Our under-
standing is that the real-time computer system on which these data were originally taken had its clock set by
wristwatch, with an accuracy of perhaps *5 minutes.. Indeed the computer system crashed on November
15,1994 and the clock was subsequently reset again, so even the time difference can not be trusted between
Novemberl4 and Novemberl8 data It appears that the computer clock was not reset after Novemberl5th,
so the relative times in the remaining data may be trustworthy with somewhat better than *L msec accuracy.

In any data anaysis work (such as pulsar searching) where it is important to have precise time-stamps,
these shortcomings must be taken into account. If you really want to determine the times more precisely
than a millisecond, our only suggestion is to examine the seismometer data channel and correlate it with
similar data taken by a system with good time-stamps. We don't know where to find such data, but it might
exist, somewhere, in the public domain. If you do go to this trouble, please write to us and tell us the
conclusions of your study. We would be delighted to correct the absolute offset error in these November
1994 time-stamps, if someone could show us how to do it!

50

4.2 Function: fget-ch ()

int fget.-ch (struct fgetoutput *fgeEoutput, sErucE fget input *fget input)

This is a general function for sequentially reading one or more channels of FRAME format data. It can be
used to obtain either locked sections only, or both locked and unlocked sections, and to retrieve calibration
information from the FRAME data. It concatenates multiple frames and multiple files containing frames as
necessary, to return continuous-in-time sequences.

The inputs to the routine f get-ch () are contained in a structure:

st,ruct fgetinput i
int nchan;
char **chnames;

int npo j-nt;

shor t * * Ioca t ions , '

c h a r * (* f i l e s) O ;

i n t (x f i l e d e s) O ;
int in lock;
in t seek ;
in t ca l ib ra te ;

' '

*" different elements of the stmcture are:

nchan: Input. The number of channels that you want to retrieve e 1).

chnames: Input. The list of channel names. Each element of chnames [0 . . nchan-1] is a pointer to
a null-terminated string. Note that the nurnber of channels requested, and their names, must not be
changed after the first call to f get-ch. It is assumed that the first channel in the list has the fastest

sample rate of any of the requested channels.

npoint: Input. The number of points requested from the first channel. (May change with each call.)

locaEions: Input. The locations in memory where the arrays corresponding to each channel should be
placed are locaLions [0 - .nchan-]-1.(May change with each call.)

f iles O : Input. A pointer to a function, which takes no arguments, and returns a pointer to a null-

terminated character string. This string is the name of the file to look in for FRAME format data. If

no further frames remain in the file, then the function f iles () is called again. When this function

returns a null pointer, it is assumed that no further data remains. A useful utility function called

framef iles () has been provided with GRASP, and may be used as this argument. (May change

with each call.)

f i ledesO: Input. Thisargumentisusedif andonlyi f thepreviousargument, fget. input. f i les

is NULL. If fgetinput. f iles is not ltrul,l, then this argument is not used. This argument is a

pointer to a function, which takes no arguments, and returns an integerrle descriptor. The integer

returned is a file descriptor for a file containing FRAME format data. If no further frames remain

in the file, then the function f iledes () is called again. When this function returns a negative file

descriptor, it is assumed that no further data remains. (May change with each call.)

inlock: Input. Set to zero, return all data; set to non-zero, retum only the locked sections of data. If set

nonzero, then on output fgetouLput.locklowand fgetoutput.lockhi will be set.

51

seek: Input. Set to zero, return data. Set to non-zero, seek past the data, performing all normal operations,
but do not actually write any data into the arrays pointed to by locations [0 . . nchan-1] . (May
change with each call.) This is useful for skipping rapidly past uninteresting regions of data, for
example, the first few minutes after coming into lock.

cal ibrate: Input. If set non-zero, return calibration information. If set to zero, do not return calibration
information. (May change with each call.)

Except as noted above, it is assumed that none of these input arguments are changed after the first call to
f get-ch () . It is also assumed that within any given frame, the numbers of points contained in different
channels are exact integer multiples or fractions of the numbers of points contained in the other channels.

The outputs from the routine fget-ch () are contained in a structure:

struct fgetoutput {
double tstart , -
double srate;
int *npoint;

in t * ra t ios ;

int discarded;
doub le t f i r s t ;
double dt;
doub le los t lock ;
double last lock;
int reLurnval;
int frinum;
f l o a t * f r i ;

int tcal ibrate;
int locklow;
int lockhi;

] -

The different elements of the structure are:

tsEart: Oyput. Time stamp of the first point output
comments in Section 4.1.

chnames [0]. Note: please see the

srate: Output. Sample rate (in Hz) of channel chnames [0] .

npoint: Output. Thenumberof pointsreturnedinchannelchnamesti l isnpointI i] . Notettrat
npoint [0] is precisely the number of points requested in the input structure f getinput . npoint.

ratios: Output. The sample rate of channel chnames [0] divided by the sample rate of channel
chnames I i] i s g iven in ra t ios I i] . Thus ra t ios [0] =1 .

discarded: The number of points discarded from channel chnames [0] . These points are discarded
because there is a missing period of time between two consecutive frames, or because the instrument
was not in lock for long enough to retum the requested number of points (or for both reasons).

tf irsL: Output. The time stamp of the first point returned in the first call to f get-ch () .

dt: Output. By definition, tstart-tf irsE, which is the elapsed time since the first time stamp.

52

lostlock: Output. The time at which we last lost lock (if searching only for locked segments).

lastlock: Output. The time at which we last regained lock (if searching only for locked segments).

returnval: Output. The return value of fget-ch () : 0 if it is unable to satisfy the request, I if the
request has been satisfied by beginning a new locked or continuous-in-time section, and 2 if the data
returned is part of an ongoing locked or continuous-in-time sequence.

frinum: Output. Three times the number of frequency values for which we are returning static calibration
information. If this number is not divisible by three, something is wrong!

fri: Output. A pointer to the array of calibration data. This data is arranged with a frequency, then
the real part, then the imaginary part of the response, followed by another frequency, then real part,
then imag inary par t , e tc . So f r i [01=/e , f r i [1]= ro , f r i - l2 l= io , f r i [3]= . f i , f r i [4]= r t ,
f r i [5] =ir , . . .and thetotal length of thearray is fr i [0. . f r inum-]-1.

tcalibrate: Output. The time at which the current calibration information became valid.

1ock1ow. Ouput. The minimum value (inclusive) for "in-lock" in the lock channel. Set if and only if
f get input . i-n1 ock is nonzero.

lockhi. Output. The maximum value (inclusive) for "in-lock" in the lock channel. Set if and only if
f getinput . inlock is nonzero.

This routine is a useful interface to the FRAME library. It reads frames from files. To get the name of the
first file to open, this routine calls the function f iles O specified in the input structure. Then, whenever
there are no remaining frames in this file, it calls f iles O again. This function must return the name of
the desired file, orNuLL if no files remain. For example:

s t a t i c c h a r * f i l e l i s t [] = {
' c1 -9 4_ l_1 _19 _23 _50_4 6 " ' C 1 - 9 4_LL_L9 _23 _53 2 I " ,
' c 1 - 9 4_1- l- _L9 _23 _5 6_t- 0 ", " CL - 9 4 _1"L _L9 _23 _5 8_5 2 "
"c1-94_ l - l -_20_00_01_34. i "cL-94_11_20_00_04_16 ") , '

char * f i les O {
stat ic int entry=O,'
i f (en t ry>=5;

return NULL;
^ ' l ^ ^

re tu rn f i le l i s t Ien t ry++] ;
)

The function fget-chO retums 0 if it is unable to satisfy the request for fgetinput.npoint
points. It retums I if the request has been satisfied, and it is beginning a new locked section (or if the frames
were not contiguous in time, and it is beginning with a new frame). It returns 2 if the data returned is part of

an ongoing locked or continuous sequence.
When several channels are requested, and they have different sample rates, the first channel requested

must always have the fastest sample rate. Other requested channels may have this same sample rate, but

none may have a faster sample rate. Points are returned from the slower channels if and only if they satisfy

the following condition. Suppose that r is the ratio of the channel 0 sample rate to the channel K sample

ra te , and labe l thepo in ts inchanne l0by i :0 , . - ' ,n r - l ,and thepo in ts in channe l Kby f - 0 , " ' , f l -1 .

Then point j in channel K is retumed if and only if point i : r j is retumed from channel 0.

53

Authors: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: We intend to store the ranges corresponding to'tn lock" in the frames, so these will not need
to be entered by the user.

4.3 Function: framef iles ()

char *framefi les ()
This is a "utility function" for frame access. It takes no arguments, and returns a pointer to a static character
string. It is intended primarily as an argument to be passed to the function fget-ch () via the structure
member fgetinput . f i tes.

The operation of the framef iles () is determined by two environment variables: GRASPJRAMEPATH,
and GRASPSEAITTME. If GRASPSEALTTME is set, then the framef iles O interogates the EPICS
control system and returns a pointer to a character string containing the name of the frame file most recently
written to disk. This option is only intended for use in the 40-meter lab control room, for real-time analysis
of data. For most users of GRASP, this option will never be used. Note: to set/unset the environment vari-
able, use the commands:

SETenv GRASPSEALTIME
1rNSETEN\/ GRASPSEALTIME

respectively.
If the cRASPSEAT,TIME environment variable is NOT set, then the behavior of f ramef iles () is

determined by the value of the GRASP-FRAMEPATH environment variable. This variable should point to a
directory, and may be set with a command like:

seE,env GRASP-DATAPATH /wsr /Ioca1/GRASP / datra/L8nov94 . l-frame
The first time that framef iles () is called, it looks for all files named C1-* in the directory pointed
to by GRaSPJRAMEPATH. The file names are stored internally, framef iles () retums a pointer to a
character string containing the name of the first of these files. The second call to f ramef iles () returns
the name of the second file found in the directory and so on. When no more files remain, f ramef iles ()
retums a NULL pointer.

A simple way to nalyze a subset of data is to create a directory containing symbolic links to the FRAME
files containing data that you want to analyze, and to set the environment variable GRASP-FRAMEPATH to
point to that directory.

Authors: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: None.

55

4.4 Exarnple: locklistF program

This example uses the function f gret-ch described in the previous section to print out location information
and times for all the locked sections in the directory pointed to by the environment variable GRASPJRAMEPATH.
To run this program, type

setenv GRASPJRAMEPATH /usr / local/GRASP/18nov94 . lframe
lock l i s tF

and a list of locked time intervals will be printed out. Here is some typical output:

lock l i s tF
F r a m e l V e r s i o n : A p r i l 1 0 , 1 9 9 7 ; v 2 . 2 3 (A p r 1 0 L 9 9 7 1 8 2 3 2 : 5 2 . . / s r c / F r a m e l - c)
GRASP: framefi lesO: using 83 f i les from direcEory /ba1�1-en2/ l-8nov94. l- f rame
I d : f r a m e i n t e r f a c e - c , v 1 . 4 1 9 9 7 / 0 4 / 3 0 0 7 : 0 0 : 3 9 b a l l e n e > r p
NAMe: RELEASE_]._3
I n l o c k f r o m t = 0 . 0 0 0 0 0 0 i n t o r u n E o 5 2 6 - 4 5 0 0 0 8 i n t o r u n f o r 5 2 6 . 4 5 0 0 0 8 s e c
O u t o f l o c k f r o m t = 5 2 6 . 4 5 0 0 0 8 i n t o r u n t o 5 5 5 . 3 8 4 6 9 2 i n L o r u n f o r 2 8 - 9 3 4 6 8 3 r
In lock f rom t = 555.384692 in to run to 657.775527 in to run fo r] - �12-390835 sec
o u t o f l o c k f r o m - t r = 6 6 7 . 7 7 5 5 2 7 i n t o r u n t o 7 0 8 . 0 0 0 7 9 8 i n t o r u n f o r 4 0 . 2 2 5 2 7 2 t
I n l o c k f r o m t = 7 0 8 . 0 0 0 7 9 8 i n t o r u n t r o 2 2 6 8 . 5 7 0 9 2 4 i n E o r u n f o r 1 - 5 6 0 . 6 7 0 1 - 2 5 s ,
ou t o f lock f rom t = 2268.670924 in to run to 2283.429062 in to run fo r l -4 .75813
In loek f rom t r = 2283.429052 in to run to 3954.5L7061 in to run fo r 1 -671- -088000 r
O u t o f l o c k f r o m t = 3 9 5 4 . 5 1 7 0 5 1 i n t o r u n t o 3 9 6 6 - 3 6 7 9 5 2 i n t o r u n f o r 1 1 . 8 5 0 9 0
GRASP: fgiet_ch () : FRAMES NOT SEQUENTIAT
run 3 frame 842 ended at t ime: 78522]-840.948503 sec
run 3 f rame 843 s ta r ted a t t imez 7852230L2.7651-37 sec
T i m e g a p i s L I 7 1 , . 8 1 5 6 3 4 s e c
G a p s t a r L s 4 2 6 5 - l - 3 3 5 0 3 s e c o n d s i n t o r u n , ' e n d s 5 4 3 7 . 9 5 0 1 3 7 s e c o n d . s i n t o r u n .
Discarding 2942L0 points remaining in the previous frame(s)
I d . : f r a m e i n t e r f a c e . c , v 1 - - 4 L 9 9 7 / 0 4 / 3 0 0 7 : 0 0 : 3 9 b a l l e n E > c p
Name: RELEASE_1_3
I n l o c k f r o m t = 3 9 6 6 . 3 6 7 9 6 2 i n t o r u n t o 4 2 5 5 . 1 - 3 3 5 0 3 i n t o r u n f o r 2 9 9 - 7 5 5 5 4 0 s
o u t o f l o c k f r o m t = 4 2 6 5 . 1 - 3 3 5 0 3 i n t o r u n t o 5 4 3 7 . 9 5 0 1 - 3 7 i n t o r u n f o r L l - 7 1 - . 8 L 6
GRASP: fget_chO: FRAMES NOT SEQUENTIAL
run 3 f rame 1040 ended. a t t ime: 7852240L5.965104 sec
run 3 f rame l -041- s ta r ted a t t ime: 785224L75.714844 sec
T ime gap is I59 .749740 sec
Gap s ta r ts 6441- .150f04 seconds in to run ; ends 5600-899844 seconds in to run .
Discarding 132000 points remaining in the previous frame (s)
I d : f r a m e i n t e r f a c e . c , v 1 - 4 L 9 9 7 / 0 4 / 3 0 0 7 : 0 0 : 3 9 b a l l e n E x p
Name: RELEASE_I-_3
In l -ock f rom t = 5437.950137 in to run to 5447.1-50104 in to run fo r l -003 -799968
Out o f lock f rom t = 6441. i -50104 in to run to 6600.899844 in to run fo r 159 -7497
I n l o c k f r o m t = 6 6 0 0 - 8 9 9 8 4 4 i n t o r u n t o 7 3 7 5 . 4 7 2 5 5 8 i n t o r u n f o r 7 7 4 . 5 7 2 7 1 4 s
O u t o f l o c k f r o m t r = 7 3 7 5 . 4 7 2 5 5 8 i n t o r u n t o 7 3 9 1 - 4 7 4 0 3 9 i n t o r u n f o r 1 5 . 0 0 1 4 8
I n l o c k f r o m t = 7 3 9 L - 4 1 4 0 3 9 i n t o r u n t o 7 6 8 5 . 3 3 7 6 9 9 i n t o r u n f o r 2 9 3 . 8 6 3 6 5 9 s
O u t o f I o c k f r o m t = 7 5 8 5 . 3 3 7 6 9 9 i n t o r u n E o 1 7 L 9 . 7 5 3 0 4 9 i n t o r u n f o r 3 4 - 4 2 5 3 5
I n l - o c k f r o m t = ' 7 ' 7 t 9 . 7 6 3 0 4 9 i n t o r u n L o 7 9 1 3 - 5 4 7 3 1 - 0 i n t o r u n f o r 2 5 3 - 8 8 4 2 6 1 , s
O u t o f l o c k f r o m t = 7 9 7 3 - 6 4 7 3 1 - 0 i n t o r u n t o 8 0 8 3 . 5 0 7 9 7 4 i n t o r u n f o r 1 0 9 . 8 6 0 5
I n l o c k f r o m t = 8 0 8 3 . 5 0 7 9 7 4 i n t o r u n t o 9 1 - 6 0 . 7 1 5 9 5 6 i n t o r u n f o r 1 - 0 7 7 - 2 0 7 9 8 2

56

O u t o f l o c k f r o m t = 9 1 6 0 . 7 1 - 5 9 5 6 i n t o r u n t o 9 2 2 0 - 7 8 0 0 8 L i n t o r u n f o r 5 0 . 0 6 4 1 2 5 s
I n l o c k f r o m t = 9 2 2 0 . 7 8 0 0 8 1 - i n t o r u n t o 1 - 0 5 5 2 . 8 6 3 6 2 4 i n t o r u n f o r L 3 3 2 . 0 8 3 5 4 4 s e
out o f lock f rom t = l -0552.863624 in to run to 1 -0585.141461- inEo run fo r 32-27793 i
I n l o c k f r o m t = 1 - 0 5 8 5 . L 4 1 4 6 L i n t o r u n t o l - 1 4 6 6 . 6 5 0 8 4 7 i . n t o r u n f o r 8 8 1 . 5 0 9 3 8 6 s e
out o f lock f rom t = 11 '466.650847 in to run to 11483.939559 in to run fo r L7 .2gg7!z
f n l o c k f r o m t = 1 l - 4 8 3 . 9 3 9 5 5 9 i n t o n : n t o 1 - 3 2 6 8 . 7 9 6 3 5 2 i n t o r u n f o r 1 , 7 9 4 . 8 5 6 7 9 3 s
out o f lock f rom t = 13268-796352 in to run to L3297-379L20 in to run fo r 2g .Sg27Gt
GRASP: fget_chO: could not open NULL f i le name
h a d 0 p o i n t s ; s t i l l n e e d 2 9 6 0 0 0 p o i n t s . . .
Discarding 0 points remaining in the previous frame(s).
I d : f r a m e i n t e r f a c e . c , v 1 . 4 t 9 9 7 / 0 4 / 3 0 0 7 : 0 0 : 3 9 b a l l e n E x p
Name: RELEASE_1_3

Note that this example only prints out information for locked sections longer than 30 sec. Also notice
that because there are time gaps in between some of the sucessive frames, error messages are printed out.
Notice the form of the GRASP error and warning messages. These typically begin with a line like:

GRASP: fget-chO: this is the warningr or error message
which specifies which GRASP firnction the error messages come from. They end with a pair of lines like

I d : f r a m e i n t e r f a c e . c , v l - . 4 L 9 9 7 / 0 4 / 3 0 0 7 : 0 0 : 3 9 b a 1 1 e n E x c
Name: Name: RELEASEI-3

which are information about the file from which the warning or error message came, including its ver-
sior/release numbers. Here is the code for the locklistF example program:

/* GRASP: Copyright 1997, Bruce Allen */
* i n c l u d e ' g r a s p . h "

i n l - m r i n / l I
t

double begrin, end, savebegin, saveend;
struct fgetoutput fgetoutpuEt
s t ruc t fgeEinput fge t input ;

/* this number ofsamples is about 30 seconds of data,r/
fge t input . npo in t=2 96000 ;

/* number ofchanneis needed is one */
fgetinput . nchan=1 ;

/{. storage for channel names, data locations, points retumed, ratios */
f geEinput . chnames= (char *x) malloc (f getinput . nchan,r.si zeof (char *)) ;
f g e t i n p u t . l o c a t i o n s = (s h o r t * x) m a I l o c (f g e t i n p u t . n c h a n * s i z e o f (s h o r t *)) ;
fge tou tpu t .npo in t= (in t *)ma l loc (fge t input .nchan*s izeof (in t)) ;
f geCoutput . rat i os= (int r.) mal1oc (f getinput - nchan{.s lzeof (int)) ;

/* since we operate in SEEK mode, no space needed for data storage */
fge t input . Locat j .ons [0 J =NULL;

/x use utility function framefiles0 to retrieve file names x/
fge t input . f i l es= f ramef i les ;

/x get only the locked sections */

f ge t input . in lock=1, '

/* seek ovdr data (we don't care what the values arer.) */
f qetinr:ut - seek=l-, '

57

/r. don't need calibration information */
fgetinput . cal ibrate=0 ;

/* set channel name x/
fgetinput. chnames [0 j = " IFO_DMRO' ;

/* start the main loop x/
wh i le (l -) {

/x find the next locked section of rhe data * f
fget-ch (&fgetouEput, &fgetinput) ;

/x see if we fell out of lock, and print if we did */
i f (fgetoutpue.returnval==1) {

/* time at whick lock lost (relative to start of run) */
begin=f getoutpuL. lost lock-f qetoutput. t f i rst ;

/* time at whick lock aquired (relative to start of run) */
end=f gietoutput - 1as elock- fgetoutput. . t f i rs t ;
i f (beg in>0.0 l l fge tou tpu t . re tu rnva l==O) {

p r in t f (' In lock f rom e = * f in to run to * f
saveend, begin, begin-saveend) ;

p r in t f ('Out o f lock f rom t = t f in to run Co

,
Oeg in ,end,end-beq in) ;

saveend.=endi

J

i n t o r u n f o r B f s e c \ n ' ,

8 f in to run fo r B f sec \n" ,

/,r if no data remains, then exit */
i f (fgetoutput..returnval==O) {

p r in t f ("End o f da ta a t t . i -me %f \n" , fge tou tpu t . t scarE- fge tou tpuE. E f i rs t) ;
b reak ;

.)
J
r a F r r r h n .

4.5 Examptre: gwoutputF program

This example uses the function f get-ch () described in the previous section to print out a two-column file
containing the IFO output for the first locked section containing 100 sample points. To run this program,
type

setenv GRASPJRAMEPATH / usr / loca1/GRASp/L8nov94 . Lframe
gfv/outputF

In the output, the left column is time values, and the right column is the actual IFO output (note that because
this comes from a 12 bit A-D converter, the ouput is an integer value from -2047 to 2O4S). The program
works by acquiring data 100 points at a time, then printing out the values, then acquiring 100 more points,
and so on. Whenever a new locked section begins, the program prints a banner message to alert the user.
Note ttrat typical locked sections contain = 107 points of data so this progam should not be used for real
work - it's just a demonstration!

/x GRASP: Copyright 1997, Bruce Allen x/
* inc lude -g rasp.h"

main$ {
f I o a f f c f a r t - f i m 6 c r a l - 6 .

i n t i , n p o i n t , c o d e ;
short xdata;
struct fgetinput fgetinput;
struct fgetoutput. fget.output;

/* specify the number of points of output & allocate uray * /
npo in t=100;
da ta= (shor t r .)ma11oc (s izeo f (shor t) *npo in t) ;
f a c f i r n r r F r n n ' i n t s = n n a i n F .5 Y v u r r r H s e . . . y v r r . u - r l H v 4 r r u ,

/r. we only want one channel ofdata x/
fgetinpuE . nchan=1 ;

/x use the framefilesQ function to find it x/
f ge t input . f i l es= f ramef i les ;

/x allocate space to store channel names */
fge t input . .chnames= (char * *)ma l loc (fge t input .nchanxs izeof (char *)) ;

/x allocate space for data storage location addresses x/
f g e t i n p u t - l o c a t i o n s = (s h o r t x *) m a l l o c (f g e c i n p u t . n c h a n x s i z e o f (s h o r t *)) ;

/x allocate space for numbers of points returned in each channel */
fge tou tpu t .npo in t= (in t *)ma l loc (fge t input .nchan+s izeof (in t)) ;

/x allocate space for ratios of channel sample rates */
f getoutput . rat ios= (int *) mal1oc (fgetinput - nchanxs izeof (int)) ;

/* channel name ,r/

fgetinput. chnames [0] = " fFO_DMRO" ;

/x set up different cases +,/
i € a r r r t r r - 4 ^ F ^ - .r r (! \u ! ! : -13cueuV("GRASP-REALTI I4E"

)) {

/x don't care iflocked */
fge t input . in lock=0;

)
e l s e {

59

/* only locked */

,

fge t innut . in lock=1, -

f get, input . seek=0;
fgetinput - cal ibrate=0 ;
fge t input . loca t ions [01 =4 . t . -

w h i l e (1) {
/* get npoint points of data */
code=f get-ch (&f getoutpuE, &f getinput) ;
ts tart=f gretoutput - dt,-
srate=fgetoutput . srate t

/x if no data remains, exit loop x/
i f (code==0) b reak ;

/x if starting a new locked segment, print banner *,/
i f (code- -1) {

printf (" NEW LOCKED SEGME}]II
p r in t f (" T ime (sec) \ t IFO outpu t \n") ;

l)
/x now output the datarrf
f o r (i = 0 ; i (n p o i n t ; i + + 1 {

t ime=ts ta r t+ i /s ra te ;
p r i n t f (' t f \ r . 8 d \ n ' , t i m e , (i n c) d a E a l i l) ;

I)
))
/x close the data files, and retum */
r a t s r r ? n n .

60

4.6 Exarnple: animateF program

This example uses the fi:nction fget-ch () described in the previous section to produce il1 animalefl flis-
play showing the tiroe series output of the IFO in a lower window, and a simultaneously calculated FFT
power spectrum in the upper window. To run this program, type

setenv GRASPJRAMEPATH /usr /LocallGRASp/18nov94. lframe
animateF | *Sr -pipe

This output from this program must be piped into a public domain graphing program called:<nrgr. This
may be obtained from http: //plasma-grate.weizmann. ac . illXmgr/. (This lists mirror sites in
fhe usA and Europe also). Some sample output of animateF is shown in Figure 9.

Spectrum

1000.0
f (Hz)

22.oo 22.10
?,$

22.30 22.40

Figure 9: Snapshot of output from animateF. This shows the (whitened) CIT 40-meter IFO a few seconds
after acquiring lock, before the violin modes have damped down

After compilation, to run the program type:
animateF | :cngr -pipe &

to get an animated display showing the data flowing by and the power spectRrm changrng, starting from the
first locked data. You can also use this program with cornnand-line arguments, for example

an ima teF 100 4 500 7 900 L .5 l : ang r -p ipe &
wi l lshowthedataf romt imef :100tot imet :LA4seconds, thenfromt:500tot :507, thenfrom
t : 900 to t : 901.5" Notice that the sequence of start times must be increasing. Note: the start times are

1 0

0
5000.00.0

IFO output 4

6t

= = >

= = >

= = >

= = >

n a c a O .

d e l t = (x I i l e n - 1] - x [0]) / (i I e n - 1 . 0) ;
T = (x I i] - e n - l - l - x [0]) ;
se t length (cg , specset , LLen/ 2) ;
" .x -ge tx (cg , specseE) ;

c a s e 1 :
d e l _ t = (x I i l e n - j _] - x [0]) / (i l e n - 1 . 0) ;
T = (x I i l e n -] - l - x [0]) ;

Figure 10: The corrections to a bug in the xmgr program are indicated by the arrows above. This bug is in
the routine do-fourier () in the file computils. c.

measured relative to the first data point in the first frame of data.
Note: The r,snqr progmm as commonly distributed has a simple bug that needs to be repaired, in order

for the frequency scale of the Fourier transform to be correct. The corrected version of:<rngr is shown in
Fieure 10.

/* GRASP: Copyright 1997, Bruce Atlen */
inc lude "grasp.h"

in t ma in(in t a rgc ,char * *argv) {
r r n i d a r a n h a r r i f f l ^ ^ F f l ^ A F i h f l 'v s e \ ! f v s e , ! f v 4 u , r t r L , ,

f l o a t t s t a r t = l . e 3 5 , s r a t e = 1 . e - 3 0 , t m i n , E m a x , d t ;
r A n r r h l a F i m a .

i n t i , s e q - O , c o d e , n p o i n t = 4 0 9 5 ;
short *datat
< l - 1 1 r - l - f n a f i n n r r t s f n a f . i n n r r r .

r Y L u r r r y s u ,

q l - r i r a f f c a i n r r l - n r r j - f d a f ^ r r f ^ i r F .r y e b v s e v s e ! Y E e v s u H s L ,

/* number ofchannels */
fgetinput, . nchan=1 ;

/* source of files */
f ge t input . f i l es= f ramef i les ;

/x storage for channel names, data locations, points retumed, ratios ,r./
fgetinput. chnames= (char **) malloc (fgetinput. nchan*sizeof (char x)) ;
fge t input . loca t ions= (shor t xx)ma11oc (fgeL inpuE.nchanxs izeof (shor t *)) ;
f g e t o u c p u t . n p o i n t = (i n t *) m a l I o c (f g e t i n p u t . n c h a n + s i z e o f (i n t)) ;
f ge tou tpu t . ra t ios= (in t *) ma l loc (fge t input . nchanxs izeof (in t)) ;

/x set up channel names, etc. for different cases x/
fgetinput. chnames [0] = " IFO_DMRO " ;

/* set up for different cases *,/
i f (NULL! =gerenv(,GRASP_REALTIME,)) {

/* 40 meter lab */
fgetinput . chnames [0] =getenv (" GRASP_REALTIME ") ;
f g e t i n p u t . i n l o c k = 0 , -

62

)

/* Nov 1994 data set */
fget input . in lock=1;

)

/* number of points to get x/
f getinput. npoint=npoint ;

/* don't seek, we need the sample values ! x/
fget input . seek=0;

/* but we don't need calibration information */
f, getinput. calibrate=0 ;

/x allocate storage space fordata x/

daEa= (shor t x)maI loc (s izeo f (shor t) *npo in t)

f getinput - locations [0] =data ;

/*. handle case where user has supplied t or dt arguments x/

i f (a rgc==1-) {
t m i n = - l - . e 3 0 ;
d t=2 - e3 0 , '
a rgc=-1 ;

1

/x now loop .. . */
seq=argc '

w h i t e (a r g c ! = 1) {
/x get the next start time and dt x7

i f (a r g c t = - 1) {
s s c a n f (a r g v l s e q - a r g c + l 1 , ' * f " , & t m i n) ;
sscanf (a rgrv Iseq-argc+21 '

" Z f " '&d t) ;
argc-=2 i

)
/* calculate the end of the observation interval, and get data

t'max=tmin+dt;
wn] . re (J .) t

/* decide whether to skip (seek) or get sample values */

i f (t s ta r t (tm in- (npo in t+20.) / s ra te)
f ^ 6 F i h n r r f c o g f t = t ;
r Y e v + . . y $ v . v v

e l s e
fgetinput - seek=0;

/* seek, or get the sample values *,/

code=fget-ch (&fqetoutput, &fgetinput) ;

/x elapsed time, sample rate */

tstart=fgetoutput . dt, '

srate=fgretoutput - srate t

f 'r if no data left, return */

i f (code==O) re tu rn 0 ;

/*. we need to be outputting now. .. */

i f (Emin(= ts ta r t) {
f o r (i = 0 ; i (n p o i n t ; i + + 1 {

t ime=tsLar t+ i /s ra te ;
p r i n t f (' e f \ L * d \ n " , t i m e , d a t a I i])

63

)
]

)

/* put out information for the graphing program x/
graphout (tstart. estart+npo int f srate,

)
f ', if we are done with this interval, try next one x/
if (t ime>=tmax) break;

(argc==L && time)=tnrax));

/* This routine is pipes output into the xmgr graphing program */
vo id g raphout (f loa t x1 , f loaE x2 , in t las t) {

s ta t i c in t count=O, '
printf ('&\n") ; /* end of set marker */

/,r first time we draw the plot x/
i f (counr - -0) {

printf ("@doublebuffer true\n") ; /x keeps display fromflashing x/
p r i n t f (" @ s 0 c o l o r 3 \ n ") ; / * I F O g r a p h i s g r e e n x /
- - : - ! a t n a - - : ^1 ; ! u r L r r e v r e w 0 . L , 0 - 1 , 0 . 9 , 0 - 4 5 \ n ") ; / + s e t t h e v i e w p o r t f o r l F O * /
pr in t f ('Gwich gr i . \n ") ; / x rese t . thecur ren tgraphtoFFTx/
- - ; - r € t r a . - : ^
1 l ! r r r u ! \ s v r e w 0 . 1 - , 0 - 6 , O - 9 , 0 . 9 5 \ n ") ; f * . s e t t h e v i e w p o r t F F T * /
* , i - r € t j a . - - : u1, l r r rL ! \ swruh gO\n") ; / * rese t thecur ren tgraphto lFO* /
printf ('@world :<rnin *f \n" , x1) ; /* set min x x/
n r i s r € l n A a - , ^ jy! 'ru! r -*-.1d :<rnax 8f \n" ,x2) ; /* set max x *,/
printf (" Gautoscale\n") ; /* autoscale first time through x/
* - i - r € | j a $ ^ ^
1,lurL! \ u-rustts of f \n") ; /t tum o{f the fOcus markers */
p r i n t f (" G x a x i s l a b e l \ " t (s e c) \ " \ n ") ; / * l F O a x i s l a b e l x /
h r . i h F f l r a F l r! , ! ' rL! r s ! !L (s0, 1) \n, ') ; / * compute the spectrum */
* - ; - r € / r a ^ 1
! ! a ' s ! r =p r co l o r 2 \n ") ; / * FFT i s r ed * , /

p r i n t . f (" @ m o v e 9 0 . s 1 t o 9 1 - . s O \ n ") ;
p r in t f ("ewi rh g1 \n , ') ;
n r i n f f 1 n f 3 . n 1 f r m o l n a r r \ r " \ .+ v y J \ r r / t

p r i n t f (" @ a u t o s c a l e \ n ") , -
p r in t f ('Gsubt i t le \ " Spec t rum\ " \n ") ;
p r i n t . f (" G x a x i s l a b e l \ " f (H z) \ " \ n ") ;
p r in t f ("ewi th g0 \n") ;
p r i n t f (" G s u b L i L l e \ ' I F O o u t p u r B d \ " \ n '
i f (! I a s t .) p r i n t f (' @ k i l 1 s 0 \ n ") ;

l

. f " . {
/* other times we redraw the plot *f
p r i n t f (" G s O c o l o r 3 \ n .) ;
p r i n t f (" e f f t (s 0 , 1) \ n " 1 ;
p r i n t f (" G s 1 c o l o r 2 \ n ") ;

print. f ("Gwor1d :cnin .t f \n" ,xI) ;
print.f (" @world :<rnax &f \n " , x2) ;
p r in t f ("Gautosca le yaxes \n") ;
p r in t f ("@cIear s tack \n") ;
i f (! l a s t) p r i n t f (" @ k i 1 1 s 0 \ n ") ;
p r in t . f ('@wi r .h 91 \n") ;
prinEf (" @g1 t lpe logry\n") ;
p r i n t f (" @ c 1 e a r s t a c k \ n ") ;
i f (! l a s L) p r i n t f (" e k i 1 1 s 0 \ n ") ;
p r in t f ("ewi th go \n") ;

/x move FFT to graph I */

/x set the focus on FFT */

/* set FFT to log freq arts */

/* autoscale FFT */

/* set the subtitle */

/x FFT axis label x/

/* reset the current graph IFO */

, count++) ; /+ set IFO subtitle */

/* kill IFO; ready to read again */

/x set IFO green */

l,'FF'l it x/

/x set FFT red x/

/* set min x x/

/,r. set max x r,/

/x autoscale IFO */

f * cleu the stack x/

/* kill IFO data 'Ff

/* switch to FFT */

/* set FFT to log freq axis x/

f * clear stack */

/x kill FFT */

f * ready to read IFO agun,x/

64

printf ("@move 90. s1 to 9L. sO\n") i /* move FFTto graph 1 */
p r in t f ("Gsubt ic le \ " IFo ou tpu t ?d \ " \n " , count++) ; / * se t IFO subt i t le * /

4.7 Swept-sinecalibrationinformation

The swept sine calibration files are 3-column ASCII files, of the form:

r0
T l

t f n

where the /r' are frequencies, inHz, and ri and ii are dimensionless ratios of voltages. There are typically
rn. : 801 lines in these files. The data from these files (as well as one additional line of the form
0.0 0.0 0.0
showing vanishing response at DC) have been included in the frames. Each line gives the ratio of the IFO
output voltage to a calibration coil driving voltage, at a different frequency. The ri are the "real part" of the
response, i.e. the ratio of the IFO output in phase with the coil driving voltage, to the coil driving volt'ge.
The ii are fhe "imaginary part" of the response, 90 degrees out of phase with the coil driving voltage. The
sign of the phase (or equivalently, the sign of the imaginary part of the response) is determined by the
following convention. Suppose that the driving voltage (in volts) is

Vcoil:10 cos(c,,,t) : 10fte'" (4.7.r)

where a : 2tr x 60 radians/sec is the angular frequency of a 60 Hz signal. Suppose the response of the
interferometer output to this is (again, in volts)

1,0

i1

i.2

;om

J O

J T

J 2

Kpo :

:

6.93 cos(c,.'t) + a sin(a,t)
6.93 cos(a.,t) -4 cos(c,.'t+n12)
g p"i(cat-rl6) (4.7.2)

This is shown in Figure 1 1. An electrical engineer would describe this situation by saying that the phase
of the response Vpo is lagging the phase of the driving signal %o1 by 30o. The corresponding line in the
swept sine calibration file would read:

60.000 0.6930

Hence, in this example, the real part is positive and the imaginary part is negative. We will denote this entry
in the swept sine calibration file by .9(60) : 0.8 "-ir/6 : 0.693 - 0.40Ai. Because the interferometer
output is real, there is also a value implied at negative frequencies which is the complex conjugate of the
positive frequency value: ,S(-60) : ^9.(60) :0.8 "it/6 - 0.693 + 0.400i.

Because the interferometer has no DC response, it is convenient for us to add one additional point at
frequency f : 0 into the output data arrays, with both the real and imaginary parts of the response set to
zero. Hence the output arrays contain one element more than the number of lines in the input files. Note
that both ofthese arrays are arranged in order ofincreasing frequency; after adding our one additional point
they typically contain 802 points at frequencies from 0 Hz to 5001 Hz.

For the data runs of interest in this section (from November 1994) typically a swept sine calibration
curye was taken immediately before each data tape was generated.

We will shortly address the following question. How does one use the dimensionless data in the swept-
sine calibration curve to reconstruct the differential motion Al(t) (in meters) of the interferometer arms?
Here we address the closely related question: given V1p9, how do we reconstruct 7"o11? We choose the sign

66

Figure 11: This shows a driving voltage %o1 (solid curve) and the response voltage 71po (dotted curve) as
functions of time (in sec). Both are 60 Hz sinusoids; the relative amplitude and phase of the in-phase and
out-of-phase components of firo are contained in the swept-sine calibration files.

convention for the Fourier transform which agrees with that of Numerical Recipes: equarion (12.1.6) of{l1.
The Fourier transform of a function of time lz(t) is

The inverse Fourier transform is

v(f):
|

"r"uftv1t1at.

v(t):
|

"-""urrv(ild.f .

With these corrventions, the signals (4.7.1) and (4.7.2) shown in in Figure l1 have Fourier components:

%"u(oo):s and %o'(-60; :5,
yreo(60) = 4e)i1t/6 and yrro(-60) : 4s-i'7t/6.

At frequency .fo : 60 Hz the swept sine file contains

5(60) : 9.3 "-i 't l6 + 5(-60) : ^9.(60) :0.8 ein/6 (4.7.7)

since,S(-/) = ,S.(/).
With these choices for our conventions, one can see immediately from our example (and generalize to

all frequencies) that

{r . . r n- vt to
, c o u \ r / -

S - (/) '

In other words, with the Numerical Recipes [1] conventions for forward and reverse Fourier Transforms,
the (FFT of the) calibration-coil voltage is the (FFT of the) IFO-output voltage divided by the complex
conjugate of the swept sine response.

Author: Bruce Allen, ballen@ dirac.phys.uwm.edu

Comments: The swept-sine calibration curyes are usually quite smooth but sometimes they contain a
"glitch" in the vicinity of I kHz; this may be due to drift of the unity-gain servo point.

(4.7.3)

(4.7.4)

(4.7.s)
(4.7.6)

(4.7.8)

67

4.8 Function: GRcalibrate o

v o i d G R c a l i b r a t e (f l o a t * f r i , i n t f r i n u m , i n L n u m , f l o a t * c o m p l e x , f l o a t s r a t e , i n t
method, int order)
This is a intermediate-level routine which takes as input a pointer to an array containing the swept sine data,
and outputs an array of interpolated points suitable for calibration of FFT's of the interferometer oulput.

The arguments are:

fri: Input. Pointer to an array containing swept sine data. The format of this data is fri [0] =/e,

fr i [] - l=ro, f r i [2f =io, f r i [3] - / r , f r i LAl=rt , f r i [5]=i :- . . . and the total length of the
anay is f r i [0 . . f r inum-1] .

frinum: Input. Thenumberof entries inthearray fri [0. . frinum-1-].If thisnumberisnotdivisible
by three, something is wrong!

num: Input. The number of points l/ in the FFT that we will be calibrating. This is typically N -- 2k
where & is an integer. In this case, the number of distinct frequency values at which a calibration
is needed is 2k-1 * 1 : N/2+ 1, corresponding to the numberof distinct frequency values from
0 (DC) to the Nyquist frequency .fNyquist. See for example equation (12.1.5) of reference [1]. The
frequencies Ne ft. - ft4u*pr" for i : 0,. . . , Nf 2.

srate : Input. The sample rate F"u-o1u (in Hz) of the data that we are going to be calibrating.

complex: Input. Pointer to an aray complex t 0. . sl where s : 2k* 1. The routine calibrate o
fills in this array with interpolated values of the swept sine calibration dat4 described in the pre-
vious section. The real part of the DC response is in complex[0], and the imaginary part is in
complex[1-]. The reaVimaginary parts of the response at frequency h are in complex[2] and
complex [3] and so on. The last two elements of complex [] contain the reaVimaginary parts
of the response at the Nyquist frequency Fr. prcf 2.

method: Input. This integer sets the type of interpolation used to determine the real and imaginary part of
the response, at frequencies that lie in between those given in the swept sine calibration files. Rational
function interpolation is used if met.hod=0. Polynomial interpolation is used if method=l. Spline
interpolation with natural boundary conditions (vanishing second derivatives at DC and the Nyquist
frequency) is used if method=2.

ord.er : Input. Ignored if spline interpolation is used. If polynomial interpolation is used, then order is
the order of the interpolating polynomial. If rational function interpolation is used, then the numerator
and denominator are both polynomials of order orde r/2 if order is even; otherwise the degree of
the denominator is (order+l) /2 and that of the numerator is (order-1)/2.

The basic problem solved by this routine is that the swept sine calibration data in a frame typically
contain data at a few hundred distinct frequency values. However to properly calibrate the IFO ouq)uL one
usually needs this calibration information at a large number of frequencies coresponding to the distinct
frequencies associated with the FFT of a data set. This routine allows you to choose different possible
interpolation methods. If in doubt, we recommend spline interpolation as the first choice. The interpolation
methods are described in detail in Chapter 3 of reference [1].

Author: Bruce Allen, ballen @ dirac.phys.uwm.edu

Comments: It might be better to interpolate values of /2 times the swept-sine response function, as this is
the quantity needed to compute the IFO response function.

4.9 Example: print-ssF program

This example uses the function GRcalibrate () to read the swept sine calibration information from a
frame, and then prints out a list of frequencies, real, and imaginary parts interpolated from this data. The
frequencies are appropriate for the FFT of a4A96 point data set with sample rate srate. The technique
used is spline interpolation. To run this program, and display a graph, type

setenv GRASP_FRAMEPATH /usr / Iocal/GRASp/l-8nov94 . lframe
n r i n f < e l ' > n r r { - n r r l - f i

' l
a- v e e P s u r 4 4 v

xmgir -nxy ouEputfi le

/* GRASP: Copyright 1997, Bruce Allen */
inc lude "grasp.h"

#def ine NPOINT 4095

i n i - m : i n /) t

f loa t cp ix [NPOINT+2] , s ra te , f req ;
i n i - n n n i n t - i -

r F * r ' ^ l t ^ 6 i ^ r i F F r r l - f f i a f ^ r r { - n r r f .r : , s L v u L ! , s L ! Y s s v q s P u L ,

c F r r l . f f a a F i n n r r f f a o f i r n l F .5 y e g + r r y s s ,

/* we need to ask for some sample values, even though all we want is calibration +/
f getinput . npoint=2 5 5 ;

/* number ofchannels x/
fgetinput - nchan=1;

/x storage for channel names, data locations, points retumed, ratios x/
fgetinput-chnames= (char r.r")malloc (fgetinput.nchan,r.sizeof (char *)) ;
f getoutput . npoint= (int x ; 6a11oc (fgetinput. nchan*s izeof (int)) ;
f getoutput . rat ios= (int *) mal1oc (fget input . nchanxsizeof (int)) ;

/x use utility function framefiles0 ro retrieve file names x/
f getinput, . f i 1es=f ramef i les ;

/* don't care if IFO is in lock *./
f ge t input . j .n lock=0;

/* don't need data anyway, so might as well seek x/
€ - ^ F i - * . , F ^ ^ ^ 1 - - 'r g e L r n p u c . s e e K = f ;

/x but we DO need the calibration information x/
f ge t inpuE . ca i ib ra te=1 ;

/x set the channel name */
f d c f i n n r r t . c h n e m c c I O l = " T I ' O T I M P .) i l .

/* number of points of (imagined) FFT */
npoint=NPOINT;

/x now get the data (none) and calibrarion (what we want) */
fget-ch (&fgetouEput,, &fgetinput) ;

/x the fast-channel sample rate */
sraEe=fgtetoutpue . srate i

/* swept sine calibration array is first argument x/

69

GRcaLibrate (fgetoutput . f ri , f getoutput. frinum, npoint, cpl-x, srat,e ,2 ,01 ;

/* grint out ftequency, real, imaginary interpolated values */
p r in t f ("# Freg (Hz) \ tRea l \ t \ t Imag\n") ;
fo r (i=0 ; i (=NPoINT/2 ; i++1 {

freq=i4s34te/NPOIN';
printf (" 8e\t8e\t8e\n " , freq, cplx [2*i] , cplx [Z*i+t ' l) i

)
return 0;

Swept Sine Calibration Curve
18 Nov't994, run 2

2000.0 3000.0
Frequency f (Hz)

Figure 12: A swept sine calibration curve, showing the real and imaginary parts, produced by the example
program print-ssF.

E
E

(s
'6,
(U

;
o}

5
6
o

E

4.10 Function: GRnormalize ()

vo id . GRnormal ize(f loa t * f r i , in t f r inum, in t npo in t . , f loa t s ra te , f loa t * response)
This routine generates an array of complex numbers r?(/) from the swept sine information in a frame,

and an overall calibration constant. Multiplying this array of complex numbers by (the FFT of) the raw IFO
data yi9!5!s the (FFT of the) differential displacement of the interferometer arms Al, in meters: [l(/) :
n(/)Ciro(/). The units of .R(/) are meters/ADC-counr.

The arguments are:

fri: Input. Pointer to an array containing swept sine data. The format of this data is fri [0J =1F0,
f r i [] - l = r 0 , f r i l " 2 l = i o , f r i [3 J - f i , f r i 1 4] = r t , f r i t 5 l = i 1 , . . . a n d t h e t o t a l l e n g t h o f t h e
array is fr i [0. . f r inum-1-] .

frinum: Input. Thenumberofentriesinthearray fri t0. . frinum-1l.If thisnumberisnotdivisible
by three, something is wrong!

npoint: Input. The number of points N of IFO oulput which will be used to calculate an FFT for
normalization. Must be an integer power of 2.

srate : Input. The sample rate in Hz of the IFO output.

response: Outpu t . Po in te r toanar ray responset0 . .s l w i ths : N* L inwh ichR(/) w i l lbe
returned. By convention, -R(0) : 0 so that response [0] =response t 1l -0. Array elements
response[2i] andresponse t2i+Ll containtherealandimaginaryparts of .R(/) atfrequency
,f : fsrate/i/. The response at the Nyquist frequency response [N] =0 and response [N+1] =O
by convention.

The absolute normalization of the interferometer can be obtained from the information in the swept sine
file, and one other normalization constant which we denote by Q. It is easy to understand how this works.
In the calibration process, one of the interferometer end mirrors of mass rn is driven by a magnetic coil. The
equation of motion of the driven end mass is

(4 .10.1)

where F(t) is the driving force and Al is the differential length of the two interferometer arms, in meters.
Since the driving force d(t) is proportional to the coil current and thus to the coil voltage, in frequency space
this equation becomes

s2
*frrtt: F(r)

(-2rifl20: constant x %ol : constan'
/rpo

t x gg) ' (4.r0.2)

We have substituted in equation (4.7.8) which relates Trro and 7"o1. The IFO voltage is directly proportional
to the quantity recorded in the IFO output channel: Trpo : ADC x f,1p9, with the constant ADC being the
ratio of the analog-to-digital converters input voltage to output count.

Putting together these factors, the properly normalized value of Al, in meters, may be obtained from the
information in the IFO output channel, the swept sine calibration information, and the quantities given in
Table 6 by

Al: A(/) x Crro with R(/) : (4.10.3)

where the-denotes Fourier transform, and / denotes frequency in Hz.
conjugate on ,S, the conventions used in the Fourier transform drop

(Note that, apart from the complex
out of this equation, provided that

Q x A D C

7 l

Table 6: Quantities entering into normalization of the IFO output.

Descri Name Value Units
Gravity-wave signal (IFO output) ADC counts

A-+D converter sensitiviW Vtro ADC counts)-
Swept sine calibration Vrro
Calibration constant 1.428 x 10-a meter (V"ol)-

identical conventions (4.7.3,4.7.4) are applied to both Al and to Crro). The constant quantity Q indicated
in the above equations has been calculated and documented in a series of calibration experiments carried
out by Robert Spero. In these calibration experiments, the interferometer's servo was left open-loop, and
the end mass was driven at a single frequency, hard enough to move the end mass one-half wavelength and
shift the interferences fringes pattern over by one fringe. In this way, the coil voltage required to bring about
a given length motion at a particular frequency was established, and from this information, the value of Q
may be inferred. During the November 1994 runs the value of Q was given by

Q :
JqBffi : L.428 x 10-a

meter Hz2 (4.r0.4)
Vcoil

Author: B ruce Allen, ballen @ dirac.phys. uwm. edu

Comments: See comment for calibrate ().

where k :21399 %oi l = ,= .---- -
meter Hz3/2'

72

4.ll Example: power-spectrumF program

This example uses the function GRnorma 1 i z e () to produce a normalized, properly calibrated power spec-
trum of the interferometer noise, using the gravity-wave signal and the swept-sine calibration information
from the frarnes.

The output of this program is a 2-column file; the first column is frequency and the second column is
the noise in units of meters/r/Hz. To run this program, and display a graph, type

SeEenV GRASPJRAMEPATH /usr / loca1/GRASP / L8nov94. lframe
power-spectrumF > outputfile
)angfr -nxy outputfile

A couple of comments are in order here:

l. Even though we only need the moduluq for pedagogic reasons, we explicitly calculate both the real and
imaginary parts of Al(/) : R(/)Crro(/).

2- The fast Fourier transform of Al, which we denote FFT[44, has the same units (meters!) as A/. As can
be immediately seen from Numerical Recipes equation (I2.L.6) the Fourier transform Al has units of
rneters-sec and is given bV & : At FFT[Ali, where At is the sample'interval. The (one-sided)

power spectrum of Al in metersf Jffi is P : tfilNl where T : NLtis the total length of the
observation interval. in seconds. Hence one has

ar lFFrArl l : lFFr[a,]1. (4 .11.1)

This is the reason for the factor which appea$ in this example.

3. To get a spectrum with decent frequency resolution, the time-domain data must be windowed (see the
example program calibrate and the function avg-spec O to see how this works).

A sample of the output from this program is shown in Figure 13.

/x GRASP: Copyright 1997, Bruce Allen */
inc lude "grasp.h"

#define NPOIr\]T 55535

i n t - n : i n / l I
t

vo id rea l f t (f1oat * ,uns igned Iong, in t) ;
f loa t response [NPOIMI+2] ,da ta INPOINTl , f req ;
f l o a t r e s - r e a l , r e s - i m a g , d l - r e a l , d I - i m a g , c 0 - r e a l , c 0 - i m a g , s p e c t r u m , s r a t e , f a c t o r ;
. i h f i n h ^ i h F -

short datas II.IpOINT] ;
c i r r r - l - f a a l . i n n r r t f a a f i n n r r t _ -

s t ruc t fge tou tpue fge toueput ;

/* We need only the IFO output */
fgetinpuc . nchan=1 ;

/* use utility function framefiles$ to retrieve file names */
f ge t input . f i i es= f ramef i l -es ;

/* storage for channel names, data locations, points retumed, ratios r./
f getinput . chnames= (char xx) malloc (f getinput . nchan*sizeof (char *,)) ;
fge t input . loca t ions= (shor t xx) ma11oc (fge t input .nchanxs izeof (shor t . *)) ;

2^'t
/,/

- a

fge tou tpu t .npo in t= (in t *)ma l loc (fge t input .nchan*s izeof (in t))
fgeCoutput, . rat i os= (int *) mal Ioc (f getinpuL . nchan+sizeof (int))

/x set channel name x/
fgetinput. chnames [0] = " IFO_DMRO', ;

f * are we in the 40-meter lab? * f
i f (NULL !=get.env('GRASP_REALTII4E')) {

/* for Caltech 40-meter lab */
fge t input . in lock=0, -

I

e lse {
/* for Nov 1994 data set *f
fge t input . in lock=1;

J
/* number of points to sample and fft (power of 2) * /
f getinput . npoint=npoint=NPOIIVI ;
f getinput. . cal ibrate=L ;

/* the anay where we want the data to be put */
fgetinput. locations [0] =datas ;

/* skip 200 seconds into locked region (usr seek, no need for data) */
fge t input . seek=1;
fge tou tpu t . t s ta r t= fge tou tpu t . . las t lock=0. 0 ;
while (fgetoutput. t .stare-fgetoutput. last. lock(Z 00 . 0)

fget-ch (&fgetoueput, &fgetinput) ;

/* and get next stretch ofdata (don't seek, we need data) */
fge t input . seek=0;
f ge t -ch (& f ge tou tpu t , & f ge t input) ;

/* the sample rate */
sraEe=fgetoueput . srate ;

/,r. convert gw signal (ADC counts) from shorts to floats x/
f o r (i = 0 ; i (N p o r N T ; i + +) d a t a l i l = d a t a s l i l ;

/x FFT the data *f
rea l f t (da ta-1 , npo in t , l -) ;

/t get normalization R(0 using swept sine calibration information from frame r,/
GRnormal ize (fge tou tpuL - f r i , fge tou tpuE. f r inunr , npo in t , s ra te . response)

/x one-sided power-spectrum normalization, to get meters/rHz *1
f a c t o r = s q r L (2 - 0 / (s r a t e x n p o i n t)) ;
/* compute dl. Leave ofiDC (i=0) or Nyquist (i=npointf 2) freq*l
f o r (i = 1 ; i (n p o i n t / 2 ; i + + 1 {

/* frequency */
f req= i*51'4te/nPoint, '

/x real and imaginary parts of tilde c0 x/
c 0 - rea1 =data [2 * i] ;
cO- imag=data [2* i+ i -] ;

/* real and imaginary parts of R "./
res- rea l=response 12* i] ;
res-i-mag,=;espons e 12 * t + I) ;

/,r real and ima*einary parts of tilde dl ,r/
d1-rea1 =c 0-rea1 xres-real * c 0-i-mag*res-imagr ;

74

d1-imag=c 0-rea1 xres-imag+c 0-imagxres-rea1 ;

/x ltilde dll */
spectrum=f actorr.sqrt (d1-real*.d1-rea1+dI- imag*dl- inag) ;
/* output freq in Hz, noise power in meters/rHz x/
n r i n i f { " * c \ l . g a \ n I ' f r o n e n o a l - r r r m \ .

r - e 9 , v y E v u a B r r , ,

)
return 0;

Author: Bruce Allen, ballen @ dirac.phys.uwm.edu

Comments: The IFO output typically consists of a number of strong line sources (harmonics of the 60
Hz line and the 180 Hz laser power supply, violin modes of the suspension, etc) superposed on a
continuum background (electronics noise, laser shot noise, etc) In such situations, there are better
ways of finding the noise power spectrum (for example, see the multi-taper methods of David J.
Thompson 1241, or the textbook by Percival and Walden [25]). Using methods such as the F-test
to remove line features from the time-domain data stream might reduce the sidelobe contamination
(bias) from nearby frequency bins, and thus permit an effective reduction of instrument noise near
these spectral line features. Further details of these methods, and some routines that implemen them,
may be found in Section 10.17.

Displacement Spectrum
19 Nov 94 run 3

10 100 1000
Frequency (Hz)

Figure 13: An example of a power spectrum curve produced with power-spectrunF. The specfrum
produced off a data tape (with 100 point smsething) is compared to that produced by the EIP spectrum
analyzer in the lab.

10-10

1o-11

1o-tz

1o-1'

|
' 'o-'o

B to-"
I r o-'u

1o-tt

1o-1t

1o-tn

10-'o

76

4.\2 Exarnptre: calibrateF lDrogram

This exarnple uses the firnction GRnormalize () and avg-spec () to produce an animated display,
showing the properly nonnalized power spectrum of the interferometer, with a 3O-second characteristic
time moving average. After compilation, to nrn the prograr:o type:

setenv GRASPJRAMEPATH /usr / LocalIGRASP/18nov94 . lframe
calibrateF | :angr -pipe c

to get an animated display showing the calibrated power spectrum changrng. An exanople of the output from
calibrateF is shown in Figure 14. Note that most of the execution rime here is spent passing data down
the pipe to :<nrgr and displaying it. The display can be speeded up bya factor of ten by binning the ouput

' values to reduce their number to a few hundred lines (the example progmm calibratelcinnedF. c
irnplements this technique; it can be run by tWing calibrateJcinnedF | *St -pipe).

Calibrated IFO Spectrum
80.521896 sec sinnce last lock. t = 80.521896 sec.

1o-t

10-to

10-t t

10-t '

1o-t t

1o-to

10-t '

10-tu

1O- t t

1o- t t

10-t t
100

f (Hz)

Figure 14: This shows a snapshot of the output from the program calibrateF which displays an animated
average power spectrum (Welch windowed, 30-second decay time).

/* GRASP: Copyright 1997, Bruce Allea */
#include "qrasp.h"

N-r

a
o
o
E

1 0

77

#def ine NPOINT 4095

int. main| {
v o i d g r a p h o u t (i n t , f l o a t , f l o a t) ;
f loa t da ta [NPOINTl , averaqe [NPOINT] , response [2*NPOI] IT+41 ;
f l o a t s p e c , d e c a y t i m e ;
f l o a t s r a t e , E s c a r t = o , f r e q , t l 0 c k ;
i n t i , j , c o d e , n p o i n t , i r , i i , r e s e t = 0 , p a s s = 0 ;
short datas INPOfNT] ;
double mod;
< l - r r r ^ F f a a f i n n r r f f a a F i n n " r .r Y v 9 : . 4 v g u ,

< l _ 1 1 i . l - f - 6 f ^ r r l - n r r F f n o f n r r i n r r i .r Y g L v s u v s ! ,

/* number of channels needed is one x/
fge t input . nchan=1;

/* use utility function framefiles0 to retrieve file names x/
f c e l - i n n r r t f i I c e = f r a m a f i 1 a c .

/,t storage for channel names, data locations, points retumed, ratios */
fgetinput. chnames= (char'r .x) ma1loc (f getinput - nchan*s i zeof (char x) 1 ;
f ge t input . loca t ions= (shor t *x) ma11oc (f ge t input . nchanxs i zeo f (shorc
f ge tou tpu t . npo in f ,= (in t , r) ma l loc (f geL input - nchan+s i zeo f (inE)) ;
fgeEout .pue. ra t ios= (inE x) ma11oc (f ge t inpu i . nchanr .s izeo f (in t)) ;

/x set up channel name '"f
. - - ! r - * - - ! - L - - _ a q f o l = " T E n n M p n n -t : y ' g u r l r u u L - L r l r d L L _ _ r _ J

/* set up channel names for different cases */
i f (NULLI =getenv("cRASP_REalrrUn') I {

/,r for Caltech 40-meter lab */
f g e t i n p u t . i n l o c k = 0 ;

J
e l s e {

/x for Nov 1994 data set *f
f g e c i n p u t . i n l o c k = 1 ;

i

/x number of points ro sample and ffr (power of 2) * I
f getinput . npoint=npoint=NpOINT t

/x we do need the data, so don't seek x/
fge t input . . seek=0;

/* do need calibration information */
fge t input . ca1 ib ra te=1 ;

/x where to put the data points x/
f g e t i n p u t . l o c a t i o n s [0] = d a E a s ;

/* set the decay time (sec) */
d e c a y t i m e = 3 0 . 0 ;

f 'o getdata*f
w h i l e (c o d e = f g e t - c h (& f g e t . o u t p u t , & f g ' e C i n p u c)) {

ts t .a r t= f ge t .ou tpuc . d t . ;
q r ^ f F = f d c f ^ l r i n r r t e r : r o -

/x put data into floats */

78

f o r (i - = 0 ; i (n p o i n t ; i + +) 6 s g a I i] = d a t a s I i] ;

/x use the swept-sine calibration (properly interpolated) to get R(fl x/
i f (!pass++) cRr rormal ize(fge tou tpu t - f r i , fge touEput . f r inum,2xnpo in ! ,s race , response) , .

/r. Reset ifjust locked *./
i . f (code== l) {

r e s e t = 0 ;
t lock=ts ta r t ;
avg-spec (data, average, npoint., &reset, srate, decaytime, 2) ;

) e lse {

f * trackaverage power spectrum, with Welch windowing. */
avgf-spec (data, average, npoint, &reset, srate, decaytine, 2) ;

/x loop over all frequencies except DC (i=0) & Nyquist Q=npoint/2) *l
f o r (j = 1 ; j < n p o i n t ; j + +) {

/* subscripts ofreal, imaginag parts *./
i i = (i r = j + j) + J . ;

/* frequency of the point */
f req=6 ' 5*s ra te* j /nPo in t ;

/* determine power spectrum in (meters/rHz) & print it */
mod=response I ir] *response I i r] +response I i i] xresponse I i i] ;
spec=sqrt (average I j] *nod) ;
p r in t f (" *e \ t *e \n" , f reg , spec) ;

I
/* print out useful things for xmgr program ... */
g raphout (0 , t s ta r t . , t lock) ;

)
])
return 0;

)

vo id g raphout (in t fas t . f loa t t . ime, f loa t . t lock) {
sEat ic in t count=0;
n r i n f f / " , q \ - " \ .

/x first time we draw the plot x/
i f (count++==0) {

p r in t f ("@doub lebuf fe r t rue \n") ;
p r in t f ("Gfocus o f f \n ") ;
p r i n t f (" @ s 0 c o l o r 2 \ n ') ;
p r in t f ("G90 type logxy \n") ;
p r in t f ('@autosca le \n ") ;
p r i n t f (" @ w o r l d : s n i n * e \ n " , 1 0 . 0) ;
p r in t f ("@wor ld :gnax *e \n" , 5000. 0) ;
n r i n F € / n A r . ' ^ ? ' l ^ l m i n * a \ n ' , 1 6 - 1 O \ .
P r f l r u ! \ e w v r f s J A g r r o s \ r r , r . = - L) t t

p r i n t f (" @ w o r l d y m a x * e \ n " , 1 - - e - 9) ;
p r i -n t f ("Gyax is t r i ck minor on \n") ;
printf ("@yaxis cick major on\n") ;
p r in t f ("@yax is t i ck minor 2 \n") ;
n r i n l - f f ' f i . r r a v i < i - i c k m : i n r

' l \ n ' l :

/* end of set marker r,/

/* keeps display from flashing */

/* tum off the focus markers r,/

/x FFT is red */

/*. set graph type to log-1og */

/*, autoscale FFT */

/* set min x */

/*, set max x *,/

/* set min y *./

f * setmaxy '"f

/r. tum on tick marks */

/* tum on tick marks x/

/{. turn on tick marks */

/* turn on tick marks */

n r i n f F

n r i n f f

n r i n t f

"@redraw \n") ; / * redrawgraph* /
"Gxax is labe l \ " f (Hz) \ " \n ") ; / r .FFThor izon ta l ax is labe i * /
" @yaxis 1abel \ "meters/rHz\ " \n") ; /x FFT vertical axis label ',f
"@t i t . Ie \ "Ca l ib ra ted IFo spec t rum\ " \n ") ; / xse t t i t le * /

/* set subtitle *./
p r i n t f (" @ s u b t i t l e \ ' ? . 2 f s e c s i n c e l a s t l o c k . t = 8 . 2 f s e c . \ " \ n " , e i m e - c l o c k , e i m e) ;
i f (l last) printf ('@ki11 s0\n") ; /" ki l l graph; ready to readagai*f

79

l
J

e l s e {
/* other times we redraw the plot +/

/* set subtitle */
p r i - n t . f (' G s u b t i t l e V t . 2 f s e c
pr in t f ("@s0 co lo r 2 \n") ;
printf ("@90 type 1ogxy\n,) ;
p r in t f ('Gwor ld :<min 8e \n , , l -0 - 0) ;
p r in t f ("@wor Id :< rnax 8e \n ' ,5000.0) ;
p r i n t f (' @ w o r L d y m i n * e \ n " , 1 . e - 1 9) ;
p r i n t f (" G w o r l d y m a x t e \ n ' , 1 . e - 9) ;
printf ("@yaxis t . ick minor on\n") ;
p r in t f ("@yax is t i ck ma jor on \n , ') ;
printf ("@yaxis t ick mj.nor 2\n") ;
p r in t f ('@yax is t i ck ma jor l_ \n") ;
printf (" Gre'draw\n") ;
i f (I l a s t) p r i n t f (" @ k i 1 1 s 0 \ n .) ;

s i n c e 1 a s t s L o c k . t = t . 2 f s e c . \ ' \ n " , t i m e - t . 1 o c k , t i m e) ;
/x FFT is red */

/* set graph type to log-log x/

/*. set min x */

/* set max x '+/

/* set min y x/

f * setmaxy *f

/* rum on tick marks */

/* tum on tick marks */

/* tum on tick marks */

/x turn on tick marks x/

/* redraw the graph */

/* kill graph, ready to readagatn*f
l)

Author: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: See comments for power-spectrurnF example program.

4.13 Example: diagF program

This program is a frequency-domain "novelty detector" and provides a simple example of a time-frequency
diagnostic method. The actual code is not printed here, but may be found in the GRASP directory src / examples / exan
in the file diagF. c. To run the progam type:

setrenv GRASP_FRAMEPATH / :usr / I ocal / GRAS p / l- 8nov9 4 - 1 f rame
diagr a

which will start the diagF progfirm in the background.
The method used by d.iagF is as follows:

1. A buffer is loaded with a short stretch of data samples (2048 in this example, about l/5 of a second).

2. A (Welch-windowed) power spectrum is calculated from the data in the buffer. In each frequency bin,
this provides a value ,S(/).

3. Using the same auto-regressive averaging technique described in avg-spec () the mean value of
S(/) is maintained in a time-averaged spectrum (S(/)). The exponential-decay time constant for this
average is AVG-TIME (10 seconds, in this example).

4. The absolute difference between the current spectrum and the average AS(/) = lS(/) - (S(/)) | is
determined. Note that the absolute value used here provides a more robust first-order statistic than
would be provided by a standard variance (AS(/))'�.

5. Using the same auto-regressive averaging technique described in avgr-spec () the value of AS(/)
is maintained in a time-averaged absolute difference (AS(/)). The exponential-decay time constant
for this average is also set by AVG-TrME.

6. In each frequency bin, AS(/) is compared to (AS(/)). If AS(/) > THRESHoTo x (A^9(/)) *ren
a point is plotted for that frequency bin; otherwise no point is ploned for that frequency bin. In this
example, THRESHOLD is set to 6-

7. In each frequency bin, AS(/) is compared to (AS(/)). If AS(/) < INCLUDE x (AS(/)) then
the values of S(/) and AS(/) are used to "refine" or "revise" the auto-regressive means described
previously. In this example, INCLUDE is set to 10.

8. Another set of points (1024 in this example) is loaded into the end of the buffer, pushing out the oldest
1024 points from the start of the buffer, and the whole loop is restarted at step 2 above.

The diagF prognm can be used to analyze any of the different channels of fast-sampled data, by set-
ting CIANNEL appropriately. It creates one output filb for each locked segment of data. For example if
CHANNEL is set to 0 (the IFO channel) and there are four locked sections of data, one obtains a set of files:
chOd. iag . 000, ch0d iag - 001, chOdiag - 002,and chOdiagr . 003.
In similar fashion, if cHAMfEL is set to I (the magnetometer) one obtains files:
ch l -d iag . 000, ch1-d iag - 0 01 , ch1-d iag . 002, and ch ld iag . 003.
These files may be used as input to the :<mgr graphing program, by typing:
)nngr ch0diag. 000 chl-d. j -agr. 000
(one may specify as many channels as desired on the input line). A typical pair of outputs is shown
Figures 15 and 16. By specifying several different channels on the command line for starting)sngr. you
can overlay the different channels oufput with one another. This provides a visual tool for identifying corre-
lations between the channels (the graphs shown below may be overlaid in different colors).

Author: Bruce Allen, ballen@ dirac.phys.uwm.edu

8 1

19 November 1994 run 1
fime/Frequency statistics for channel 0

s000.0

4000.0

g sooo.o

(D

0)

ri 2000.0

1000.0

0.0
180.0 280.0 380.0

Time (sec)

Figure 15: A time-frequency diagnostic graph produced by d.iag. The vertical line pointed to by the arrow
is a non-stationary noise event in the IFO output, 325 seconds into the locked section. It sounds like a "drip"

and might be due to off-axis modes in the interferometer optical cavities.

Comments: This type of time-frequency event detector appears quite useful as a diagnostic tool. It might
be possible to improve its high-frequency time resolution by being clever about using intermediate
information during the recursive calculation of the FFT. One should probably also experiment with
using other statistical measures to assess the behavior of the different frequency bins. It would be nice
to modify this program to also examine the slow sampled channels (see comment for get-data ())-

19 November 1994 run 1
Time/Frequency statistics for channel 1

O sooo.o
I

;o
o
u
,i 2ooo.o

5000.0

4000.0

1000.0

0.0
180.0 280.0

Time (sec)

Figure 16: A time-frequency diagnostic graph produced by diag. This shows the identical period as the
previous graph, but for the magnetometer output. Notice fhat the spurious event was not caused by magnetic
field flucfirations.

83

5 GRASP Routines: Gravitational Radiation from Binary Inspiral

One of the principal sources of gravitational radiation which should be detectable with the first or second
generation of interferometric detectors is binary inspiral. This radiation is produced by a pair of massive
and compact orbiting objects, such as neutron stars or black holes.

The simplest case is when the two objects are describing a circular orbit about their common center-of-
mass, and neither object is spinning about its own axis. With these assumptions the system is then described,
at any time, by the masses m1 and m2 of the objects, and their orbital frequency O. (It is also necessary to
describe the orientation of the orbital plane and the positions of the masses at a given time; these me details
we will sort out later).

For convenience in dealing with dimensional quantities, we introduce the Solar Mass M6 andthe Solar
Time T6 defined by

Mo : 1.989 x 1033 grams
/ n \

/ t ? \

To : (i) , " :4 .92549r x 1o-6 sec.
\ v /

GRASP functions typically measure masses in units of 1146 and times in units of seconds.

(s.0.1)

(s.0.2)

B4

5.1 Chirp generation routines

The next several subsections document a number of routines for generating "chirps" from coalescing bina-

ries. This package of routines is intended to be versatile, flexible and robust; and yet still fairly simple to use.

The implementation we have included in this package is based on the second post-Newtonian treatment of

binary inspiral presented in [6] and augmented by the spin-orbit and spin-spin corrections presented in [7].
The notation we use - even in the source code - closely reflects the notation used in those papers. In keeptng

with that notation, these routines calculate the orbital phase and orbital frequency. The gravitational-wave

phase of the dominant quadrupolar radiation can be obtained by multiplying the orbital phaseby two. The

routines can be used to compute a few chirp waveforms (say to make transparencies for a seminar), or for

wholesale computations of a bank of matched filters.
The routines are flexible in the sense that they have a number of run-time options available for choosing

the post-Newtonian order of the phase calculations, or choosing whether or not to include spin effects. We

have also isolated those parts of the code where the messy post-Newtonian coefficients appear; thus the

routines may be easily modified to include yet higher-order post-Newtonian terms as they become available.

The postNewtonian equations for the orbital phase evolution are notoriously ill-behaved [8, 9] as the

binary system nears coalescence. In this regime the expansion parameters [namely the relative velocity u f c

of rhe bodies and/or the field strength GM1o1f (c2r-6r)l used in the derivation are comparable to unity. In

post2-Newtonian calculations higher orders such as post3-Newtonian terms have been discarded. Becau$e of

this truncation, quantities that are are positive definite in an exact calculation (say the energy-loss rate, or the

time derivative of the orbital frequency) often become negative in their post-Newtonian expansion when the

orbital separation becomes small. When this happens you are using a post-Newtonian expression in a regime

where its validity is questionable. This is cause for concern, and it may be cause for terminating a chiqp

calculation; but, it need not crash your code. A full-scale gravitational-wave search will need to compute

chirps over a broad range of parameters, virnrally assuring that any post-Newtonian chirp generator will be

pushed into a region of parameter space where it doesn't belong. These routines are designed to traverse

these dangerous regions of parameter space as well as possible and gently warn the user of the dangers

encountered. The calling routines may wish to act on the warnings coming from the chirp generator. For

example a severe warning may prompt the calling routine to discard a given filter from a data search, because

the second post-Newtonian calculation of the chirp is so dubious that it can't give meaningful results.

In the next several sections we detail the use of three routines used to compute the "chirp" of a coa-

lescing binary system. The first routine we describe is phase-frequency () . This is the underlying

routine for the other chirp routines. Given a set of parameters (e.g. the two masses, and the upper and lower

cut-off frequency for the chirp) it returns the orbital phase and orbital frequency evolution as a function of

time. Next we describe chirp-f ilter () which returns two (unnormalized) chirp signals. This routine

can be used for wholesale production of a bank of templates for a coalescing binary search. The routine

strain () returns the full second post-Newtonian gravitational wave strain. This can be used for plotting

and examining the expected waveform of a given coalescing binary, or to add a "realistic" signal into de-

tector noise. The strain output contains all the (sub)harmonic seructure and its amplitude reflects the true

astrophysical distance to the source.

85

5.2 Function: phase-f requency ()
:

in t phase- f requency(f1oat ml , f loa t m2, f loa t sp in l - , f loa t sp in2 , in t n -phaseter ,
f loat *phaseterms, f l -oat Ini t ia l f reg, f loat Maxfreq3qst, f loat *Maxfreq3ctual

f loat Sample-Time, f loat **phase, f loat **frequency, int *steps-al loc, int
*steps-f i1Id, int err-cd.-sprs)
This function computes the orbital phase and orbital frequeney evolution of an inspiralling binary. It re-
tums an integer termination code indicating how and why the chirp calculation terminated. This routine is
the engine that powers the other chirp generation routines. The arguments are:

m1-: Input. The mass of body-l in solar masses.

,
m2: Input. The mass of body-2 in solar masses.

spinl: Input. The dimensionless spin parameter of body-l. See section on spin effects.

spin2: Input. The dimensionless spin pammeter of body-2. See section on spin effects.

n-phaseterms: Input. Integer describing the number of post-Newtonian (pN) approximation terms
implemented in the phase and frequency calculations. In the present implementation this should be
set to 5.

phaseterms: Input. Thearrayphase-terms [0. .nphaseterms-1] specifies whichpN approx!
mation terms will be included in the phase frequency calculations. Sening phase-Eerms I i] =9 . g

nul l i fystheterm.Sett ingphase-terms[i]=1.0includestheterm.Thisal lowsforeasyrun-t ime
nullification of any term in the phase and frequency evolution, e.g. setting phase-terms [4] =0 . 0
eliminates the second post-Newtonian terms from the calculation.

l
Initial.Freg: Input. The starting orbital frequency of the chirp in Hz. l

MaxJreqSqst: Input. The requested orbital frequency where the chirp will stop. However, the actual
calculation may not proceed all the way to this orbital frequency. This is discussed at length below.

MaxJreqSctual: Output. The floating number *MaxJreqActual is the orbital frequency in Hz
where the chirp actually terminated. :

Sample-Time: Input. The time interval between successive samples, in seconds.

phase: Input/Output. Thephaseephemeris CIinradians is storedinthearray *phase [0. . stepsJitld-1].
Input in the sense that much of the internal logic of phase-frequency () depends on how the
pointers *phas e (and * f requency below) are set. If either is set to NULL memory allocation will
be performed inside phase-frequency () . If both are not NULL then it is assumed the calling
routine has allocated the memory before calling phase-frequency () .

frequency: Input/Output. Similartophase above. Thefrequency ephemeris f : dQldf is stored in
the array *frequency [0 - . stepsJi l fd-1] .

steps-alloc: Input/Output. The integer *steps-alloc is the number of floating point entries allo-
cated for storing the phase and frequency evolution, ie. the length of * *phase and * * f requency.
This integer should be set in the calling routine if memory is allocated there, or it will be set in-
sidephase-frequencyO i f memoryistobeal locatedthere. I f bothof thepointers *phase

and *freguency are not NULL then phase-freguencyO understands that the calling rou-
tine is taking responsibility for allocating the memory for the chirp, and the calling routine must set

86

{'-

r ' '
J
i
l,{

(
T

!

i
i
I

'l

a
t
i

*steps-alloc accordingty. In this case phase-f requency () will fill up the arays **phase

and **freguency until the memory is full (i.e fill them with *steps-alloc of floats) or until

the chirp terminates, whichever is less.

s teps-f i t I d: Output. The integer * s teps-f i 1Id is the integer number of time steps actually com-

puted for this evolution. It is less than or equal to *steps-al1oc.

clscnc-time: Output. The float *clscnc-time is the time to coalescence in seconds, measured from

the instant when the orbital frequency is InitialJreqgiven by t" in Eqs.(5.4,1) and (5.4:2)-

err-cd-sprs: Input. Error code supression. This integer determines at what level of disaster encoun-

tered in the computation of the chirp the user will be explicitly wamed about with a printed message.

Set to 0: prints all the termination rnessages. Set to 4000: suppresses all but a few messages which

are harbingers of complete disaster. The termination messages are numbered from 0 to 3999 loosely

in accordance with their severity (the larger numbers corresponding to more severe warnings). Any

message with a number less than err-cd-sprs will not be printed. A termination code of 0 means

the chirp calculation was executed as requested. A termination code in the 1000's means the chirp

was terminated early because the post-Newtonian approximantion was deemed no longer valid. A ter-

mination code in the 2000's generally indicates some problem with memory allocation. A termination

code in the 3000's generally indicates a serious logic fault. Many of these "3000" errors result irr the

termination of the routine. If you get an error message number it is easy to find the portion of source

code where the fault occured; just do a character string search on the four digit number.

This phase aad frequency generator has a number of very specialized features which will be discussed

later. However, before we proceed further, we show a simple example of how phase-frequency () can

be used.

Authors: Alan Wiseman, agw@tapir.caltech.edu and Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: This function will need to be extended when results of order 2-5 and 3 post-Newtonian calcu-

lations have been reported and published.

87

5.3 Example: phase-evoltn program

This example uses phase-f requency () to compute the phase and frequency evolution for an inspiraling
binary and prints the results on the screen (stdout)- The other output messages go to stderr.

/* GRASP: Copyright 1997, Bruce Allen */
inc lude 'g rasp .h"

int. maino {
fLoat m1 ,m2,sp inJ . ,sp in2 ,phaseterms[5] ,c lscnc- t ime, , r .p t rphase,xp t r f requency ;
f l-oat t ime,Init iaf-Freg,Max-Freq-Rqst,Max-FreqicEual,Sample-Time.t ime-in-band;
i n l - q l - c n c a l I n n < f c n < f i I I d i n n h : q a t - a m c o r r n d c n r < n t r i r n n k :

e ' v " - -
E - e ' - '

/{. Set masses and spins of the orbital system: x/
m L = m 2 = 1 " . 4 ;
sp in l=sp in2=0. ;

/* Set ORBITAL frequency range of the chirp and sample time: */
Init ial-Freq=50. ; / ,r in cycles/second */
Max-Freq-Rqst=2000. ; /* in cycles/second */
Sample-Time=L-/9868.4208984375i /x. inseconds *,/

/* Use this block to compare with Will & Wiseman, PRD 54, 4813 (1996) Figure 10, page 4846.
spinl=0.1; spin2=0.5;
m1=1.4; m2;12.0;
Initial-Freq=75.0; Max-Freq-Rqst=1 80.0; */

/x post-Newtonian [O(l/c^n)] terms you wish to include (or supress)
in the phase and frequency evolution: */

n-phaseterms=S ; /* the number of entries in phaseterms */
phaseterms[0] =1- ; / *TheNewton ianp iece , r f
phaseterms [L] =Q . ; /*. There is no O(l/c) correction */
phaseterms [2] =l . ; /* The posrNewtonian correction */
phaseEerms [3] =1.. i /xThe3/2 PN conection x/
phaseterms [4] =1. ; /* The 2PN conection x/

/* Set memory-allocation and error-code supression logic: *f
ptrphas e=pt.rf requency=NULL,'
^ - - ^ t ^ ^ e ^ - n .
s r ! - u u - D P r - - v ,

/* Use phase-frequency0 to compute phase and frequency evolution: x/

chirp-ok=phase-frequency (m1 . m2 , spinl , spin2 , n-phaseterms , phaseterms ,
Ini t i a I -Freq, Max-Freq-Rqs t, &Max-Fre g3c tua1, Samp 1 e-Time, &p trphase,
&pt r f requency , &s teps-a11oc, &s teps- f i11d , &c lscnc- t ime, e r r -cd-sprs) ;

/* ... and print out the results: */
t ime_in_band= (f 1 oat) (s teps_f i 1 Id- 1) *Sample_Time ;
f p r i n t f (s t d e r r , " \ n m l = t f m 2 = 4 f I n i t i a l - - F r e e = * f \ n " , m 1 , m 2 , I n i t i a l - F r e q) ;
fp r in t f (s tder r , "s teps- f i11d=%i s tseps_a11oc=? i Max-Freq-Act .ua1=?f \n " ,

steps-f i 1Id, s teps-al 1oc, Max-Freqictual) ;
fp r in t f (s tder r , " t ime- i .n -band=t f c fscnc_t ime=* f \n " , t ime- in -band, c lscnc- t ime) ;
fp r in t f (s tder r , "Termnina t ion code: %i \n \n" , c i r i rp -ok) ;

f o r (i = O ; i < s t e p s - f i 1 l d ; i + +) {
t ime=i*Sample-Time;
p r i n t f (' g i \ t B f \ t ? f \ t B f \ n " , i , t i m e , p t r p h a s e I i] , p t r f r e q u e n c y I i]) ;

)
re tu rn 0 t
l

88

a '
I

i

Here is the output from the phase-evoltn example:

GRASp: Message from function phase-frequencyO at line nu-rnber 439 of file "pN-chj

Freguency evolution no longer monolonic.

Phase ewolut ion terminated at f requency and step: 9L!.58L102 13357

Terminat ing chirp. Terminat ion code set to: L20L

Returning to cal l ingr rout ine.

$f d: man_inspiral . tex, v 1 - l -7 L997 / OB / 07 22 t3L: 57 bal len Elrp $

SName: RELEASE_1._5_2 S

m 1 = 1 . 4 0 0 0 0 0 m 2 = l - . 4 0 0 0 0 0 I n i t i a l - F r e q = 6 9 - 0 0 0 0 0 0

steps-f i1 ld=l-3 3 57 steps-al Ioc=153 84 Max-FreqActual=9l-L - 68L7 02

t ime-in-band=L . 353408 clscnc-t ime=1 - 353573

Termninat ion code: L201-

U

1_
z

4

0 . 0 0 0 0 0 0
0 . 0 0 0 1 _ 0 r _
0 . 0 0 0 2 0 3
0 . 0 0 0 3 0 4
0 . 0 0 0 4 0 5
0 . 0 0 0 5 0 7
0 . 0 0 0 5 0 8

0 . 0 0 0 0 0 0
0 . 0 3 8 2 0 4
0 . 0 7 6 3 6 9
0 . L t 4 6 2 7
0 . L 5 2 8 2 0
0 - r -91-071
0 . 2 2 9 L ' t 3

5 0 . 0 0 0 0 0 0
5 0 . 0 0 1 - 5 7 5
6 0 . 0 0 3 3 5 3
b U . U U) U Z U

6 0 . 0 0 5 6 9 5
b U . U U 6 J b b

5 0 - 0 1 _ 0 0 5 2

1 - 3 3 4 9 1 , . 3 5 2 5 9 9
l - 3 3 5 0 1 - 3 5 2 8 0 0
1 - 3 3 5 1 - r . 3 5 2 9 0 L
L 5 5 5 2 J - . 5 3 J U U J

l - J J 5 J I . J f J I U +

1 3 3 5 4 1 - . 3 5 3 2 0 5
1 3 3 5 5 l - . 3 5 3 3 0 7
1 - 3 3 5 6 1 . 3 5 3 4 0 8

7 9 7 - 5 6 9 8 0 0
7 9 8 .] - 3 4 9 4 9
7 98 . 6L4L35
7 9 9 . r 0 9 L 9 2
/ v v . o z z r > z
6 U U . r f f + f , /

8 0 0 . 7 L 0 9 9 9
8 0 L . 2 8 6 4 9 9

7 2 0 . 2 9 4 L 8 9
l 4 L . r) t t L >

/ b 4 . f , o f / v o

7 9 1 . 0 1 _ 5 5 8 6
8 2 1 . 0 1 - 5 3 2 0
8 5 4 . 7 2 0 3 3 7
8 9 0 . L 3 3 6 5 7
9] -L .6817 02

The first seven lines of output come directly from phase-f requency () , and are printed to stderr.

These give a warning message telling why the chirp calculation was terminated; it no longer had monoton-

ically increasing frequency. It also tells where the chirp was terminated; after computing 13357 points it

has reached a frequency of 9 07H2. The termination code (l-2 O r-) is also printed. Knowing the termination

code makes it easy to find the segment of source code that produced the termination; just do a search for

the character string *LzoL" and yo* will find the line of code where the termination code was set. Setting

err-cd.-sprs greater than i-201- would suppress the printing of this waming message and all messages

with a termination code less than 12 01. However, even without the printed message the calling routine can

determine the value of the termination code; it is retumed by phase-f requency () .

The rest of the output comes from the phase-evoltn program. The quantity tirne-j-nJcand:

(steps-fil1d-1)xsampte-Time is the length (in seconds) of the computed chirp. The quantity

clscnc_time is the value of t"that enrers Eqs.(5.4.1) below. The four column output from left to right is

the integer index of the data points, time stamp of each point in seconds (starting arbitrarily from zero), the

orbital phase in radians (starting arbitrarily from zero), and the orbital frequency (starting from the initial
frequency of 60Hz).

To summarize: It takes about l- - 3 5 seconds for two t . 4Mo objects to spiral in from an orbital fre-
quency of 50Hz to an orbital frequency of 9Ll-Hz. The chirp calculation was terminated at 91-lHz -

instead of the requested 2000H2 - because the post-Newtonian expression used to compute the chirp is
clearly out of its region of validity: the frequency is no longer increasing. Examining the last few data
points shows that the frequency was rising quickly - as expected - until the last two data points. During
this inspiral the orbital system went through e1-L - 09 lQr) =L27 . 53 revolutions. The two integer num-
bers s teps-f illd and s teps-alloc are the number of actual data points computed and the number of
floating point memory slots allocated, respectively. (Memory is allocated in blocks of 4096 floats at a time.
Thus steps-alloc will generally exceed steps-f iltd.) The values of the phase and frequency at ev-
ery 1/sample-Time: 1.10333 x 10-a seconds starting frorn when the binary had an orbital frequency of
6 OHz until it neared "coalescence" at gLIHz have been calculated..

90

{.-
i

r -
I
i

!

i
i

5.4 Detailed explanation of phase-frequency () routine

The phase-frequency () routine starts with inputs describing the physical properties of the system (the

masses) and an initial frequency from which to start the evolution. We then compute the orbital frequency

evolution [in cycles/second] directly from the formula given in [6]

where n461 is the total mass of the binary. The time integral of this equation gives the orbital evolution in
cycles. Multiplying by 2n yields the orbital phase in radians

oG) : t" - i{""'* (#. #t) osia - [r' 'n
.(ffi+ffin.ffir,) o'/')

Here O is a dimensionless time variable

(5.4.1)

(s.4.2)

TMs (s.4.3)@ : (t " - t) ,
5T6rnas1

\ : p/mtot, and t" is 'rhe tirre of coalescence of the two point ruasses. Sirrriiar-iy the constant /" is the
phase at coalescence, which is arbitrarily set in phase-f requency () so that S : 0 at the initial time.

[See the detailed discussion of the phase conventions below.] Also notice that the mass quantities only
appear as ratios with the solar Mass Ms, atrd the time only appears as a ratio with the quantity To :

4.925491x 10-6 sec in Eq.(5.0.2).
These formulations of the post-Newtonian equations for the phase and frequency are simple to imple-

ment: each pass through the loop increments the time by the sample time (Sample-Time in the example)

and computes the phase and frequency using Eqs. (5.4.1) and $.a.\. However, there is an alternative for-

mulation. In deriving these equations the "natural" equation that arises is of the form / : F(/). [See e.g.

t10l Eq.(3).1 This in turn can be integrated to give an equation of the form ts - t : 7(/). In our formula-
tion this equation has been inverted - throwing away higher-order post-Newtonian terms as you go - to give

Eq.(5.a.1). However the equation in the form t"-t : 7(/) can also be implemented directly. In this type of

formulation one would again increment the time, but then use a root-finding routine to find the frequency at

each time step. Our chosen method has the advantage of avoiding a time-consuming root-finder at each time

step; however the alternative formulation has undergone fewer damaging post-Newtonian transformations,

and may therefore be more accurate.
In our formulation we only need to call a root-finding routine at the start of the chirp to find the value

of t" - t when the system is at the initial frequency. In order to insure that we find the correct root for the

starting time we begin a search at a time when the leading order prediction of the frequency is well below

the desired starting frequency. We step forward in time until we bracket the root; we then call the Numerical

Recipes root-finder rtbi s () to compute the root precisely. This is depicted in the lower right corner of

figure 17 where we show the value of the "time" coordinate X that corresponds to an initial frequency of

60H2. This method is virtually assured of finding the correct root in that it will find the first solution as we

proceed from right to left in figure 17. The primary problem in finding this root is that there may actually be

no meaningfull start-time for the specified chirp. For example, if you you were to specify a chirp with two

L.4Mo objects with an initial frequency of 1000H2, you can see from the figure that there is no value of X
(i.e. t. - t) that corresponds to this frequency. In this case phase-f requency () will search from right

9 1

to left for the start time. It will notice that it is passing over the peak in the graph and out of the regime of
post-Newtonian viabilty. It will then terminate the search and notify the caller that there is no solution for
the requested chirp.

The behavior of the frequency equation is shown in figure 17. As time increases the frequency rises to
a maximum and then begins to decrease dramatically. Notice tharthe maximum occurs when the dimen-

sionless time parameter O =
##*

= X8 is approximately unity; this feature is only weakly dependent

on the mass ratio. The fact that O = L means the post-Newtonian corrections in Eq.(5.4.1) are comparable

to the leading order term. Therefore, this peak is a natural place to terminate the post-Newtonian chirp

approximation. In the example the code terminated the chirp for precisely this reason. [See the warning

message.]
Although it is not shown in the figure the behavior of / as X nears zero is very abrupt; the function

goes sharply negative and then turns around and diverges to +oo as X ---' 0 (i.e. t -- t"). This abrupt

behavior will happen on a time scale of order ?9 (a fer.r microseosnds). Typical sample times are likely
to be on the order of a tenth of a millisecond, and therefore the iterative loop may st? right over this
maximum-minimum-divergence behavior of the frequency function altogether. Don't worry. The routine
phase-f requency () handles this case gracefully. The routine will stop the chirp calculation and warn

the caller if the time stepper goes beyond the coalescence time. It will also stop the chirp calculation if
it senses that the time has stepped over the dip in frequency and is on the strongly divergent part of the

frequency curve near the X : 0 axis.

92

I

N

I

c
o
=
E
o
lt

E 4oo.o

o

Orbital Frequency as a Function of Time
(total mass 2,8 solar masses)

frr=fi:

m1=0.01m2

increasing time
+ (X1qoy,60)

0.0 2-0
Time Parameter X

Figure 17: Orbital frequency as a funcrion of the "time" coordinate X : (gyr)tlt

0.0
1.0

5.5 Function: chirp-f ilLers ()

inE chirp-f i l - ters (f loat mi-, f loat m2 , f Loat
f loa t *phaseterms, f loa t In i t ia lJ reg , f loa t
f loa t Sample-T ime, f loa t * *p t rp t rCos, f loa t
int *steps-f i1ld, inE err-cd-sprs)
This function is a basic stripped-down chirp generator. It computes two - nearly orthogonal - chirp wave-
forms for an inspiralling binary. The two chirps differ in phase by n f 2 radians. The chirp values are given
by Eqs.(5.6.1) and (5.6-2). Just as the phase and frequency calculator phase-f requency O returns an
integer number which describes how the chirp calculation was terminated, this routine does also.

The arguments are:

ml-: Input. The mass of body-l in solar masses.

m2: Input. The mass of body-2 in solar masses.

spinl: Input. The dimensionless spin parameter of body-l. See section on spin effects.

spin2: Input. The dimensionless spin'parameter of body-2. See section on spin effects.

n-phaseterms: Input. Integer describing the number of terms implemented
calculations. In the present implementation this should be set to 5.

the phase and frequency

phaseterms: Input. The array phase-terms [0. .nphaseterms-l] describes which terms will

be included in the phase frequency calculations. Setting phase-terms Ii] =0 nullifys the term.
Setting phase-terms I i] =1 includes the term. This allows for easy run-time nullification of any
term in the phase and frequency evolution, e.g. setting phase-terms [4] =0 eliminates the second
post-Newtonian terms from the calculation.

rnitialfreq: Input. The starting orbital frequency of the chirp in Hz.

MaxJreqSqst: Input. The requested orbital frequency where the chirp will stop. However, the acrual
calculation may not proceed all the way to this orbital frequency.

MaxfreqActual: Output. The floating number *MaxfreqSctual is the orbital frequency in Hz
where the chirp actually terminated.

Sample-Time: Input. The time interval between points in seconds.

ptrptrcos: Input/Output. The chirp corresponding to Eq.(5.6.1) is stored in
*p t rp t rcos [0 . .s tepsJ i l ld -1 -] . Input in thesensetha tmuchof the in te rna l log ico fch i rp - f i l te rs (

depends on how the pointers *pErptrCos (and *ptrptrSin below) are set. If either is set to
NULL memory allocation will be performed inside chirp-f ilters () . If both are not NULL then
it is assumed the calling routine has allocated the memory before calling chirp-f ilters () .

pt.rptrSin: Input/Output. Similar to ptrptrCos above. The
stored in *ptrptrsin [0 . . stepsJi] . ld-11 .

corresponding to Eq.(5.6.2)

steps-alloc: Input/Output. The integer *steps-a11oc is the number of floating point entries al-
locatedforstor ingthetwochirps, i .e. thenumberof val idsubscriptsinthearrays **pLrptrCos

and * *ptrptrSin. This integer should be set in the calling routine if memory is allocated there,
or it will be set inside chirp-f ilters () if memory is to be allocated there. If both of the point-
ers *ptrptrCos and *ptrptrSin are not NULL then chirp-f ilters () understands that the

spinl- , f loat spin2, int n-phaset.ermr-,
Maxfreq3gst, float *MaxJreqSctua_l

* * p t r p t r S i n , i n t * s t e p s - a l l o c ,

94

calling routine is taking responsibility for allocating the memory for the chirp, and the calling rou-

tine must set *steps-al1oc accordingly. In this case chirp-f ilters 11 will fill up the arrays
* *ptrptrCos and * *ptrptrSin until the memory is full (re fill them with * steps-al1oc of

floats) or until the chirp terminates, whichever is less.

steps-f itld: Output. The integer * steps-f i I ld is the number of time steps (sample values) actually

computed for this evolution. It is less than or equal to *steps-a11oc.

clScnc-Eime: Output. The float *clscnc-time is the time to coalescence in seconds, measured from

the instant when the orbital frequency is lnitialfreg given by t" in Eqs.(5.4.1) and (5.4.2).

err-cd-sprs: Input. Error code supression. This integer specifies the level of disaster encountered in

the computation of the chirp for which the user will be explicitly warned with a printed message. Set

to 0: prints all the termination messages. Set to a O 0 O: suppresses all but a few messages which are

harbingers of true disaster. The termination messages are numbered from 0 to 3999 loosely in accor-

dance with their severity (the larger numbers corresponding to more severe warnings). Any message

with a number less than err-cd-sprs will not be printed. A termination code of 0 means the chirp

calculation was executed as requested. A termination code in the 1000's means the chirp was termi-

nated early because the post-Newtonian approximantion was deemed no longer valid. A termination

code in the 2000's generally indicates some problem with memory allocation. A termination code in

the 3000's generally indicates a serious logic fault. Many of these "3000" errors result in the termina-

tion of the program. If you get an error message number it is easy to find the portion of source code

where the fault occured; just do a character string search on the four digit number.

Authors: Alan Wiseman, agw@tapir.caltech.edu and Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: None.

95

5.6 Detailed explanation of chirp-f ilters () routine

The routine chirp-f ilters () calls phase-f requency () to find out the how the orbital phase and
frequency evolve in accordance with the input parameters. It then makes a single pass through that phase
and frequency ephemeris, computing the chirps as it goes, and storing the information in the space al-
ready allocated for the phase and frequency. Most of the fault checking and computations are done in the
phase-f requency () routine, and all the errors messages and warnings come from there.

The routine chirp-f ilters () computes

(s.6.2)

with all the leading numerical factors we display.
If the so called "restricted" post2-Newtonian polarizations fieading order in the amplitude, but post2-

Newtonian phase correctionsl are desired, they can be easily assembled from h. and h". The "a" (phrs;

h"(t) -- r(+\lznro?:otf ft)l '/t "orz41t1
\ M s / L M o J

and the other orbitaJ-phase chirp which is n 12 out of phase with h"(t)

h"(t) :, (ft)\ry!g'l"i' zdft),

polarization is given by

h+(t) : -ffO* cos2 i)hcft) ,
and the "x" (cross) polarization is given by

h*(t): -2ffpo"i) hs|) .

(5 .6.1)

(5.6.3)

(5.6.4)

Here D is the (luminosity) distance to the source in centimeters, c is the speed of light in centimeters/second,
and z is the inclination angle (radians) of the of the angular momentum axis of the source relative to the line-
of-sight. See Will and Wiseman [7] figure 7 for the precise definition of the inclination angle.

The restricted post2-Newtonian strain amplitude impinging on the detector can also be calculated from
the output of chirp-f ilters () by

h(t) : F+h+(t) + Fxhx(t) , (5.6.s)

where F+ and Fy are the detector beam-pattern functions.
In the remainder of this section we will clarify some technical issues involving the orbital phase. First,

in computing d(t) in phase-frequency () we have arbitrarily set the constant $.inBq-(5.4.2) such that

d : 0 at the beginning of the chirp. The astrophysical convention for defining the orbital phase angle /
given in [7] measures / in the plane of the orbit from the ascending node. [The ascending node of the
orbit is where body-l passes through the plane of the sky going away from the observer.l Choosing @" in
this way we have assumed that body-l is passing through the ascending node of the orbit at the instant we

start our chirp. Detailed information about the overall phase is not needed for many purposes (i.e. matched
filters), therefore our choice is of little consequence. If this information needs to be included for some
application, chirp-f ilters O can be modified to do so; thus one can leave the computational engine
phase-frequency () untouched.

The second issue involving the phase is a bit more delicate. We have used the true orbital phase d(t)
to compute oscillatory part of the chirp in Eqs.(5.6.1) and (5.6.2). But should we use the logarithmically
modulated phase variable

4Gm61trf (t)
,1,(t) : Q -

96

l - f r / + \ / f I
L t t L J \ L l / J o J (5.6.6)

t

I

L

I

in our computation of the chirp? After all, the true phase of the gravitational-wave signal impinging on the
detector is 2{;. Letus examine the effect on our signal replacing sin2$ inBq.(5.6.2) with the logarithmically
corrected sin2lt

sinhlt : ,i,, (zO -
urm:etf G

h(/(t)/t))

: sin2dcos (srmtgf G
,.,.uu)/fo)) - "o, 2tsin(srmwtf

G
h(/(r)//,))'

\ c r ' " " ' " - ' /
\ c r

" ' " - - ' /

/ ^ \
ry-(8"*tg ' fGh(/(r) / . f ,))cos2g. (s.6-7)! 1.1+ O(r/c"))s inr ,

\ c, . /

The Ol7lc6] is a post3-Newtonian term and can be neglected in the present post2-Newtonian analysis. How-
ever the coefficient of the cos 2$ is a post3/2-Newtonian order correction to the waveform, and must be
included in any full post2-Newtonian analysis. This logarithmic term is included in the waveform calcula-
tion in the strain () routine. However, the last line of Eq.(5.6.7) also shows that the logarithmic phase
correction can be considered a posd/2-Newtonian corection to the amplitude. In our present restricted
post-Newtonian chirp calculation we neglect these higher order amplitude corrections, so we are justified in
neglecting the logarithmic correction to the phase.

The advantage of neglecting the logarithm is that it speeds up the calculation of the chirps: we dgn't
have to compute a logarithm at each time step. However, this may be at expense of accurately track-
ing the signal phase of a strongly relativistic source. After all much research has gone into computing
the gravitational wave phase from these sources and we shouldn't willy-nilly discard these phase correc-
tions. Is it difficult to modify our code to include this term? Not at all. In fact, the inclusion of the
logarithmic correction to the gravitational wave phase would not affect phase-frequencyO, at all.
The fact that this logarithmic propagation effect only enters the chirp-f ilters () routine and not the
phase-freguency () routine may seem like a computational quirk, but this actually has a physical origin:
The routine phase-frequency () computes the local orbital phase of the binary; whereas, the physical
origin of the logarithmic term is a propagation effect and has nothing to do with the orbital phase,

This is not say that no log terms will ever be needed in phase-f reguency () . Note that at post4-
Newtonian order there are Iog terms which do affect the local instantaneous orbital motion of the binary, so
if phase-f requency () is ever modified to incorporate that order, then log terms will appear there also.

Another issue involving the log term in the phase is the presence of the "arbitrar;/" scale factor /o
entering the definition of r/(l) in Eq.(5.6.6). The net effect of adjusting this constant is to change the value
of another arbitrary constant in our phase and frequency equations; it shifts the value of t" in Eq.(5.4.3). In
order to to facilitate swift computation, we choose /o to be the minimum frequency of the requested chirp.
This insures that the ratio in the logarithm is of order unity during the chirp computation.

97

5.7 Example: f ilters program

This example uses chirp-filEers () to generate two chirps rf2 out of phase with each other. It also
demonstrates a different memory allocation option than the phase-evoln example program.

/* GRASP: Copyright 1997, Bruce Allen x/
! l - ^ 1 . . I ^ { - s - ^ 6 L n
f r t l L l u q g v r d S P . t r

in t maino {
f loat m1 . m2, spin1, spin2, phaset.erms [5], clscnc-time, *ptrcos, *pt.rSin ;
t i ^ - r t s i * ^ r - i I!reaL ' . , , ,=,r. . ." i"aI-Freq,Max-Freq-Rqst,Max-Fregictual ,SampIe-Time,t ime-in-band;
inE steps-aIIoc, s teps-f i I1d, i , n-phasecerms, err-cd-sprs . chirp-ok ;

/* Set physical parameters of the orbital system: */
mL=m2=I .4 ;
sp in l=sp in2=0. ;

/* Set ORBITAL frequency range of the chirp and sample time: */

Init ial-Freq=5O . ; /x in cycles/second */

Max-Freq-Rgst=2000 - ; /* in cycles/second */

sample-?ime=L - /9868 .4208984375 ; /* in seconds */

/* posrNewtonian [O(l/c^n)] terms you wish to include (or supress)
in the phase and frequency evolution: x/

n-phaseterms=5;
p h a s e t e r m s t 0 l = 1 . ;
p h a s e t e r m s [1 i = 0 . ;
phaseterms12) =L- ;
p h a s e t e r m s [3] = 1 . ;
p h a s e t e r m s [4] = 1 . ;

/* Set memory-allocation and error-code supression logic: r./

s teps-a I1oc=L0 00 0 ;
p ts rCos= (f loa t *)ma1 loc (s izeo f (f loa t .) *s teps-a1 loc) ;
p t rS in= (f loa t x) ma l1oc (s izeo f (f loa t .) , r . s teps-a11oc) ;
err-cd-spr s=0 ; /* 0 means print all wamings x/

/* Use chirp-filters0 to compute the two filters: */
chj-rp-ok=chirp-f i l ters (m1, m2, spin1, spin2 , n-phaseterms, phaseterms,

tnitial-Freq. Max-Freq-Rqs t , &Max-FreqicEual . sample-Time,
&pt rcos ,&pt rS in ,&s teps-a l1oc ,&s teps- f i11d,&c lscnc- t ime.er r -cd-sprs) ;

f'* ... and print out the results: */
t ime-in-band= (f I oat) (s teps-f i I 1d.- 1) *Sample-Time ;
fp r inu f (s tder r , " \nm1=t f m2=t f In ic ia l -Freq=8f \n" , m l - ,m2, In i t ia l -Freq) ;
fprintf (stderr, " steps-f i 11d=ti steps-al1oc=*i Max-Freq-Actual=?f \n ",

steps-f i 1 1d, s teps-al 1oc, Max-Freqictual) ;
fpr intf (s tderr, " t ime_in_band=* f clscnc-t ime=tf \n " , t ime-in-band, clscnc-t ime) ;
fp r in t f (sLder r , "Termnina t ion code: t i \n \n ' , ch i rp -ok) ;
f o r (i = 0 , ' i (s t e p s - f i 1 l d ; i + +) {

time= i r.Sannple-Time ;
p r i n t f (' 8 i \ t ? f \ t ? f \ t ? f \ n " , i , t i m e , p t r c o s I i] , p t r s i n I i]) ;

l

re tu rn 0 ;
I

/*. The Newtonian piece 'r/

f * There is no O(1/c) corection *i

/x The post-Newtonian conection x/

/*\\e3/2 PN correction */
/x The 2PN correction ,r./

98

N'r

ET
E

2000.0

1500.0

1000.0

5UU.U

0.0

Binary Inspiral Chirp
2 x 1.4 solar masses

Twice orbital f requency

0.0 1 .51 .00.5

o

o.
I

0.10

-0.10

-0.30 t-
0.0

rj

H
0.10

+
I-c -0.10

-0.30 '
1.330 1.340 1.350 1.360

tirne (sec)

Figure 18: The zero-phase chirp waveform from a 2 x L.4M6 binary system, stafting at an orbital fte-
quency of 60Iltz. The top graph shows the frequency of the dominant quadrupole radiation as a function of
time, and the middle graph shows the waveforxn. The bottom graph shows a 40-msec sfretch near the final
inspiraVplunge.

Notice that we only allocated enough memory for 10000 points, and weloow ftom fhe ouput from the
previous example that this chirp takes L3 51-5 poirils. Therefore running this exannple results in followiltg
error message printed to stdem:

GRASP:phase-freguencyO :Allocated nernory is f i l led up before
reaching the maximum frequency reqested for this chirp.
Orb i ta l Frequency Reached(Hz) z 98,86V507, Number of po ints : 10000
TerminaLing chirp. Termination code set to: 2001
Returning to cal l ing routine.

However, even though the routine rau otrt of, memory it still computed the first 1- 0 0 0 0 points of the chirp
and returned them in the amays *ptrptrCos [0 , . steps-al1-oc-1] and
*ptrptrSin [0 . . slepsalloc-1-] .

;
I

I

I

i l',J

i f
J

I l
'T

99

5.8 Practical Suggestion for Setting Up a Large Bank of Filters:

We have carefully explained (how to avoid) a number of the pitfalls in computing post-Newtonian chiqps.

Before using the chirp generators to spit out hundreds or thousands of chirps needed for a bank of filters and

farming out the computations out to dozens of parallel processors in a massive coalescing binary search, we

strongly suggest that you edit the examples already given and check the routine against the three extreme

cases vou will encounter in your search.

Try the example with both masses set to the minimum mass in your proposed search, i.e. compute

the phase and frequency evolution and the chirps for the template in the upper right hand corner in

figure 33. This is the template of longest duration. If you are going to have a memory allocation

problem you will have it with this template. Also, knowing the duration of the longest template in

your search will help you decide the length of the segments of data which you filter. In general, you

want the length of these data segments to be at least several times longer than the longest chirp. See

Section 5.18 for further details.

Try the chirp generator with both masses set to the maximum mass in your search, i.e. compute

the phase and frequency evolution of the template in the lower left corner of figure 33. This is the

shortest duration template and the one least likely to make it to the upper cut off frequency before

going out of the region of post-Newtonian viability. This case will be the most demanding test of

the "chirp-termination" logic in phase-f requency () . It is also possible in the case of extremely

large masses that there really is no chirp at all in the frequency regime requested. For example a

binary composed of two I00Mo object wiii coalesce iong before it reaches the initiai chirp frequency

of the 60Hz we are using as our a lower cutoff frequency in our example. Don't worry. The routine
phase-f requency () will warn you that the root finder was unable to find a viable solution for the

initial time. Youlmay have to adjust the search range accordingly.

Try the chirp geirerator with one mass at the minimum allowed value and the other mass at the max-

imum allowed value, i.e. compute the phase and frequency evolution for the template in the upper

Ieft corner of figure 33. This is the template which is most dominated by post-Newtonian terms in the

evolution.

If the routine.gives satisfactory results for these three cases, it should work for all the cases shown in figure r
33; you are now ready for wholesale production. L

i

L

l .

2.

J -

100

5.9 Spin Effects

In the simple case where the spin vectors of the bodies are aligned (or antialigned) with the orbital angular

momentum axis, the GRASPchirp-generating functions have the built-in capability of computing the leading

order spin-orbit and spin-spin conections to the inspiral chirp. To use this feature no modification of

the chirp-generating routines lphase-f requency () or chirp-f ilters ()] is necessary; simply pass

nonzero values of the spin paramenters to the functions. This can easily be done by editing the example

progrqqs phase-erro1tn. c and/or f ilters . c to pass nonzero values of the variables spinL and

spin2. [See below for definitions and allowed ranges of spin]- and spin2.l

When spinning bodies are involved, the full gravitational waveform can be quite complicated; the orbital

plane and the spin vectors of the individual bodies can precess. The precession causes a modulation of the

signal. However, the GRASP routines only implement the the special case when the spins are assumed to

be aligned (or antialigned) with the orbital angular momentum axis. In this case there is no precession and,

therefore, no modulation of the amplitude of the signal. Also in this case, the spin-corrections to the orbital

frequency and phase are given by simple modifications to the nonspin phase and frequency Eqs. (5.4.1) and

(5.4-2)- The necessary tenns can be found inEq.@22) in Appendix F of [7], and are given by

f(t): Gffi{o-ars+

oe) : t" - i{"'r'* (ff* , * (6mf m)x"l -frnx,) o'rc
- (#r',X,)2 -(x')'J) o'/ '+ "') '

(t#ffi'"" + (lmlm)v,] - fint,) Q-s/s
- (#^rr,)'- (xo)')) o-zrs +

and

(5.e.1)

(s.e.2)

(5.e.3)

(s.9.4)

(s.e.s)

(5.e.6)

Here O is the dimensionless time variable given by Eq. (5.4.3). The ellipses represent the nonspin (post)"-

Newtonian terms already given in Eqs. (5.4.1) and (5.4.2). The quanties 1" and Xa Ne related to the angular

momentum of the bodies by

X s : ! (s ' * s ' \
z \-? *3) '
1 (s , s r \
, \ r " r - 4)

'

where ,9112y is the signed magnitude of the angular momentum vector of each body. The sign being positive

(negativej for spins aligned (antialigned) with the the angular momentum axis. By comparing the nonspin

phase and frequency evolution [Eqs. (5.a.1) and (5.a.2)] with the spin corrections in Eqs. (5.9.1) and (5.9.2),

we see that the spin-orbit corrections (terms linear in Xs and 1o) simply modify the (pos93/2-Newtonian

contributions and the spin-spin corrections (term quadradic in Xs and 1o) modify the (post)2-Newtonian

contributions-
Specifally, the spin quantities passed to the chirp generation routines are the signed, dimensionless

(Ken-like) parameters of each body

ls., I
sp in l : * - -# ,

t t L l

lS , l
sp in2: * -? ,- m i

t0r

where the +(-) sign is chosen if the spin is aLigned (antialigned) with the orbital angular momentum axis.
Some calculations (e.g. those requiring a precise definition of the orbital phase) are sensitive to the index
assigned to the bodies. The GRASP convention is that rn1 is the smaller of the two masses; therefore spinl

should be the spin assigned to the smaller of the two masses.
What is the allowable range for the spin parameters spinl and spin2? For Ken black holes, we know

lspint(2)l : (lSr(z) ll*?e) { 1. For spinning neutron stars, stability studies (based on relativistic numer-

ical hydrodynamic simulations) show that the spin parameter must satisfy lspinl(2)l : (lsrtzll/^?e) S
0.6. These limits can serve as a hard upper bound for a choice of sprn parameters. However, observed
pulsars in binaries have spin parameters substantially smaller than this limit, e.g. for the Hulse-Taylor pulsar

we have spinl- S 6.5 x 10-3. (See [10] for discussion and references.) Like all post-Newtonian equations,

Eqs. (5.9.1) and (5.9.2) are slow-motion approximations to the fully relativistic equations of motion; there-

fore they are most accurate - and well behaved - for smaller values of the spin parameters. The GRASP

routines have been tested for a modest range of masses (O.LM1,L}M) and spins (-0.2,+0.2) in the fre-
quency band 60Hz 1 f*u < 2000H2; they seem to give reasonable results in this regime. Finally, the
admonitions and suggestions given in Sec. (5.8) about setting up banks of filters hold here also: test the
chirp-generating functions with the extreme values of masses and spins you intend to use in your search.

If the functions give satisfactory results at the "corners" of the parameter space, they should work on the
interior of the parameter space.

102

5.10 Function: make-f ilters ()

vo id make- f i l te rs (f loa t ml - . f loa t m2, f loa t *chL, f loa t *ch2, f loa t fs ta r t ,

int n, f loat sratre, int * f i I led, f loat * t-coaI, int err-cd-sprs, int order)

This function is an even more stripped down chirp generator, which fills a pair of arrays with waveforms

for an inspiralling binary. The two chirps differ in phase by r f 2 radians and are given by Eqs.(5.6.1) and

(5.6.2). This routine assumes spinless masses, and computes a chirp with phase corrections up to a specified

post-Newtonian order.
The arguments are:

m1-: Input. The mass of body-l in solar masses.

m2: trnput. The rnass ofbody-2 in solar nnasses.

ch1-: Output. Upon return, ch1[0- -filled-]-l contains the O-phase chirp. The remaining array

elements ch1 [f illed. . n-1-] are set to zero.

ch2: Output. Upon return, ch2 [0. . filled-l] contains the nl2-phase chirp. The remaining aray

elements ch2 [f i IIed . - n- 1-] are set to zero.

f sEart: Input. The starting gravity-wave frequency of the chirp in Hz. Note: this is twice the orbital

frequency!

n . Tnnrrf Thc lenot\ of tJre arrayS chl_ [] and ch2 [] .

srate: Input. The sample rate, in Hz. This is l/At where At is the time interval between successive

entries in the ch1 [] and ch2 [] arays.

f i 1 1ed: Output. The number of of time steps actually computed, before the chirp calculation was termi-

nated, or until the arrays were filled (hence f illed (n). Thus, on return, only the array elements

chj- I0. . f i1led-l-l and ch2 [0 - . f i l led-1] are contain the chirp; the remaining array ele-

ments are zero-padded.

t-coal : Output. The time to coalescense measured from the first point output, in ch* [0] .

err-cd-sprs: Input. Error code supression. This integer specifies the level of disaster encountered in

the computation of the chirp for which the user will be explicitly warned with a printed message. Set

to 0: prints all the termination messages. Set to 4 0 0 0 : suppresses all but a few messages which are

harbingers of true disaster. (See identical argument in chirp-f ilters O -

order: Input. The order of the post-Newtonian approximation. This ranges from 0 (quadrupole approx-

imation) up to 4 (second post-Newtonian order). Technicially, order is the power in (u lc) past the

quadrupole approximation to which the post-Newtonian expansion is taken.

This routine assumes that you have already allocated storage zurays for the chirps. Note that the coales-

cence time may be much later than the last non-zero entry written into the ch1 [] and ch2 [] arrays.

Author: Bruce Allen, ballen @ dirac.phys.uwm.edu

Comments: None.

103

5.11 Stationary phase approximation to binary inspiral chirps

Much of the literature on binary inspiral data analysis approximates chirps in the frequency domain by

the method of stationary phase. The main reason for this approximation is the need to generate analytical

expressions in the frequency domain, where almost all of the optimal filtering algorithm takes place. A side

benefit is that the post-Newtonian expansion seems better behaved in the frequency domain-that is, there

is no nonmonotonic frequency evolution as depicted in figure 17.

Therefore, GRASPincludes sp-f ilters (),astationaryphasechirpgeneratorsimilartomake-f ilters ().

The advantage of this function is a considerable savings in CPU time by avoiding FFTs of time-domain

chirps in the generation of matched filters. The disadvantage is that stationary phase is only an approxima-

tion, albeit a very good one in many situations of interest.
The stationary phase approximation can be found in any textbook on mathematical methods in physics.

An excellent discussion in the context ofbinary inspiral can be found in section tr C of [11].
The stationary phase approximations to the Fourier transforms of h"(t) and hr(t) [Eqs. (5.6.1,5.6.2)] are

given in the restricted post-Newtonian approximation by

where / is the gravitational wave frequency in Hz, M is the total mass of the binary,-and p is the reduced

mass. Note that .[","1,r; have dimensions of l/FIz. The instmment strain per Hz, h(!), is obtained from a

linear superposition of [",r11; in exactly the same way as h(t) is obtained from h","(t). See the discussion

following Eqs. (5.6. 1,5.6.2).
The restricted post-Newtonian approximation assumes that the evolution of the waveform amplitude is

given by the O'th-order post-Newtonian expression, but that the phase evolution is accurate to higher order.

This phase is given by

n"u) : (*h)''' (#)'/3 r-,/uro1l6exp[,v(/)],
n'U) : ii.,"(f),

v(/) : 2rf t" - 2d" - 7r /4
3 f _ " / 3 7 1 5 . 5 5 \+&1"-u * (H * ir) r-3 - Llrrc-2

/L5293365 27145 3085 ,\ -,
+ (toaos, + ,on n+ n n-) r

'

/38645 5 \
'l

* [* + s q) r t n r l] ,

(s. I 1. 1)

(s.11.2)

(s .11 .3)

where a : (nMfTolMdr/3, the coalescence phase o" is determined by the binary ephemeris, and the

coalescence time t" is the time at which the bodies collide. The chirps h" and h, arc given S" : 0 and

Qc: -r14, respectively. All but the last term of (5.11.3) can be found in [12]; for the last term see the

warning at the end of section 5.12.
The chirps are set to zero for frequencies below the requested starting frequency and above an upper

cutoff /". Physically, ,f" should correspond to the epoch whdn orbital inspiral turns to headlong plunge.

The formula for /" currently is not known for an arbitrary pair of objects, but in the limit of extreme mass

ratio (and no spins) it should be equivalent to the well-known innermost stable circular orbit (ISCO) of

Schwarzschild geometry. The frequency of the Schwarzschild ISCO can be computed exactly and is given

in Hz by
- tu'.,
fc: 6s14ff i '

(5'11'4)

t04

In the absence of anything better, sp-f ilters () uses the Schwarzschild /" for all binaries, a kludge

which seems to work surprisingly well (see the compare-chirps program).

There is as yet no definitive, published investigation of how good the stationary phase approximation is

for chims. A future version of this document would be a good place for one!

I
i

t

r05

5.12 Function: sp-f i l ters ()

v o i d s p - f i l t e r s (f l o a t m 1 , f l o a t m 2 , f l o a t * c h 1 , f l o a t * c } r 2 , f l o a t f s t a r t ,
in t n , f loa t s ra te , f loa t * f -c , f loa t t -c , in t o rder)
This function generates stationary phase approximations to binary inspiral chirp waveforms. Its input and
output are similar to make-f ilters (). The difference is that the chirps are generated in the frequency
domain using the stationary phase approximation.

The arguments are:

m1: Input. The mass of body-l in solar masses.

m2: Input. The mass of body-2 in solar masses.

chl-: Output. Upon return, ch1 [0 . . n- 1] contains the stationary phase approximation to n"171tEq. (5.11.1)l
in the same format as would be retumed by a real f t () of a time-domain function sampled at rate
srate. That is, except for DC and Nyquist frequencies, chl- [2*i] and ch1[2*i+1] contain
respectively the real and imaginary parts of h.(f) tor f : i * srate/n. This function sets ch1 [0]
(DC) and chl- [1-] (Nyquist) to zero. The chirp is also set to zero for / < f start and for f > f -c
(see section 5.11 for "f"). The output ch1 [0 . . n- 1] has dimensions of l/FIz.

ch2: Output. Upon return, ch2 t I contains [r11; i" the same way that chL t] contains i"(f).

f start: Input. The starting gravitational-wave frequency of the chirp in Hz. Note: this is twice the
orbital frequency!

n: Input. The length ofthe arrays ch1 [0 . -n-1] and ch2 [0. .n-1-].

srate: Input. The sample rate, in Hz.

f-c:Output.Thecoalescencefrequency f",asdescribedinsection5.ll.Thisisthehigh-frequencycutoff
of the chirps.

t-c: Input. The coalescence time, in seconds. Note this is the time of the end of the chirp (see sec-
t ion 5.13).

order: Input. Order of generated chirps in (rM fTs/Md'/3 (twice the post-Newtonian order).

This function assumes that you have already allocated storage for the chirps.

Author: Benj amin O wen, owen @ tapir. caltech. edu

Comments: The sp-f ilters () function doesn't include spins yet. Also, the approximation to /" needs
to be improved. It will be simple to add higher-order post-Newtonian phase terms as they appear in
the literature.

Warning: I have included the 2.5-post-Newtonian term in this version of sp-f ilters () , but it should be
treated with caution. To the best of my knowledge I am the only one in the world who has calculated
V(/) at this ordet in a manuscript yet to be submitted. Somebody should check up on this term. Any
volunteers?

106

{;
i

r*

t " '
t
I

i

r"
I
\

i
I

5.13 Example: compare-chirps program

This example compares a chiqp generated by sp-f ilters () to a chirp with identical pararneters generated

by make-f ilters () ; the output is shown in Figure 19. The chirp generated by sp-f ilt.ers () is
transformed to the time domain, and the two chirps are superimposed on one graph.

/x GRASP: Copyright 1997, Bruce Allen *./

/* compare-chirps.c: by Benjamin Owen, 1997 */

4 l - ^ 1 , . i ^ " - - - - - L r
f r r r L r u q s y r q > P . r r

*def i-ne FSTART 40.
*de f ine SRATE L0000.
*define LENGTH 32768
d e f i n e M A S S 1 1 0 . 0
*def ine MASS2 l -0 -0

/,r GW starting frequency, inHz xf

/* Sample rate,inHz*f

f + Twice no of freq bins = samples in time domain * f
/x mass offirst body, in solar masses x/

/x mass of second body, in solar masses x/

I
a

t

i n t . m a i n / l I
t

FILE x fp ;
f loa t t -c , f , *sp , +ed, xdummy;
i n t i ;
vo j -d rea l f t (f loa t * ,uns igned. long , in t) ;

/* Allocate memory for chirps x/
s p = (f 1 o a t x) m a l L o c (s i z e o f (f l o a t) * L E N G T H) ;
t d = (f f o a t , k) m a L l o c (s i z e o f (f l o a t) * L E N G T H) ;
dummy = (f loaE x)mal l -oc (s izeo f (f1oat) *LENG?H) ;

/x Generate time-domain chirp for comparison purposes ,r./

make- f i f te rs (MASSI , I t rASS2, td , dummy, FSTART, LENGTH, SRATE, & i , & t -c ,2000 ' 4) ;

f * Generate stationary phase chirp in frequency domiln * f
sp- f i l te rs (MASSI- , MASS2, sp , dummy, FSTART, LE\ IGTI { , SR.A"E. & f , t -c , 4) ,

/,r Transform stationary phase chirp to the time domain 'r/
r o a l f r l c n - 1 T . F \ T r : n H - 1 \ -

/ * Graph both chirps in the time domain. First output file. x/

f p = f o p e n (" c o m p a r e - c h i r p s . o u t p u t " , " w ") ;
f e a (i = 0 r i < L E N G T H ; i + + 1

f p r i n t f (f p , ' a f ? f * f \ n " , i / s R A T E , t d t i l , s p l i l x 2 * S R A T E / L E N G T H) ;
f c l o s e (f p) ;

/.. Now graph the contents of the file using xmgr */
system (";angr -nxy compare-chirps. output &") ;

r e t u r n 0 ;

)

Note that ro get the graph to show both chirps as simultaneous functions of time, sp-filters o
needed to know the coalescence time found by make-f ilters O, so the latter function is called first.

If the coalescence time input to sp-f i-Iters () had been zero , its chirp would have finished at the

beginning-or equivalently, the end-of the time-domain data.

Also note that the inverse real f t () of the stationary phase chiqp had to be multiplied by a factor to be

comparable to the time-domain chirp. The 2 /LENGTH factor is left out of the inverse realf t () , and the

t07

Stationary Phase Approximation
2 x 10 solar mass bodies

i 0.0

-1.0

-1.9
0.903 0.913 0.923

Figure 19: The output of compare-chirps, comparing the stationary-phase approximate wavefonn
FFT'd into the time domain (red curve) with a 2nd-order post-Newtonian chirp calculated in the time do-
main, using make-f ilters () (blaek curve). The lower part of the graph shows three interesting regions
of, the upper (complete) graph. The bottom left detail shows the Gibbs startup-transienL the bottom nriddle
detail shows a tlpical region of good agreement, and the bottom right detail shows the Gibbs turn-off tian-
sient. The Gibbs startup hansient is also visible at the far right of the upper figure, which is periodically
identified with the far lefl

SRATE factor is needed to keep the dimensions right. (Also, the forward realf t () of the time-domain
chirp would need to be rnultiplied by 1/SRATE to compare to the stationary phase chry.)

-2.O L-
0.0

1 . 1

0.1

-o.7 t-
-o.o2

108

t--

5.14 Wiener (optimal) fiItering

The technique of optimatfiltering is a well-studied and well-understood technique which can be used to

search for characteristic signals (in our case, chirps) buried in detector noise. In order to establish notation,

we begin this section with a brief review of the optimal filtering technique.

Suppose that the detector output is a dimensionless strain h(t). (In Section 3 we show how to construct

this quantity for the CIT 40-meter prototype interferometer, using the recorded digital data stream). We

denote by C(t) the waveform of the signal (i.e., the chirp) which we hope to find, hidden in detector noise,

in the signal srream h(t). Since we would like to know about chirps which start at different possible times

te, we'll take C(t) = T(t - te) where f(t) is the waveform of a chirp which enters the sensitivity band of

the interferometer at time t : 0 (for the moment, forget about the fact that the chirps come in two different

phase "flavors").

We will construct a signal S which is a number, defined by

t : l* dt h(t)ee), (s.14.1)

where Q(t) is an optimal filter function in time domain, which we will shortly determine in a way that

maximizes the signal-to-noise ratio ,S/N or SNR. We will assume that Q is a real function of time.

We use the Fourier transform conventions of (3.9.3) and (3.9.4), in terms of which we can write'the

signal ̂ 9 as

('

:

"* [*-'J_*

rl:
L
En

f l:
sf "-2trirt+2"if ILU)Q* (f ')

d,f'5(l - f')i,(ilQ.U')

dfi,$Q-0. (s.r4.2)

(s.14.3)

This final expression gives the signal value .9 written in the frequency domain, rather than in the time

domain.
Now we can ask about the expected value of S, which we denote (S). This is the average of ^9 over an

ensemble of detector output streams, each one of which contains an identical chirp signal C(t) but different

realizations of the noise:
h (t) : C (t) + n (t) .

So for each different realization, C(t) is exactly the same function, but n(t) varies from each realization to

the next. We will assume that the noise has zero mean value, and that the phases are randomly distributed,

so thar ("(/)) : 0. We can then take the expectation value of the signal in the frequency domain, obtaining

(f l: /:
(s.r4.4)

We now define the noise ltrto be the difference between the signal value and its mean for any given element

of the ensemble: roo
N: ,S - (S) : J_*or^TQ-u).

(s.14.5)

Theexpectat ionvalueof l /c lear lyvanishesbydef ini t ion,so(l /) :0.Theexpectedvalueof ly '2isnon-
zero, however. It may be calculated from the (one-sided) strain noise power spectrum of the detector ,S;,(/),

which is defined by 1
@(f)""(f ')) : ,1snf l / l)d(/

- / ') , (s.14.6)

F 6
t - -

df (h(fDQ.U): J_*d.f c(f)Q.u).

109

and has the property that

(n'(t)) =
lo*

sn1) df (s.r4.7)

We can now find the expected value of N',by squaring equation (5.14.5), taking the expectation value, and
using (5.14.6), obtaining

(Nr) : [* of [* of,Q.U)fu(f)n.U))Q(f,)
t ' lJ -OO J -OO

1 / -:
; J-*.f shMDlQu)|2

foo:
J,

d'f shff)lQ(il.2'

There is a nice way to write the formulae for the expected signal and the expected noise-squared. We
introduce an "inner product" defined for any pair of (complex) functions A(f) arfi B(f). The inner product
is a complex number denoted by (A, B) and is defined by

rco
(A,a1 :1 df A(f)B-(/)Sr,f l / l) .

J _oo
(s.r4.9)

Because ,S1, is positive, this inner product has the property that (A, ,4) > 0 for all functions ,4(/), vanishing
if and only if A : 0. This inner product is what a mathematician would call a "positive definite norm"; it
has all the properties of an ordinarl, dot proCuct of vectcrs in three-dimensional Cartesian space.

In terms of this inner product, we can now write the expected signal, and the expected noise-squared, as

(s) : tft,Al and (rr') : |@,8t.

(s.14.8)

(5 .14.11)

(s.r4.r2)

time offset" f6 is

(5.14.10)

(Note that whenever 51 appears inside the inner product, it refers to the function Sn(l/l) rather than Sn(/).)
Now the question is, how do we choose the optimal filter function Q so that the expected signal is as large
as possible, and the expected noise-squared is as small as possible? The answer is easy: to maximize the
signal-to-noise ratio

/ s \ , _ (s) , _ r (& ,Q) ,
\F/

:
{nt1

:'Eh)

we choose

QU):
C(f) rU) ^2ni! ts

srm-srms '
Going back to the definition of our signal S, you will notice that the signal ̂ 9 for "arrival

given by

^ @

s : J_*of h1Q.tt)

[* " nOe-U)
J-**' sa(l/ l)

: llrffi"-2'�rirto (s.14.13)

Given a template ? and the signal h, the signal values can be easily evaluated for any choice of arrival times
f6 by means of a Fourier transform (or FFT, in numerical work). Thus, it is not really necessa-ry to construct

1 1 0

{'

a different filter for each possible anival time; one can filter data for all possible choices of arrival time with

a single FFT.
The signal-to-noise rario for this optimally-chosen filter can be determined by substituting the optimal

filter (5.14.12) into equation (5.14.11), obtaining

(s.14.14)

you will notice that the signal-to-noise rario S/N in (5.14.11) is independent of the overall normalization

of the optimal filter Q: if we make Q bigger by a factor of ten, both the expected signal and the expected

noise increase by exactly the same amount. For this reason, we will frequently specify the normalization of

the filter so that the expected noise-squared frorn a specified source is unity: (N') : 1. This adjustment or

change of the filter normalization can be obtained by moving the (fictitious) astrophysical system emitting

the chirp template either closer or farther away from us. Because the metric strain h falls off as l/distance,

the measured signal strength ,9 is then a direct measure of the inverse distance.

For example, consider a system composed of two 1..4 Mo masses in circular orbit. Suppose that nor-

malizing the optimal filter for this system so that (N') : 1 corresponds to puning the system at a distance

of 15 megaparsecs (i.e., choosing C(t) to be the strain produced by an oPtimally-oriented two x 1.4 Mo

system at a distance of 15 megaparsecs). If we then detect a signal with a signal-to-noise ration ^9/l[: 30,

this corresponds to detecting an optimally-oriented source at a distance of half a megaparsec

The functions correlate () andproductc () are designed to perform this type of optimal filtering.

We document these routines in the following section and in Section s:utility, then provide a simple example

of an optimal filtering program.
There is an additional complication, arising from ttre fact that the gravitational radiation from a binary

inspiral event is a linear combination of two possible orbital phases, as may be seen by reference to equations

(5.6.1) and (5.6.2). Thus, the strain produced in a detector is a linear combination of two waveforms,

corresponding to each ofthe two possible (0'and 90') orbital phases:

h(t) : aTs(t) + 7Teo(t) + n(t). (5 .14.15)

Here the subscripts 0 and 90 label the two possible orbital phases; the constants a and B dependupon the

distance to the source (or the normalization of the templates) and the orientation of the source relative to the

detecron Thus "6(t) denores the (suitably normaiized) function h"(t) given by equation (5.6-1) and ?e6(t)

denotes the (suitably normalized) function h"(f) given by equation (5.6'2)'

In the optimal filtering, we are now searching for a pair of amplitudes a and B rather than just a single

amplitude. One can easily do this by choosing a filter function

We will assume that the individual filters for each polarization are

scribed, and that they are orthogonal:

(s.14.16)

by the convention just de-

2. and (5 .14.17)

Note that ?6 and Tgo are only exactly orthogonal in the adiabatic limit where they each have many cycles

in any frequency interval d/ in which the noise power spectrum Sr'(/) changes significantly; A1:o
1"::91

the filrer funcrion 8(/) Oo"t nor correspond to a real filter Q(t) in the time domain, since Q(-/) + Q-U),

hr rt _ toT) - tgoT)
"2trif tsLt\ I) : -srm

f+,+) :2, ant /ro ao\
\ r r , o n /

t \ S n ' S t /
(* , *)

:

: (*,u)
so that the sisnal

5(ro)

1 1 1

(s. i4.1 8)

is a complex-valued functions of the lag t6. We define the noise as before, by N : S - (S). Its mean-squared
modulus is

(ff1')

(s.14.19)

where we have made use of the orthornormality relation (5.14.17). Now the expected signal at zero lag
t o : 0 i s

1 -: ;(a,a)
r (fo - itgo 16 - lrso\
t \ sh ' sn)

: l l (n to \ * /?b' ?br\ l _ o
t L \ s r ' s o) ' \ s r ' s r /] :

" '

Hence the signal-to-noise ratio is

("ro + Prno ?b - izbo
) : 2a * 2ig.

\ s r ' - s o) - * ' ' o P '

(S)
- n J - i R

f , M - v ,
e P .

(n: (g,o) : (s.14.20)

(s.14.2r)

(s.14.22)

In the absence of a signal (S) : 0 and the variance of this quantity (from the definition of l/) is uniry:

ilsl'�) .
(l/vl1t

: ' '

In the presence ofa signal, the signal-to-noise ratio is

(s.14.23)

The attentive reader will notice that we have lost a factor of A in the signal-to-noise ratio compared to
the case where we were searching for only a single phase of waveform. This is because of the additional
uncertainty associated with our lack of information about the relative contributions of the two orbital phases.
In other words, if we know in advance that a waveform is composed entirely of the zero-degree orbital
phase, then the expectation value of the signal-to-noise, determined by equation (5.14.11) would be given
Uy (S)/.nf : tf2a. However if we need to search for the correct linear combination of the two possible
phase waveforms, then the expectation value of the signal-to-noise is reduced to (S)/lf : a.

ff i :a2*rr:;m

r12

5.15 Function: correlate ()

v o i d . c o r r e l a t e (f 1 o a t * s , f I o a t * h , f 1 o a E * c , f l o a E * r , i n E n)

This function evaluates the correlation (as a function of lag time t) defined by the discrete equivalent of

equation (5.14.13):

df VLU)I-ff)F(il s-2ilrt (s.15.1)s(t): ; l :
It is.as ume=d lhat h(/) ana e(J) are Fgurier transforms of real functions, and that f (/) is real. The factor
ojf t/i;ppeta il (5.15.ii foi emCienCy ieasoni; in ordei io calculate'ttre integral15.14.13) one should set
F(f) : ZlSn(f). The routine assumes that f vanishes at both DC and the Nyquist frequency.

The arguments are:

s: Output. Upon return, the array s [0 . . n-]- I contains the correlation s(t) at times

h:

t :0, Lt,zAt," ' , (n - 1)At. (s.1s.2)

Input. The array hto. .n-l-l contains the positive frequency (/ > 0) part of the complex function

[11;. fne packing of h into this array follows the scheme used by the Numerical Recipes routine

realf r () , which is described between equations (12.3.5) and (12.3.6)_of [1]. The DC comporlent

[10; is real, and located in h t 0] . The Nyquist-frequency component h(/Nrquist) is also real, and

is loca ted inh t l l .Thear raye lementsh [2] andh[3] con ta in therea land imag inarypar ts , re -

spectively, of [(A/) where A.f : 2.fNysui"t/n : (nAt)-l. Array elements h t2 j] and h{2 j-+l--l

conrain the real and imaginary parts of hU nt) for j - 1,... , nl2 - 1. It is assumed that h(/)

is the Fourier transform of a real functiol, so that correlate O can infer the negative frequency

components from the equation h(- f) : h. (f)

Input. The agay c t 0 . - n- l- I contains the complex function d, packed in the same format as [(/),

with the same assumption that a(-f): e.(.f). Note that while you provide the function e(/) to

the routine, it is the complex-conjugate of the function contained in the anay c [] which is used

in calculating the correlation. Thus if f is positive, correlate (s , c , c , r, n) will always retum

s[o] > 0.

Input. The aray r lO . .n/21 contains the values of the real function f used as a weight in the integral.

This is often chosen to be (twice!) the inverse of the receiver noise, as in equation (5'14.13), so that

f(f) : ZlSnlfl).The array elements are arranged in order of increasing frequency, from the DC

value at subscript 0, to the Nyquist frequency at subscript n/2. Thus, the j'th array element r I j]

contains the real value f(j A/), for j :0,1'..., nl2. Agun it is assumed ttrat f(_/) : F*(f) :

Input. The total length of the complex arrays h and c, and the number of points in the output zuray s.

Note that the array r contains n/2 + 1 points. n must be even-

The correlation funcrion calculated by this rourine is |f ff-rfhZ.r) ana has the same dimensions as the
' ;product h x e x f. The definition is

r D - 1

sk : ; I ultiti"-2tijk/n'
o j =o

where it is understood that lt,'- j : n; u"a that Zn-i : Ej, and that fo-i

1 1 3

(s.1s.3)

Note that the input arrays h [] and c [] can be the same array.
calculates the discrete equivalent of

s(r): ; I: df le(il\2i(f) s-zntft.

Forexample cor re la te (s , c , c , r , n)

(s.1s.4)

Author: Bruce Allen, ballen @ dirac.phys.uwm.edu

Comments: For the sake of efficiency, this function does not include the contribution from either DC or
Nyquist frequency bins to the correlation (these are negligible in any sensible data).

t14

{
I

5.16 Function: avg-inv-spec o

void avg-inv-spec(f1oat f lo, f loat srate, int n,double decay,double *norm, f loat,
ht. i lde, f loat mean-pow-spec, f loat* Lwicejnv-noise)
This function maintains an auto-regressive moving average (see avg-spec ()) of the power spectrum

Sa("f), and an array containrng2lS6U), which can be used for optimal filtering. This latter array is set

to zero below a specified cuff-off frequency fio-.
The arguments are:

f lo: Input. The low frequency cut-off f6*,inHz.

srate: Input. The sample rate, in Hz.

n: Input. The number of points in the arrays.

decay: Input. The quantity exp(-a) as defined
the auto-regressive average.

norm: Input/Ouput. Used for internal storage.
average. Must not be altered otherwise.

in avg-spec () . Sets the characteristic decay time for

Set to 0 when you want to begin a new auto-regressive

htilde: Input. Thearrayhtilde[0..n-1] containsthepositivefrequencyFFTofthemetricperfirr-
bation.

mean-pow-spec: Output. The array mean-pow-spec [0 - .n/2] contains the mean power specffum.

Should be zeroed when resetting to begin a new average. The array element mean-pow-spec [0 J
contains the power spectrum at DC, and the array element mean-pow-spec ln/21 contains the

power specuum at the Nyquist frequency sratrell.

twicejnv:roise: Output. The array twice-inv-noise tO . .n/21 contains Z/Sn(f). It is set to

zero for f { fu.. The array element twice-inv-noise [0] contains the DC value, and the array

element twice-inv-noise ln/21contains the value at the Nyquist frequency sraEe/2.

Author: Bruce Allen, ballen @dirac.phys.uwm.edu

Comments: We assume here that the "correct" thing to do is the average the spectrum, then invert it. There

may be a better way to construct the weight function for an optimal filter, however.

1 1 5

5.L7 Function: orthonormalize o

vo id o r thonormal ize(f Ioa t . * ch0 t i lde , f loa t * chg0t i lde , f loa t * tw ice- inv-no ise ,
i n E n , f l o a t * n 0 , f l o a t * n 9 0)
This function takes as input the (positive frequency parts of the) FFT of a pair of chirp signals. Upon return,
the 90' phase chirp has been made orthogonal to the 0" phase chirp, with respect to the inner product defined
by 2/56. The normalizations of the chirps are also returned.

The arguments are:

chOtilde: Input. The FFT of the zero-phase chirp ?e.

ch9 0tilde: Input/Output. The FFT of the 90o-phase chirp ?e6.

twice-inv-noise : Input. Array contairnng 2/56. The array element twice-inv-noise [0] con-
tains the DC value, and the array element twice-inv-r:oiseln/21 contains the value at the
Nyquist frequency.

n : Input . Def ines the lengtho f thear rays : chOt i lde [0 . .n -1 j ,ch90t i lde [0 . .n -1] ,andtw ice- inv-no i r

n0 : Output. The normalization of the O-phase chirp.

n9 0 : Output. The normalization of the 90o-phase chirp.

Using the notation of (5.14.9) one may define an inner product of the chirps. The normalizations are
defined as follows:

(s.17.1)

where Q6 is the optimal filter defined for the zero-phase chirp ?0. The chirps are orthogalized inter-
nally using the Gram-Schmidt procedure. We first calculate (Qo,Qo) and (Qe6,Qs) then define e :
(Qso,Qo)/(Qo,Qo). We then modify the 9O'-phase chirp setting Tgo - ?so - eTs. This ensures that
the inner product (Qgo, Qo) vanishes. The normalization for this newly-defined chirp is then defined by

fr=)@o,aot,

$r=|ra 'o 'Qso) ' (s.r7.2)

Author: Bruce Allen, ballen @ dirac.phys.uwm.edu

Comments: Notice that the filters Q6 md Qgo are not in general orthogonal except in the adiabatic limit
as 5n(/) varies very slowly with changing /. Our approach to this is to construct a slightly-modified
ninety-degree phase signal. Note however that this may introduce small errors in the determination of
the orbital phase. This should be quantified.

1 1 6

{--
I
{

5.18 Dirty details of optimal filtering: wraparound and windowing

To carry out optimal filtering, we need to break the data set (which might be hour, days, or weeks in length)
into shorter stretches of l/ points (which might be seconds or minutes in length). We can understand the
effects of "chopping up" the data most easily in the case for which (1) the instrument noise is white, so that
SnU) : I; (2) the source is so close that its signal overwhelms the noise in the IFO, and (3) we are looking
for a signal with a given phase (not a linear combination of the two orbital phases).

We want to calculate a signal S as a function of lag t6 using an FFT.

(s.18.1)

where we have written both the continuous-time and discrete-time version of the same equation. Using the
definition of the discrete Fourier transform. and writine

A/-1

lri : D.-2riik/Nfr* and
&:0

one can easily compute that the signal as a function of lag i9 is

N - 1 N - 1

s(io) : t t "-2riik/N lrr"-2ri(j-io)k' /N fx,
,h:0 k/=0

.Ar-1

I rud*, -*, "2tri'iok' / N l1rf1r,
k/=0

79"-2triiok/N n^tt.

N - 1
r. / .

tr-1
\-
,1J
k=0
.^I- 1

\-
.{r
k:0

Thus, if the data is treated as periodic, and the template is treated as periodic, one can compute the corre-
lation as a function of time using only an FFT. In particular, the use of rectangular windowing does create
sidelobes of the template's frequency components. However it also creates identical sidelobes of the signal's
frequency components - so in effect the correlation in the time domain can be calculated exactly, without
any windowing of the signal being necessary.

The only complication arises from the fact that the FFT treats the data as being periodic. Let's consider
some simple examples to illustrate the effects of this. In all of our examples, the number of data points
is N : 65,536 :)16 and the (schematic) chirp filter has length m : 13,500 and is zero-padded after
that time. Please remember, in all the figures that follow, to identify the far right hand side of the graph
(i : 65535) with the far left hand side (i : 0). Figure 20 shows ,S(ie) for a schematic chirp which begins
at the first data point in the rectangular window. You will notice that the filter output peaks at i : 0. If the
incoming chirp arrives somewhat later (it starts at i : 15,000) as shown in Figure 21 then the filter output
peaks at the start time, as shown. A chirp in the signal which starts at the i = 65, 535 - 13,500 as shown in
Figure 22 causes the filter output to peak at i : 52, 035. Thus, in order to find chirps, we need to find the
maxima of the filter output over the interval i : 0. . ., N - m.

Chirp filters can be "stimulated" or "triggered" by events that are not chirps. We will shortly discuss
some techniques that can be used to distinguish triggering events that are chirps from those that are simply
noise spikes or other transient (but non-chirp) varities of non-stationary interferometer noise. Suppose that
a chirp filter is triggered by some kind of transient event in the IFO output. At what time did this transient
event ocurr? -The answer to this question can be seen by examining the impulse response of the "periodic

filter" scheme, as shown in the following figures. Thus, by searching for maxima in the filter output over

r
s(to; :

J
n1t1rp - h)d,t= s(i6) - lhiri-to,

l v - a

.r. . _ \- ^-2tri(j -is)k' /N flr,r J -1 ,o -
L

v

let=0

(s.18.2)

(s.18.3)

(s.18.4)

(s.18.s)

117

Filter input

- 1 .0

1 .0

0.5

0.0

-0.5

t :
!

I

1 ,
I

l :
I

L
I
t :

I

l i
I i

t l

I

-0.5

-1 .0
o.o

Figure20:Achirpstart ingatinit ialt imez:0andendingatt imei:LS500isprocessedthroughachlrp
filter, whose output peaks at Ame i: 0. Notice that because of wraparound" the (non-causal) filter output
begins o'earlie/' than i : 0.

ttre range i : 0,... , /V - rn - L we can detect either true chirps in the data stream, starting in the time
interva l i :A, . ' . , .n t r -n 'L-Landcoalesc ing(roughlyspeaking) in fhet inneinverval i : ' t r t r t " ' ,N-1,
or we can defect Eansient impulse-like events in the data stream, which take place in the tinne interval
i : Tttrt. . ' ,lf - L. In the GR.ASF optimal filtering code, after examining the shetch of N data points, we

then shift the datapoints i: N -nL)..', ff- 1 into therange a : 0, .. . ,rn- 1 and aquire anew additional
set of JV - Tn datapoints covering remaining (new) time interval.

Note that in practice, because the chirp signal has to be convolved with the response function n(/) of
the detector, the impulse response of the filter is typically a few points longer than the actual ch@ signal.
For this rearion it is smart to assume that the impulse response of your optimal filter is slightly longer (say a
hundred points longer) than the actual time-domain length of the corresponding chirp. This safety maryin is
set with fhe #def ine SAFETY statement in the optimal filtering example. You lose a tiny bit of efficiency
but reduce the likelihood that boundary effects from the data discontinuity at the start/end of the rectangular
windowwil lsignif icantlystimulatetheoptirnalf i l teroutputfori:0,.. ' ,N-m-L.(SeeFigs.23and
26 to see an illustration of how this windowing discontinuity will comrpt the filter's output.)

Wehave demonstrated explicitly ttrat with no windowing (orrather, rectangular windowing) of the data,
one can find the appropriate correlation between the signal and a filter exactly: the rectangular window has
the same effect on the signal as it does on the template Ghifting energy into sidetobes in identical fashion).
lfhe only complication was that because of the periodic nahre of the FFf one has to be casefirl about
wrap-around errors in relating the output of a filter to the tinoe of occurence of a signal or impulse.

There is one remaining ugly question. The optimal filter @ depends upon the noise power spectrum
of the detector. In real-world filtering, should this noise power specfrum be calculated with windowed,
or non'windowed data? We can deterrnine the correlation between signal and template exactly, with only
rectangular windowing, because energy in eifher of, these fimctions is shifted into sidelobes in identical
fashion. However a "quiet''part of the)trO spectrum can be comrpted by sidelobes of a nearby noisy region.

118

ll
t'

I

I

Filter output

i - '

L,'
t

j

It

1.0

L
r-
I
h
t - '

d
L

t

i-

t
I

EI

I

L
f

L
J

L

i
I

I

t

i
U
I

l
h
i
I

I

L
I
h

I
b

-o.5

-1.0
20000.00.o

Figure 21: A chirp starting at initial time i : 15, 000 and ending at time i : 24 500 is processed through a
chirp filter, whose output peaks at time i : 15,000.

The effect of this is that the signal get rather less weight from this region of frequency space than it ought, in
theory to receive. T'his would argpe for using only properly-windowed data to find the noise power specEum
to use in determing an optimal filter.

nn fact, in our experience, it does not make any difference, at least not when you are searching for binary
inspiral chirps. The reason is that the SNR. obtained in an optinal filter is only sensitive at second order
to errors in the optimal filter function. T'hus, the errors due to noise sidelobes which appear if you fail to
window ttre data to calculate an optimal filter are typically not large.

Filter input

. , i i l' \ i l l \ I i, , / r i \ l i' \ j i
l l

Filter output

ttg

1 . 0

n t r

-0.5

-1 .0
0.0 20000.0

20000.0 40000.0 60@0.0

Figure 22: Achkp starting at initial time i : 52, 035.

20000.0 40000.0

Figure 23: An impulse shortly after i : 0.

1.0

0.5

0.0

-0.5

-1 .O

1.0

0.8

0.6

o.4

o.2

0.0

0.0

0.o

10.0

5.0

0.0

-5.0

-10.0

120

Filter inpul

l
i

I
1 .
I

l
l '

\l
d

0.o

20000.0 40000.0

Figure 24: Animpulse ati : 15,000.

20000.0 40000.0

Figure 25: An irnpulse at'i :28,500.

10.0 5-

il''o 11"f\
*o L'�
,o.o L

0.0

t
i
b

L
l " - '

t
[,

t
l'-'

t
t
r

t
{

L
t
i

L
I

t
i
&

t
i

t
t
L

1'o r-
O ' F
o u f
O , F
o r l
o.o L

0.0

Filter outpul

Filter inpul
1'o r-

I
0.8 l-
"u f
on f
0., F
o.o L

0.0

Filtar output

1 .0

u.o

v.o

o.4

o.2

o.o

Filter input

U.U

Filter output

o.o 20000.0 40000.0

Figure 26: Animpulse shortly before z : 65535

10.0

5.0

o.0

-5.O

-10.0

tzz

I

i
i

5.19 Function: f ind-chirp o

vo id f ind-ch i rp (f loa t * hE i lde , f loa t * chOt i lde , f loa t * ch9Ot i lde , f loa t *
tw ice- inv-no ise , f loa t n0 , f loa t n90, f loa t * ou tpu tO, f loa t * ou tpu t9O, in t
n , in t ch i rp len , in t * o f fse t , f loa t * snrJnax , f loa t * c0 , f loa t * c90 , f loa t
*var)

This routine filters the gravity-wave strain through a pair of optimal filters corresponding to the two phases

of a binary chirp, then finds the time at which the SNR peaks.
The arguments are:

htilde: Input. The FFT of the gravity-wave strain.

ch0tilde: Input. The FFT of the O-degree chirp.

ch9otilde: Input. The FFT of the 9O-degree chirp (assumed orthogonal to the 0-degree chirp).

twice-inv-noise: Input. Twice the inverse noise power spectrum, used for optimal filtering. The array
element twice-inv-noise [0] contains the DC value, and the array element twice-inv-noise [n/ 2)
contains the value at the Nyquist frequency.

n0 : Input. Normalization of the 0-degree chirp.

n9 0 : Input. Normalization of the 90-degree chirp.

outputo : Output. A storage array. Upon return, contains the filter output of the 0-degree phase optimal
filter.

outputgO: Output. A storage array. Upon return, contains the filter output of the 9O-degree phase

optimal filter.

n: Input. Defines the lengths of the various arrays: ch0Eilde [0. .n-]-l , ch9Otilde [0. .n-1],
orr t-nr:r 0 I 0 - n-1- l , outpuEg 0 [0 . . n-]- l , and twice- inv-noise [0 . -n / 2] .v $ e r * e v I v . .

chirplen : Input. The number of bins in the time domain occupied by the chirp that you are searching

for. This is necessary in order to untzrngle the wrap-around ambiguity explained earlier.

of f set: Output. The offset, from 0 to n-chirplen-1, at which the signal output (for an arbitrary

linear combination of the two filters) peaks.

snunax: Output. The maximum signal-to-noise ratio (SNR) found.

c0 : Output. The coefficient of the 0-phase template which achieved the highest SNR.

c90: Output. The coefficient of the 9Oo-phase template which achieved the highest SNR. Note that

cf; + clo should be 1.

var : Output. The variance of the filter output. Would be 1 if the input to the filter were colored Gaussian

noise with a specrrum defined by 5a.

Author: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: None.

r23

5.20 Function: freq-inject-chirp ()

vo id f req- in jec t -ch i rp (f loa t c0 , f loa t c90 , in t o f fse t , f loa t invMpc, f foa t *
chOt i1de, f loa t * ch9Ot i lde , f loa t * h t i lde , in t n)
The bottom-line test of any optimal filtering code or searching routines is: can you inject "fake" signals into
the data stream, and properly detecting them, while properly rejecting all other signatures of instrumental
effects, etc. This routine injects artificial signals into the frequency-domain strain h(/). The plane of the
binary system is assumed to be normal to the line to the detector.

The arguments are:

c0 : Input. The coefficient of the O-phase template to inject.

c90: Input. The coefficient of the 90o-phase to inject. Note that c?o+ clo should be 1.

of f set : Input. The offset number of samples at which the injected chirp starts, in the time domain.

invMpc : Input. The inverse of the distance to the system (measured in Mpc).

chO ti lde : Input. The FFT of the phase-O chirp (strain units) at a distance of I Mpc.

ch90tilde: Input. TheFFTof thephase-90chirp(strainunits)atadistanceof l Mpc.

htild.e: Output. TheFFTof thegravity-wavestrain. Notethatthisroutine addsinto andincrements
this array, so that if it contains another "signal" like IFO noise, the chirp is simply super-posed onto
it.

n : Input .Def ines the lengthsof thevar iousar rayschOt i - lde [0- .n -1-] ,ch90t i l -de [0 . .n -1-] ,and
h t i l d e [0 . . n - 1 J .

Note that in making use of this injection routine, you must determine the level of the quantization noise
of the ADC, and be careful to inject a properly dithered version of this signal when its amplirude is small
compared to the ADC quantization step size.

Author: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: See the comments for time-inj ect-chirp, particularly with respect to the digital quanti-
zation noise.

1 a A
L L l

5.21 Function: time-inj ect-chirp ()

void. t . ime-inject-chirp(f loat c0, f loat c90, int of fset, f loat invMpc, f loat*

ch i rpQ, f loa t * ch i rp9O, f loa t * da ta , f loa t * response, f loa t *work , in t n)

This is a time-domain venion of the previous function freq-inj ect-chirp () which injects chirps in

the time-domain (after deconvolving them with the detector's response function). This routine injects artifi-
cial signals into the time-domain strain h(t). The plane of the binary system is assumed to be normal to the

Iine to the detector.
The arguments are:

c0 : Input. The coefficient of the O-phase template to inject.

c9 0 : Input. The coefficient of the 9Oo-phase to inject. Note that c?o + cf,o should be 1.

of f set : Input. The offset number of samples at which the injected chirp starts, in the time domain.

invMpc : Input. The inverse of the distance to the system (measured in Mpc).

chirpo : Input. The time-domain plase-O chirp (strain units) at a distance of I Mpc.

chirpg 0 : Input. The time-domain phase-90 chirp (strain units) at a distance of 1 Mpc.

data: Output. The detector response in time that would be produced by the specified binary inspiral.

Note that this routine adds into and increments this aray, so that if it contains another "signal" like

IFO noise, the chirp is simply super-posed onto it.

response r Input. The function ,R(/) that specifies the response function of the IFO. This is produced

by the routine normalize-W().

work: Output. A working array.

n : I n p u t . D e f i n e s t h e l e n g t h s o f t h e v a r i o u s a r r a y s c h i r p 0 [0 . . n - 1 -] , c h i r p 9 0 t 0 - . n - 1 l , d a t a [0 . . n - 1] ,
work [0 . . n-]-l, and response [0 . . n+]-l (note that this "+" sign is not atypot).

Note that in making use of this injection routine, you must determine the level of the quantization noise

of the ADC, and be careful to inject a properly dithered version of this signal when its amplitude is small

compared to the ADC quanttzation step size.

Author: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: A short look at the time-domain signal which is injected shows that it has a low-amplitude

spike at the very start. This may be an un-avoidable Gibbs phenomenon associated with the turn-on

of the waveform. A second interesting point is that for many interesting signals, the amplitude of

the injected signal in the time domain is below the level of the quantization noise. Thus, a sensible

injection scheme would be to add it into an appropriately dithered (floa$ version of the integer signal

stream, then cast that back into an integer. This should be tried.

t25

5.22 Vetoing techniques

In an ideal world, the output of an interferometer would be a stationary signal described by Gaussian slatis-
tics (with very rare superposed binary inspiral chirps and other gravitational-wave signals). This is unfortu-
nately not the czrse, as can be quickly determined by simply listening to the raw (whitened) interferometer
output. Typically the output is a stationary-sounding hiss, interupted every few minutes by an obvious irreg-
ularity in the data stream. These are typically "pops", "bumps", "clicks", "howlers", "scrapers" and other
recognizable categories of noises. In at least some cases, there are "suspects" for these events. For exam-
ple the pops and bumps might be problems in any of the hundreds of BNC cable connectors used in the
instrument.

It is an unfortunate fact that the output of an optimal filter strongly reflects these events. As you have
seen in the previous section, a delta-functionlike impulse signal in the IFO ouput can cause a large signal
in the optimal filter. And in practice, this happens all of the time - the outputs of optimal chirp filters are
frequently triggered by identifiable events in the IFO data stream that are clearly not binary inspiral chirps.
Distinguishing these events from real inspiral chirps is called vetoing- We have found that two vetoing
techniques work particularly well.

The first technique operates in the time domain, and is documented in the routine is-gaussian () .
The idea is straightforward: if a chirp detector (optimal filter) is riggered, then we look in the data stream for
an impulse event that might be responsible. Such events can be found by looking at the statistical distribution
of the points in the time domain. If this distribution is significantly non-Gaussian then it indicates that some
Iarge transient event caused the filterto trigger, and the event is rejected.

The second technique is described here, and operates in the frequency domain. It is a very stringent test,
which determines if the hypothetical chirp which has been found in the data stream is consistent with a true
binary inspiral chirp summed with Gaussian interferometer noise. If this is true, it should be possible to
subtract the (best fit) chirp from the signal, and be left with a signal stream that is consistent with Gaussian
IFO noise. One of the nice features of this technique is that it can be statistically characterized in a rigorous
way.

Suppose that one of our optimal chirp filters Q is triggered with alarge SNR at time /6. We will denote
the signal value at this time by 5:

r : , /^ r f f f i . -2r ir to
(s.22.1)

(Here, "fNy denotes the Nyqist frequency, one-half of the sampling rate.) The chirp template ? is normalized

so that the expected value (,A/2) : 1;

lo'*"o,ffili :' (s.22.2)

We are going to investigate if this signal is "really" due to a chirp by investigating the way in which S gets its

contribution from different ranges of frequencies. To do this, break up the integration region in this integral

into a set of p disjoint subintervals A.fr, - . - , Afp whose union is the entire range of frequencies from DC

to Nyquist. Here p is a small integer (for example, p : 8). This splitup can be performed using the GRASP

function splitup () . The frequency intervals:

A ^ / I : { / 1 0 < f < f t }
o ' : : { f l h < f < f z }

L fp : { f l f p t< " f < . f xv } ,

t26

(s.22.3)

I'
!

are defined by the condition that the expected signal contributions in eachfrequency bandfrom a chirp are
equal:

Because the filter is optimal, this also means that the expected noise contributions in each band from the
chirp is the same. The frequency subintervals Afi are fairly narrow in regions of frequency space where the
interferometer is quiet, and they are fairly wide in regions where the IFO is noisy.

Now, define a set of p signal values, one for each frequency interval:

lo,,orffii; :;1,^"drm

r L f r t ' n x / f \

Su: I df
'+L+:!) "-2nifto for i : L,... ,p."

J-at iua.h
- Si (l / l)

P(AS1,- .- , ASp) : ftQno)-r/ze-^s?/2o
-- (2ro)-p/2"-(asl+"'+Ls2,)/zo

(s.22.4)

(s.22.s)

(5.22.7)

(s.22.9)

(s.22.10)

(s.22.11)

We have included both the positive and negative frequency subintervals to ensure that the S; arc real. If the
detector output is Gaussian noise plus a true chirp, then the expected value of each of these signal values is
(Si) : S /p. ln this case the values of ASt - St - S /p are independent normal random variables with a
mean value of zero and a variance a determined by the expected value of the noise-squared. Because of our
choiib of template normalization this is:

t ' ^) r t ^ - 9 r ro : (ASi) : (N') /p : I /p. (s.22.6)

Hence, in the presence of a true chirp and interferometer noise, the probability distribution of the ASI is
given by

i,=1

Thus, if our optimal chirp filter is triggered by an event, we can check the contributions to the signal in

each of p frequency subintervals, to determine if the distribution of frequency and the anival times in the p

distinct subintervals is consistent with "chirp + Gaussian noise".
Because the AS; are independent random variables with zero mean and variance I /p, the sum of their

squares is described by aX2 probabitiry distribution. Define the statistic

12 : t(asi)2. 6.22.8)
z : L

Then one can easily compute the probability distribution of r. The probabiliry that r) Rin the presence of

a true chirp signal is

P(r > E) : (2tro)-olzgo-, [* ,N-r"-r2/2o6,. r - J R

: -:- [* ,n/2-r"-24"
l(plz) Jpzpo

: Q@12, R2 lZo1,

where Oo is the p-volume of a unit-radius p-sphere Sp. The incomplete gamma function Q is the same

function that describes the likelihood function in the traditional 12 test.

In practice (based on CIT 40-meter data) breaking up the frequency range into p : 8 intervals provides

a very reliable veto for rejecting events that trigger an optimal filter, but which are not themselves chirps.

The value of Q@.10.0) : 0.0103 . . - so if r2 > 2.5 then one can conclude that the likelihood that a given

t21

trigger is actually due to a chirp is less than 1%; rejecting or vetoing such events will only reduce the "bue

event" rate by 1%. However in practice it eliminates almost all other events that aigger an optimal filter; a
noisy event that stimulates a binary chirp filter typically has r2 = 100 or larger!

Note that this technique is probably a computationally-efficient and simple version of the maximum-
likelihood statistical test. This test is probably obtained in the limit where the number of frequency bins
equals p.

5.23 Function: splitup o

vo id sp t i tup(f loa t *work ingr , f loa t templa te , f loa t * r , in t n , f loa t to ta1 ,

in t p , in t * ind ices)

This routine takes as inputs a template and a noise-power spectrum, and splits up the frequency spectmm

into a set of sub-intervals to use with the vetoing technique just described.

The arguments are:

working: Input- An array working [0 . . n-1-] used for working space.

template: Input. The array template [0. .n_-1] contains the positive frequency (/ > 0) part of

the complex function "(/). The packing of ? into this array follows the scheme used by the Nu-

merical Recipes routine realf t () , which is described between equations (12.3.5) and (12.3.6) of

[1]. The DC component ?(0) is real, and located in template [0] . The Nyquist-frequency comPo-

nent ?(fi,sro,rist) is also real, and is located in template [1] . The anay elements template [2]
and template[3] contain the real and imaginary parts, respectively, of f(A/) where Af :

2"fNyqoirt/n : (nAt)-I. 4ouy elements template t2 j I and template t2j+l) contain the

real and imaginary parts of f (j Af) forT - 1,.", n/2 - L.

r: Input. The array r [0 . .n/2] contains the values of the real function f which is twice the inverse of the

receiver noise, as in equation (5.14.13), so that F(f) : Z/SnWD.The array elements are arranged in

order of increasing frequency, from the DC value at subscript 0, to the Nyquist frequency at subscript

n /2 .Thus , the j ' thar raye lement r t j l con ta ins therea lva lue f (iA l) , fo r j :0 ,1 ' " ' ,n /2 -Aga in
it is assumed ttrat f(-/) : f"(f) : r(f).

n: Input. The total length of the complex arrays templaEe and working, and the number of points in

the output array s. Note that the array r contains n/2 + L points. n must be even.

total : Input. This is the total value of the integrated template squared over S7r; the frequency subinter-

vals are choose so that each of the p subintervals contains I/p of this total.

p : Input. The number of frequency bands into which you want to divide the range from DC to /Nyquist.

ind.ices : Ouput. The frequency bins of the first frequency band are i=0 . . indices [0] . The next

frequency bandis i=indices [0] +1. . indices [1] . Thep'thfrequencybandis i=indices [p-2] +1. - i

Note that indices tp-11 =n- 1.

Author: Bruce Allen, ballen @ dirac.phys.uwm.edu

Comments: None.

129

5.24 Function: splitup-f req ()

f loa t sp l i tup- f req(f loa t c0 , f loa t c90 , f loa t , *ch i rp0 , f loa t *ch i rp90, f loa t
norm, f loaE* tw ice- inv-no ise , in t n , in t o f fse t , in t p , in t * ind ices , f loa t *
s ta ts , f loa t * work ing , f loa t * h t i lde)
This routine returns the value of the statistic ,2 : D;=t(ASr)2. This is a less-efficient version, which
intemally constructs filters for each of the different frequency subintervals, and then filters the metric per-
turbation through those filters. It is useful to understand how the different frequency components behave in
the time domain, after filtering.

The arguments are:

c0 : Input. The coefficient of the 0-phase template.

c9 0 : Input. The coefficient of the 9O'-phase template. Note that cf, + cf;o should be 1.

chirpO: Input. Ana:ray chirpO[0..n-1-] containingtheFFTof theO-phasechirp.

chirpg0: Input. An array chirpg0 [0. .n-11 containing theFFTof the 9O'-phasechirp.

norm: Input. The normalization of the 0-phase chirp.

twice-inv-noise: Input. Thearray Ewice-inv-noise t0. .n/2] contains 2/Sn(il,as described
previously. The array element twice-inv-noise [0] contains the DC value, and the array element
twice-inv-r:oise [n/ 2) contains the value at the Nyquist frequency.

n: Input. Defines the lengths of the previous iurays.

of f set: Input. The offset of the moment of maximum signal in the filter output.

p : Input. The number of frequency bands p for the vetoing test.

ind.ices : Output. An array indices [0 . . p- 1] used for internal storage of the frequency subintervals
(see spl i tup O.

s t a t s : O u t p u t . A n a r r a y s t a t s t 0 . - p - 1 1 c o n t a i n i n g t h e v a l u e s o f t h e S l f o r i : I , . - - , p .

working : Output. An array working [0 . . n- 1-] used for internal storage.

htilde : Input. An array htilde [0 . . n-11 containing the positive frequency pafi of [(/).

Author: Bruce Allen, ballen @ dirac.phys.uwm.edu

Comments: None.

130

I

t-*

I

5.25 Function: splitup-freq2 o

f loa t sp l i tup* f req2(f loa t c0 , f loa t c90 , f loa t *ch i rpO, f loaE *ch i rp90, f loac
norm, f loa t * tw ice- inv-no ise , in t n , in t . o f fse t , in t p , inE* ind ices , f loa t *
s t ,a ts , f loa t * work ing , f loa t * h t i lde)
This routine retums the value of the statisti" -2 - s-P /n <'\2 This is a more computationally-efficient
version, which ao", no, il;;;;r""gh-"".rr "r ffi1;t##ent time domain fitters. The arguments are
identical to those of splitup-f req () .

The argumentS are:

c0: Input. The coefficient of the 0-phase template.

c9 0 : Input. The coefficient of the 9Oo-phase template. Note that cf, + clo should be 1.

chirpO: Input. AnarraychirpO[0. -n-1] containingtheFFTof theO-phasechirp.

chirpg0: Input. Anaray chirpg0 [0..n-1] containingtheFFTof the90"-phasechirp.

norm: Input. The normalization of the 0-phase chirp.

twice-inv-noise: Input. The array Ewice-inv-noise t0 . .n/21 contains ZlSnff), as described
previously. The anay element twice-inv-noise [0] contains the DC value, and the array element
twice-inv-noise [n/2] contains the value at the Nyquist frequency.

n: Input. Defines the lengths of the previous arrays.

of f set: Input. The offset of the moment of maximum signal in the filter output.

p : Input. The number of frequency bands p for the vetoing test.

indices: Output. Anarray indices [0. -p-1] usedforinternal storageof thefrequency subintervals
(see splitup O .

stats : Output. An array sLats [0 - - p-1] containing the values of the 5; for i -- L,

workingi' : Output- An array working [0 . . n- 1] used for internal storage.

htilde : Input. An array htilde [0 . . n-]- I containing the positive frequency part of t(/).

Author: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: None.

!{
I

h
1 f ,

1 3 1

5.26 Example: optimal program

This program reads the 4O-meter data stream, and then filters it though a chirp template corresponding to a
pair of inspiraling L.4Mo neutron stars.

The correspondence between different arrays in this program, and the quantities discussed previously

in this section, is given below. In these equations, At : 1/srate is the sample time in seconds, and
Lf : (nAt)-1 : srate/npoint is the sizl of a frequency bin, in Hz. Here n: Dpoint is the number of
points in the data stream which are being optimally filtered in one pass.

Chirp templates (in frequency space) for the two polarizations are related to the arays chirpO I I and
^ h l f f i | | | n \ /

L J 9 J

ioOl

-t bot/)

At
HSCALE

A'
HSCALE

chirpo[]

chirpl []

(s.26.1)

(s.26.2)

(s.26.4)

(s.26.6)

(s.26.7)

where the elements chirp0 t2jl and chirpO t2j+Ll are the real and imaginary parts at frequency

f : j\f (with the exception of the Nyquist frequency, stored in chirpO I i-]). Note that to ensure that
quantities within the code remain withinthe dynamic range of floating point numbers, we have scaled up the
template strain by a constant factor HscanE; we also scale up the interferometer output by the same factor,

so that all program output (such as signal-to-noise ratios) is independent of the value of HSCAI,E- If you're

not comfortable with this, go atread and change HSCALE to 1. It won't change anything, provided that
you don't overflow the dynamic range of the floating point variables! The scaled interferometer response

function is
response[] : HSCATS/mULUUCTH x .R(/), (5.26.3)

where the function -l?(/) is defined by equation (3.12.3). The Fourier transform I of the dimensionless

strain is obtained by multiplying Al and the FFT of channel . 0 by response [], yielding

nU) :=*o .nae[] ., HSCALE

The one-sided noise power spectrum Snff) is the average of

sn(/) : -J-Wffy': ###lhtilde[)P: ffi i;ntuaef]12. (s.26.s)

The power spectrum SnU) is averaged using the same exponential averaging technique described for the

routine avg'-spec () . This average is stored as

Twice the inverse of this average is stored in the arrav twice-inv-noise [], so that

2 n HSCALE2

s n f f) L t

The expected noise-squared for the plus polarization

z \ t o . L t
Si,(/) : ;ffi

(lhtilde[]l') : ;T#rp'ean-pow-spec[]

twice- inv-noise[] .

is given by equation (5.14.8):

(N') : | ra,al : ; l :*W
: ! J - 'pp7^- , [

(a t) ' -
t ch i rp ' , l , 'H t?ALE'1 .o

2nA,t-
' -

LHSCALEZ
' r-L rr At ,

- ' r ice- inv-aoi-selJ]

r32

{-:
I
I

:
|rru;' ll"ui'noI ll ']r"t.":n.,-noi.se[]]
1 - | ^ r r ^ r 1 . r l
jcorrelate(.- . , chirpO[], cbirpO[], twice-inv-noise[], npoint). (5.26.8)

where the subscript on the inverse FFT means "at zero lag", and "--+
7;t means "returned by the call to the

function f'. We have chosen a distance for the system producing the "chirp"
4/) so that the expected value

of (.Atr2) : 1.
In similar fashion; thesignal ,9 at lag t6 isgiven by

h -
s : (; ,Q)

D h

1 ---_1 | at Lt: -rrrto- lrsclrr-otilde[1,,r*r,
(chirpo[]). "tXftt'

]."r""-ro.,-oo:.s"[]l
L -

: FFT.-L
fortr.u.tl

chirpo[1]r"l."-in,-oo:.se[]]

I

-) correlate(. . . , htilde[], chirpO[], twice-inv-aoise [], npoint),

where now the subscript on the FFT means "at lag t: i Lt".

(s.26.e)

You might wonder why we have been so careful - after all, both the signal and the noise, as we've
defined them, are dimensionless, so it's not surprising that all of the factors of At drop out of the final
formulae for the signal and the expected noise-squared. The main reason we've been so long winded is
to show exactly how the units cancel out, and to demonstrate that there aren't any missing dimensionless
constants, like npoint, left out of the program. Some sarnple output from this progmm is shown in the
next section.

T J J

/* GRASP: Copyright 1997, Bruce
inc lude "grasp.h '

#define NPOTNT L3L072
*def ine FLO l -20 .0
*define ARMLENGTH 40.O
*def ine HSCALE L .e2 t
*define MIN-rNIO-LOCK 3.0
#define SAFETY 1000

Allen x/

/ * The size of our segments of data (1 3.1 secs) */

/x The low frequency cutoff for filtering */

/* Armlength of the IFO, in meters */

/* A convenient scaling factor; results independent of it * /
/x Number of minutes to skip into each locked section */

/* Padding safety factor to avoid wraparound errors */

i n t ma ino {
v o i d r e a l f t (f l o a t * , u n s i g n e d l o n g , i n t) ;
. i n r i a a A a - ^ ^ ; n t , r e m a i n = 0 , m a x i , c h i r p l e n , n e e d e d . d i f f , i m p u l s e o f f , c h i r p p o i n t s , i _ n d i c e s I g] ;

, v v s v r . . y v r

f loa t d is t ,ance,snr rnax ,s ra te=9858 -420gg843 '75 , tsCarL , *mean-pow-spec , t imeof f , t i -mestar t , '
f l oa t +data , *h t i lde , *ou tpu tg0 ,xoutpu t0 , *ch i rpO,*ch i rp90, *chOt i1de, , tcb90t i lde ;
f loat n0 , n90 , inverse-distance-sca1e, decaytime, *twice-inv-noise, d.atastarE, tc;
f I n a t - I i n o I i - o 0 , i n v M p c _ i n j e c t , v a r s p l i t , s t a t s [8] . g a m m g (f f o a t , f l o a t) , v a r , : * r e s p o n s e ;
double decay, norm, prob;
short *daeas;
F ILE x fp i fo , x fpss , * fp lock ;

/* open tlie tFO output file, lock file, and swept-sine file x/
fpifo=grasp-open (" GRASP_DATAPATH' , 'channel . 0 ") ;
fp1 ock=grasp-open (' GRASP_DATAPATH ", ' channel . 1 0 ") ;
fpss=grasp-open (" GRASP_DATAPATH' , " swepts-sine . asci i

/* number of points to sample and fft (power of 2) */
needed=npo int=NPOIIfif ;

/{. stores ADC data as short integers */
da tas= (shor tx)mal1oc (s izeo f (shor t) *npo in t) ;

/* stores ADC data in time & freq domain, as floats ,r/
data= (f loat *)mal loc (s izeof (f1oat) xnpoint) ;

/'r The phase 0 and phase pi/2 chirps, in time domain */
c h i r p O = (f 1 o a t x) m a 1 l o c (s i z e o f (f l o a t) x n p o i n t) ;
ch i rp90= (f loa t , r .)ma11oc (s izeo f (f loa t) xnpo in t) ;

/* Orthogonalized phase 0 and phase pi/2 chirps, in frequency domain x/

ch0t i lde= (f loa t *)ma l loc (s izeo f (f loa t) *npo in t) ;
ch90t i lde= (f1oat , r)maI loc (s izeo f (f loaL) xnpo in t) ;

/,r The response function (transfer function) of the interferometer */
r e s p o n s e = (f 1 o a t x) m a I I o c (s i z e o f (f l o a E) * (n p o i n t + 2)) ;

/* The gravity wave signal, in the frequency domain */
h t i l d e = (f I o a t . *) m a I 1 o c (s i z e o f (f 1 o a t) x n p o i n t) ;

/x The autoregressive-mean avera-sed noise power spectrum x/
mean-pow-spec= (f1oat *) rna lJ -oc (s izeo f (f loa t) * (npo in t /2+1)) ;

/* Twice the inverse of the mean noise power spectrum r./
tw ice- inv-no ise= (f loa t * .)ma11oc (s izeo f (f loa t) x (npo in t /2+1)) ;

/* Ouput of matched filters for phase0 and phase pi/2, in time domain, and temp storage */

o u t p u t O = (f l o a t x) m a 1 l o c (s i z e o f (f l o a t) * n p o i n t) ;
o u t p u t 9 0 = (f l o a t *) r n a 1 l o c (s i z e o f (f l o a e) * n p o i n t) , '

/* get the response function, and put in scaling factor * f

t34

normalize-grw (fpss . npoint, srate, response) ;
f o r (i = 0 ; i (n p o i n t + 2 ; i + +)

response I i] *=HSCAT'E/arug-eWCtH ;

/x manufacture two chirps (dimensionless strain at I Mpc distance) */

m a k e - f i l t e r s (1 . 4 , 1 . 4 , c h i r p 0 , c h i r p 9 0 , F L O , n p o i n t , s r a t e . & c h i r p p o i n t , s . & t c , 0 , 4) ;

/,r. normalization of next line comes from GRASP (5.6.3) and (5.6.$ */

inverse-disLance-scale=2 - 0*HSCALE* (TSOLAR*CJfGHT/MPC) ;
fo r (i=0 ; i<ch i rppo in ts ; i++) {

chO t i lde I i] =chirpO I i '] *=invgtse-dis tance-s cale ;
ch9 0 Li 1de I i] =chirp9 0 [i] x= inverse-dis tance-scale ;

'l

f x zero out the unused elements of the tilde arrays */

for (i=chirppoints ; i (npoint; i++)
c h 0 t i l d e I i] = c h 9 O t i l d e I j -] = 0 . 0 ;

/*. and FFT the chirps x/
rea l f t (cho t i1de-1 , npo in t . , 1) ;
rea l f t (ch90e i lde-1 , npo in t , l -) ;

/* set length of template including a safety margin x/

chirpl en= chi rppo ints + SAFETY T
if (chirplen)npoint) abortO ;

/x This is the main program loop, which aguires data, then filters it */

w h i l e (1) {

/r, Seek IvIIN-INTOJOCK minutes into a locked stretch of data */

while (remain(needed) {
qefls=get-data (fpifo , fplock, &cstart, MrN-I l f l fO-LOCK*6 0xsrate,

da las , &remain , &sra te , 1) ;
i f (c o d e = = 0) r e t u r n 0 t

l)

/x ifjust entering a new locked stretch, reset averaging over power spectrum {./
a

I ! \ L s u e - - r /)

n o r m = O . 0 ;
clear (mean-pow-spec, npoinL /2+t , t) ;

f * decay time for spectrum, in sec. Set to l5x length of npoint sample *./

decay t ime=15 . 0xnpo in t /s ra te ;
decay=slql (-L - 0*npoint/ (srat.e*decaytime)) ;

)

/* Get the next needed samples of data x f
dif f=npoint-needed;
c o d e - g e t - d a t a (f p i f o , f p l o c k , & t s t a r t , n e e d e d . d a t a s + d i f f . & r e m a i n . & s r a t e , 0) ;
da tas tar t= ts ta r t -d i f f / s ra te ;

fx copy integer data into floats */

f o r (i = 0 , ' i (n p o i n t ; i + +) d a t a I i] = d a t a s I i] ;

f * inject signal in time domain (note output0l] used as temp storage only) x/

invMpc-inject=O .0 ; /* To inject a signal at 10 kpc, set this to 100.0 */

t ime- in j ec t -ch i rp (1 . 0 , 0 . 0 , L23 45 , invMpc- in j ec t , ch i rpO, ch i rp90, da ta ,

response, ou tpu t0 , npo in t) ;

/* find the FFT of datax/

135

r e a l f t (d a t a - 1 , n p o i n t , 1) ;

/x normalized delta-L/L tilde x/
p roduc t (h t i lde . da ta , response.npo in t /2) ;

/x update the inverse of the auto-regressive-mean power-spectrum */

avg-inv-spec (FLO, srate, npoint, decay, &norm, ht i lde,mean-pow-spec, twice-inv-noise)

/x inject a signal in frequency domain, if desired x/
invMpc-i-n j ect=0 . 0 ; /* To inject a signal at l0 kpc, set this to 100.0 */

f r e q - i n j e c t - c h i r p (- 0 . 4 0 5 . 0 . 9 1 3 5 , 2 3 4 5 5 , i n v M p c - i n j e c t , c h O t i l d e . c h 9 0 t i l d e , h t i l d e ,
npo in t) , '

/,r orthogonalize the chirps: we never modify chOtilde, only ch9Otilde ,r/

orthonormalize (chOeilde, ch9 0 t i lde, twice-inv-noise, npoinL, &n0, &n90) ;

/* distance scale Mpc for SNR=I */
d i s t a n c e = s g r t (1 . O / t n O x n O) + L . 0 / (n 9 0 , r n 9 0)) ;

/x find the moment at which SNR is a maximum x/

f ind-ch i rp (h t . i lde , chOt i lde , ch90t i lde , tw ice jnw-no ise , n0 , n90, oueput0 , ou tpu t90 ,
npoinL, chirplen, &maxi , &snr-rnax, &1inO, &1in90 , &var) ;

/* identify when an impulse would have caused observed filter output 'r,/

impulseof f = (maxi+chirppoints) tnpoint ;
t imeof f =datas tart+impulseof f /sraEe ;
t imes tarE=datas tart+maxi /srate ;

/x if SNR greater than 5, then print details, else just short message */

i f (snr - rnax(S.0)
p r i n t f (" m a x s n r : * - 2 f o f f s e t : B d d a t a s t a r t : * . 2 f s e c . v a r i a n c e : * . 5 f \ n ' ,

snr-max, maxi, datastart, var) ;
e l s e {

/x See if the nominal chirp can pass a frequency-space veto test x/

varsp l i t=sp l i tup- f req2 (1 inO*nO /sqrE(2 .0) ,1 in90xn9O/sqr t (2 -0) , chOt i1de,

ch90t i lde , 2 . 0 / (nO* .n0) , t rw ice- inv-no ise ,npo in t ,max i , 8 .
ind ices , sea ts , oucput0 , hc i lde) ;

p rob=gammq (4 . 0 , 4 . O*varsp l i t) ;
p r i n t f (' \ n u a x S N R : * . 2 f (o f f s e t B d) v a r i a n c e 8 f \ n " , s n r l n a x , m a x i , v a r) ' '
p r i n t . f (' I f i m p u l s i v e e v e n t , o f f s e E B d o r t i m e * . 2 f \ n ' , i m p u l s e o f f , t i m e o f f) ;
n r i n f f (" T f i n s n i r a l t � e m r l l a r a s t a r t o f f s e t B d (t i m e 3 . 2 f) ' , m a x i , t i m e s t a r E)

n r i h t - f / " n n a l a c ^ o n . a t i m a * ? f \ n " f i m c q F t r l . + l - c l :
! - 4 1 r e 4 \ v v q r v J v v

pr in t f (" Normal i -za t j ,on : S /N=1 aL * .2 f kpc \n" , 1000.0*d . is tance) ;
p r in t f (" L in combina t ion o f max SNR: B.4 f x phase-0 + * .4 f x phase3 i /2 \n" ,

1 i n O , 1 i n 9 0) ;
i f (p r o b < O . 0 1)

pr in t f (" Less than 1?8 probab i l i t y tha t th is i s a ch i rp

e l s e
pr inEf (" POSSTBLE CHIRPI w i . th >] -ZZ probab i l i t y (p=* f)

/x See if the time-domain statistics are unusual or appears Gaussian *./

i f (i s -gauss ian (da tas . npo in t , -2048 ,2047 , l l)
p r i n t f (" D i s t r i b u t i o n d o e s n o E a p p e a r t o h a v e o u t l i e r s - - . \ n \ n ") ;

e l s e
pr in t f (" D is t r ibu t ion has ou t l ie rs ! Re jec t \n \n") ;

)

/* shift ends of buffer to the start */
needed=npoint.-chirplen+ 1 ;

(p = ? f) . \ n " , p r o b) ;

. \ n " , p r o b) ;

136

t*
I
I

fo r (i=0 ; l (ch i rp len-1 ; i++)
datas I i] =datas I i+needed i ;

/* reset if not enough points remain to fill the buffer x/

i f (remain(needed)

needed=npoint;

:

137

5.27 Some output from the optimal program

Some output from the opEimal program follows:

m a x s n r : 3 . 1 - 1 o f f s e t
m a x s n r : 2 - 9 l - o f f s e t

max snr : 2 -53 o f fse t
m a x s n r : 2 . 9 8 o f f s e t

2 3 5 2 3 d a t a s t a r t : l - 8 0 . 0 0 s e c . v a r i a n c e : 0 . 9 4 0 4 4
3 3 1 1 d a t a s t a r t r : l - 8 5 . l - 7 s e c . v a r i a n c e : 0 . 8 4 4 8 4

1 - 9 0 4 1 - d a t a s t a r t : 3 0 9 . 2 6 s e c . v a r i a n c e : 0 . 7 0 3 3 3
3 571 i - da ta s ta r t : 31-4 .43 sec . var iance : 0 .67523

M a x S N R : 8 . 7 1 (o f f s e t 4 2 1 - 0 9) v a r i a n c e 0 . 8 0 5 0 3 0 '

T 4 . : * - - - a - : - - ^ ^ r ! - ^ ! 5 5 6 2 4 o r t i r n e 3 2 5 . 2 3! L J - [r ! J L t l - > I V C C V C L t r - , L) ! . l - 5 C L

r r in<n i ra l templa te s ta r t o f fse t 42L09 (t ime 323-85) coa lescence t ime 325. '
Normal izat ion: S,/N=l- at 1i-5.75 kpc
L inear combina t ion o f max SNR: 0 .931-5 x phase_0 + 0 .3638 x phase l> i /2
Less than 1-% probab i l i t y tha t th is i s a ch i rp (p=0.000000) .
D i s t r i b u t i o n : s = 2 3 , N > 3 s = 1 . 2 (e x p e c t L 7 6) , . [T > 5 s = 0 (e > p e c t 0)
Distr ibut ion does not appear to have out l iers. . .

m a x s n r : 2 . 5 1 , o f f s e t : 3 l - l - 8 3 d a t a s t a r t : 3 2 4 . 7 7 s e c . v a r i a n c e : 0 . 5 3 0 2 8
m a x s n r : 2 . 5 6 o f f s e t : 4 9 9 0 9 d a t a s t a r t : 3 2 9 . 9 4 s e c . v a r i a n c e : 0 . 6 6 8 5 3

m a x s n r z 2 . 8 2 o f f s e t : 3 5 0 8 0 d . a t a s t a r t : 3 0 0 2 . 0 3 s e c . v a r i a n c e : 0 . 7 7 3 0 6
m a x s n r : 2 . 6 1 o f f s e t : 3 3 1 4 1 d a t a s t a r t : 3 0 0 7 . 2 0 s e c . v a r i a n c e : 0 . 7 4 2 6 8

Max SNR : 89 -75 (o f fse t L6678) var ianc e 82 .547005 i
I f i m p u l s i v e e v e n t , o f f s e t 3 0 1 9 3 o r t i m e 3 0 1 5 . 4 3
f f insp i . ra l , templa te s ta r t o f f se t 16678 (t , ime 3014.05) coa lescence t ime 301c
Normal iza t ion : S , /N=1 a t L28.49 kpc
L inear combina t ion o f max SNR: -0 .3955 x phase-0 + 0 .9185 x phase j i /2
L e s s t h a n 1 % p r o b a b i l i t y t h a t t h i s i s a c h i r p (p = 0 - 0 0 0 0 0 0) .

D i s E r i b u t i o n : s = 2 9 , N > 3 s = 1 5 7 (e > r p e c t t 7 6 l , N > 5 s = 3 0 (e x p e c t 0)
D is t r ibu t ion has ou t l ie rs ! Re jec t

m a x s n r : 3 . 2 4 o f f s e t
m a x s n r : 2 . 7 3 o f f s e t

m a x s n r : 2 . 8 0 o f f s e t
m a x s n r : 2 . 7 5 o f f s e t

2241,2 da ta sLar t : 3 0 l -7 . 54 sec - var iance: 0 .994 '7 4
3 7 7 7 7 d a t a s t a r E : 3 0 2 2 . 7 1 s e c . v a r i a n c e : 0 . 7 5 3 2 5

5 8 9 3 d a t a s t a r t : 4 L 4 0 - 8 9 s e c . v a r i a n c e : 0 - 7 3 2 4 0
4 6 9 3 2 d a t a s t a r t : 4 1 4 6 . 0 5 s e c . v a r i a n c e : 0 . 6 9 6 5 4

M a x S N R : 6 - 0 8 (o f f s e t . 3 0 0 0 2) v a r i a n c e 0 . 8 8 3 3 8 0
If impulsive event, of fset 4351-7 or t ime 4L55-64
I f i n s p i r a l , t e m p l a t e s t a r t o f f s e t 3 0 0 0 2 (t i m e 4 1 5 4 - 2 7) c o a l e s c e n c e t i m e 4 l - 5 '
Normal iza t ion : S /N=1 a t . 1 l_3 .04 kpc
L inear combina t ion o f max SNR: -0 .4773 x phase-O + 0-878-1 x phase-p i /2

POSSIBLE CHIRP ! with > 1-% probabi l i ty (p=0 . 024142) .
D i s t r i b u t i o n : s = 3 1 , N > 3 s = 3 9 9 (e x p e c t L 7 6) , N > 5 s = 5 3 (e x p e c L 0)
D is t r ibu t ion has ou t l ie rs ! Re jec t

138

t

m a x s n r : 2 - 7 7 o f f s e t : 1 5 9 8 5 d a t a s t a r t : 4 L 5 5 . 4 0 s e c . v a r i a n c e : 0 . 7 2 0 9 5
m a x s n r : 2 - 6 9 o f f s e t : 4 7 3 3 8 d a t , a s t a r t : 4 1 - 6 L . 5 7 s e c . v a r i a n c e : 0 . 6 9 7 0 8

This output shows three events that triggered an optimal filtering routine. The first and second of these
events were rejected for different reasons. The first was rejected because if failed the frequency-distribution
test. The second was rejected because it had 30 outlier points. The third failed for the same reason: it had
53 outlier points.

Next, we show some output when a fake chirp signal is injected into the data stream. This can be done
for example by modifying optimal to read:

i n v M p c _ i n j e c t = 1 0 0 . 0 ; / * l o i n j e c t a s i g n a l a t 1 0 k p c , s e t t h i s t r o 1 0 0 . 0 * /

r - i m o . i n - . i a n t - - t i r p (1 . 0 , 0 . 0 , L 2 3 4 5 , i n v M p c _ i n j e c t , c h i r p 0 , c h i r p 9 0 , d a t a , r e s p o n s e , o u t p ue 3 . r r v _ * ^ 4 J

This produces the following output:

M a x S N R : 9 - 9 6 (o f f s e t L 2 3 4 5) v a r i a n c e 0 . 8 7 2 5 2 4
I f i m p u l s i v e e v e n t , o f f s e t 2 5 8 5 0 o r L i m e L 8 7 . 7 9
Tf i r rsn i ra ' l , templa te s ta r t o f fse t L2345 (t ime 3-86 .42) coa lescence t ime 187 -7L L L E Y L L g L

I

Normal iza t ion : S /N=L a t 152.1-7 kpc
L inear combina t ion o f max SNR: 0 .9995 x phase-0 + -0 .0304 x phase3 i /2

POSSIBLE Ci I IR .P! w i th > 1 -% probab i l i t y (p=0.42L294) .

D i s t r i b u t i o n : s = 2 3 , N > 3 s = 1 2 (e x p e c t 1 7 6) , N > 5 s = 0 (e x p e c t 0)
Distr ibut ion does not appear to have ouLl- iers. . .

M a x S N R : L 2 . 8 4 (o f f s e t 1 2 3 4 5) v a r i a n c e 0 . 8 3 4 5 2 7
I f i m p u l s i v e e v e n t , o f f s e t 2 5 8 5 0 o r t i m e L 9 2 . 9 6
I f i n s p i r a l , t e m p l a t e s t a r t o f f s e t L 2 3 4 5 (t i m e I g L . 5 9) c o a l e s c e n c e t i m e 1 , 9 2 . 9

Normal iza t ion : S , /N=1 aX t32-47 kpc
L inear combina t ion o f max SNR: 0 .9953 x phase-O + 0 .0973 x phase-p i /2

P O S S T B L E C H I R P ! w i t h > 1 % p r o b a b i l i E y (p = 0 . 9 4 9 7 3 7) .

D i s t r i b u t i o n : s = 2 2 , N > 3 s = 2 8 (e x p e c L 1 7 6) , N > 5 s = 0 (e x p e c t 0)
D is t r ibu t ion does no t apoear to have ou t l - ie rs - . .

M a x S N R : 1 4 . 8 5 (o f f s e t] - 2 3 4 5) v a r i a n c e 0 . 8 0 1 6 4 0
T f i m n u l s i w e e v e n t . o f f s e f 2 5 8 6 0 o r t i m e 1 9 8 . 1 3
I f i n s p i r a l , t e m p l a t e s t a r t o f f s e t I 2 3 4 5 (t i m e L 9 6 - 7 6) c o a l e s c e n c e t i m e 1 9 8
Normal iza t ion : S /N-] - a t L27 -90 kpc
L i n e a r c o m b i n a t i o n o f m a x S N R : 0 . 9 9 9 3 x p h a s e _ 0 + - 0 . 0 3 7 2 x p h a s e - : r i l 2

P O S S I B L E C H I R P ! w i t h > 1 % p r o b a b i l i t y (p = 0 . 9 9 9 2 3 6) .

D i s t r i b u t i o n : s = 2 2 , N > 3 s = 3 5 (e x p e c t 1 1 6) , N > 5 s = 0 (e x p e c t 0)
D is t r ibu t ion does no t apDear to have ou t l ie rs . . .

The code is correctly finding the chirps, getting the distance and phase and time location of the chirps about
as accurately as one would expect given the level ofthe IFO noise.

r39

Data Stream
19 Nov 94 run 1

40000.0
Sample Number

0.0

Figure 27: This shows the event that tiggered the 2 x 1.4 solar mass binary inspiral filter with a SNR of
8.71 (see the first set of sample output from th.e optimal filtering code aboven at time 325.23). This same
"event" can also be seen in Figure 7. The horizontal axis is sample number, with samples :l 10-4 seconds
aparti the vertical axis is the raw (whitened) IFO output. The event labeled "dnp" can be heard in the data
(it sounds like a faucet drip) and is picked up by the optimal filtering technique, but it is NOT visible to the
naked eye. This event is vetoed by the splitup technique described earlier - it has extremely low probability
of being a chirp plus stationary noise.

There are several interesting lessons that one can learn ftom this optimal filtering experience. The first
is that (roughly speaking) the events that higger an optimal filter (driving the output to a value much larger
than would be expected for a colored-noise Gaussian iuput) can be broken into two classes: those which can
be seen in the raw data stream, and those which can not. [Iere, by "seen in the raw data steann", we mean
"visible to the naked eye upon exafirination of a graph". Shown in the following two figures me examples
of each type of spudous event.

140

t
r '

L.
t

f-

L
I

I

t
. [

i

t
I
I
t

L
I

t
I

L
t

L
I

t
I

t
I

t
i

L
L
t

Figure 28: T'his another event that tiggered the 2 x 1.4 solar mass binary inspiral filter with a SNR of 17.33.
This event sounds like a "burnp"; it is probably due to abad cable connection. Itcan be easily seen (and
vetoed) in the time domain. A close-up of this is shown in the next figure.

Data Stream
19 Nov 94 run 1

a
3X,T1,r...

o
B

-400.0 L

- 400 .0 '
43750.0

Data Stream
19 Nov 94 run 1

40000.0
Sample Number

44150:0 44350.0
Sarnple Number

44750.0

Figure 29: A close-up of the previous graph, showing the struchrre of the "bump"

141

Data Stream
19 Nov 94 run 1

I
l q - . � S c r a p e
i

-1000,0
20000.0 40000.0

Sample Number

Figure 30: This another event that triggered the 2 x l-.4 solar mass binary inspiral filter with a SNR of 32.77.
This event sounds like a shovel scraping on the ground; its origin is unknown. It can be easily seen (a$d
vetoed) in the time domain.

Figure 31: A close-up of the previous graph, showing the structure of the "scrape".

o 0.0
o
I

Sample Number

142

5.28 Structure: strucL Template

The structure used to describe the "chirp" signals from coalescing binary systems is: st,ruct Template

i
int num: In order to deal with templates "wholesale" it is useful to number them. The numbering

system is up to you; we typically give each template a number, starting from 0 and going up to the

number of templates minus one!

f loat f-lo: This is the starting (low) frequency /e of template, in units of sec-l'

f loat f -hi : This is the ending (high) frequency of the template, in units of sec-r

f loat tauO: The Newtonian time 70 to coalescence, in seconds, starting from the moment when the

frequency of the waveform is flo.

f loat taul : First post-Newtonian correction rlto rg.

f loat tau15 : 3/2 PN correction

f loat tau2 0 : second order PN correction

f loat pha0 : Newtonian phase to coalescence, radians

f loat phal : First post-Nevrtonian ccrec"icn to phaO

f loat pha15 : 3/2 PN correction

f loat pha2 0 : second order PN correction

f loat mtotal : total rl4SS ?n1 I m2, in solar masses

f loat mchirp: chirp mass pr7-2/5, in solar masses

float mred : the reduced mass p : rnLrn2/ (*t + m2), in solar masses

float eta : reduced mass/total mass q : mfn2l (*, + *r)',dimensionless

f loat ml- : the smaller of the two masses, in solar masses.

f loat. m2 : the larger of the two masses, in solar masses.

) ;
One may use the technique of matched fiItering to search for chirps. The (noisy) signal is compared

with tempiates, each formed from a chirp with a particular values of m1, m2, arfid a "stdrt frequency" /g of

the waveform at the time that it enters the bandpass of the gravitational wave detector. Several theoretical

studies [4, 5] have shown how the template filtering technique performs when the detector is not ideal, but

is contaminated by instrument noise.

In the presence of detector noise, one can never be entirely certain that a given chirp (determined by

rmr,rn2) will be detected by a particular template, even one with the exact same mass parameters. However

one can make statistical statements about a template, such as "if the masses rm1 and rn2 of the chirp lie in

region R of parameter space, then with 97Vo probability, they will be detected if their amplitude exceeds

value h". Thus, associated with each chirp, and a specified level of uncertainty, is a region of parameter

space.

r43

It turns out that if we use the correct choice of coordinates on the parameter space (rn\, rn2) then these
regions .R are quite simple. If we demand that the uncertainty associated with each template be fairly small,
then these regions are ellipses. Moreover, to a good approximation, the shape of the ellipses is determined
only by the noise power spectrum of the detector, and does not change significantly as we move about in the
pammeter space. These "nice" coordinates (re, q) have units of time, and are defined by

and

ro :
* (#)-5/3,7-'1nyo1-s/s

:
*(#)-' ' ' r-'(nril- 'ftr-'/3

rr : #(&) fm.*,)(nrd-2
: *(#) (#,-.+) 6ro)-,ro,

(5.28.1)

(s.28.2)

(s.28.3)

(s.28.4)

The symbol
M = r n 1 * m 2

denotes ttre total mass of the binary system, and

fT|1 fTt.n

t l -7--- - : - - - - - -
\ m 1 + m 2) '

is the ratio of the reduced mass to M. Noticethatq is always (by definition) less than or equal to 1/4.
We are generally interested in a region of parameter space corresponding to binary systems, each of

whose masses lie in some given range, say from 7/2 to 3 solar masses. The region of parameter space is
determined by a minimum and maximum mass; we show an example of this in Figure 32. Since we may

Figure 32: The set of binary stars with masses lying between set minimum and maximum values defines the
interior of a triangle in parameter space

take m2 (mt without loss of generality, the region of interest is triangular rather than rectangular. The
three lines on this diagram are:

1 M

1
i

i '
I

I

(1) The equal mass line. Along this line n: I/4.

(2) The minimum mass line. Along this line, one of the masses has its smallest value.

(3) The maximum mass line. Along this line, one of the masses has its largest value.

This triangular region is mapped into the (to,rr) plane as shown in Figure 33 In this diagram, the lower

curve "1 x r|,�/5 is the equal mass line (1). The upper curve, to the right of the "kink" is the minimum mass
line (2). The upper curye; to the left of the "kink" is the maximum mass line (3).

taul

0 . 4

0 . 3

0 . 2

0 . 1

tau0
L 2 3 4 5 6 7

Figure 33: The triangular region of the previous figure is mapped into a distorted triangle in the (ro,rt)

plane. Here f6 is 120 Hz.

145

5.29 Structure: struct Scope

Thesetof templatesisdescribedbyastrucrure struct Scope. Thisstructurespecifiesasetof templates

covering the mass range in parameter space described above and shown in Figure 33. The fields of this

structure are:
struct Scope {

int n-tmplt: This integer is the total number of templates needed to cover the region in parameter

space. This is typically computed or set by template-grrid () .

f loat m:rrn : The minimum mass of an object in the binary system, as described above, in solar masses.

f loat mlnx: The maximum mass of an object in the binary system, as described above, in solar masses.

Together with the mlnn, this describes the region in parameter space covered by the set of templates.

f loat theta: The angle to the axis of the constant ambiguity ellipse whose axis has diameter dp. The

angle is measured in radians counterclockwise from the re axis. The range is 0 e (-n l2,r /2).

f loat dp: The diameter along the ellipse (in sec). This is twice the radius 11 given in Table 7. The

angle I is measured to this axis.

f loat dq: The diameter along the ellipse (in sec). This is twice the radius 12 givenin Table 7.

f loat f -start : The frequency ,fo used in the definitions of z6 and 11 6.28.1,5.28.2); this is typically

the frequency at which a binary chirp first enters the usable bandpass of the detector.

struct Template* templates : Pointer to the array of templates. This pointer is typically set by

template-grid () , when it allocates the memory necessary to store the templates, and creates the

necessary templates.

h
Note that a given constant ambiguity ellipse can be specified in either of two equivalent ways. For

example the elllipse defined by

0 : r /4, dp : lmsec, dq : 5 msec

is completely equivalent to the ellipse

(s.29.r)

0 : Str /4, dp : 5 msec, dq : 1 msec. (s.2e.2)

Either of these is acceptable. The literature frequently uses the second convention (angle measured to the

major axis).

t46

5.30 Function: tau-of:nass ()

void tau-of-rnass(double m1-, double m2, double pf, double *tau0, double *taul-)

This function calculates the coordinates (16, 11) associated with particular values of the masses of the objects
in the binary system, and a particular value of frequency /s.

The arguments arc:

m1-: input. Ttre first mass (in solar masses).

m2: Input. The second mass (in solar masses).

pf: Input. The value Tfs. Here /s is the frequency used in defining the r coordinates (see below). It
is often chosen to be at (or below) the frequency at which the chirp first enters ttre bandpass of the
gravitational wave detector.

EauO: Output. Pointer to re (in seconds).

t,au1: Output. Pointer to 11 (in seconds).

Although one curn think of z6 and T1 as coordinates in the parameter space defined by (5.28.1) and
(5.28.2) they have simple physical meanings. rs is the time to coalescence of the binary system, measqred
from the time that the waveform passes through frequency /0, in the zeroth post-Newtonian approximation.

1 is the fint-order post-Newtonian correction to this quantity, so that to this order the time to coalescence
is 16 * z-1.

Author: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: None.

t47

5.31 Function: m-and-eta ()

int m-and-eta(double tauO, double taul , doubLe *M, double *eta, double Mmin,
double Mmax, double pf)
This function takes as inputs the coordinates (16, "t). ff these conespond to individual masses m1 and m2
each lying in the range from M-6 to M^* then the function sets the total mass M : rmt * rn2 and sets

n : rn{n2/(*t + m2)2 ald returns the value l. Otherwise, the function returns 0 and does not change the
values of mass M or 11.

The arguments are:

tau0 Input. The value of rs (positive, sec).

taul Input. The value of 11 (positive, sec).

M Output. The total mass M (solar masses). Unaltered if no physical mass values are found in the desired
range.

eta Output. The value of 4 (dimensionless). Unaltered if no physical mass values are found in the desired
range.'

l4min Input. Minimum mass of one object in the binary pair, in solar masses (positive).

lvlmax Input. Maximum mass of one object in the binary pair, in solar masses (positive).

pf: Input. The value nfs. Here /e is the frequency at which the chirp first enters the bandpass of the
gravitational wave detector.

The algorithm followed by m-and-eta () is as follows. Eliminate 4 from the equations defining zo (5.28.1)

and qn 6.28.2) to obtain the following relation:

with the constants siven bv:

c'�*cz(#)' ' ' -"(#):o'

cL

c2 : 47552 (trfsT6)8/3rs

ca

(5 .31.1)

(s.31.2)

Given ("0, "r) our goal is to find the roots of equation (5.31.1). It is easy to see that the function on the lhs

of (5.31.1) has at most two roots. The function is positive at M :0 but decreasing for small positive -114.

However it is positive and increasing again as M --+ co. Hence the function on the lhs of (5.31.1) has at

most a single minimum for M > A. Setting the derivative equal to zero and solving, this rninimum lies at a

value of the total mass M.r11 which satisfies

Mcrit (s.31.3)
Mo

Hence the lhs of (5.3 1 . 1) has no roots if its value is positive at M : Mg7i1 ar it has two roots if that value is

negative. (The "set of measure zero" possibility is a single root at Mcrit.)
If 2M^1n. { Mcrit 12M^u* then m-and-eta () searches for roots 2M^io < M < Ma7i1 and M.rit I

M < 2M^n separately, else it looks for a root M in the range 2M^in < M < 2M^u*. If the lhs of (5.31.1)

: (;
;) " '

148

changes sign at the upper and lower boundaries of the interval, then a double-precision routine, similar to
the Numerical Recipes routine rtsaf e () , is used to obtain the root with a combination of "safe" bisection
and "rapid" Newton-Raphson.

If a root M is found in the desired range, then 17 is determined by (5.28.1) to beI

I

,t : * (#)-''' (n ror")-8/sb

It rt S L /4 then the smaller and larger masses are calculated from

(s.31.4)

(5.31.s)

(If botfr roots for M correspond to 4 < Ll4 then an error message is generated and the routine aborts.) If
both nz1 andm2 are in the desired range M-6 1rrlL,m2 I M7yr714 then m-and-eta () returns 1 and sets
M and 4 appropriately, else it returns 0,leaving M and 4 unaffected.

Author; Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: Although the arguments to this function are double precision floats, th" uulu"s of m1and.m2
that may be inferred from them can generally only be determined to single precision, particulary in
the neighborhood of m1 - m2. The reason is that in the vicinity of 4 - l/4, a fractional error e is
the value of q produces a fractional enor Jfi in the masses.

^ r :Y (- . u r -+ , ,) * r : #Q+$ - -a ,) .

149

5.32 Function: tauspace-area ()

f loa t tauspace-area(sEruc t Scope *Gr id)

This function computes the area of the enclosed region of parameter space shown in Figure 33.
The arguments are:

Grid: Input. This function uses only the minimum mass, maximum mass and the cut-off frequency /6
fields of crid.

The function refirns the numerical value of the area in units of sec2. See the example in the followine
subsection.

The function uses an analytic expression for the area obtained by integration of formulae (5.28.1,5.28.2)

for rs and z1 given earlier. For example, to obtain the area of the trapezoidal region bounded above by the
maximum-mass curve and below by the 16 axis, we integrate

9 (1 t c

/;
1,/ J

I a , \ l / J L (1 t , , \ 2 / 3 l r a e l
r \ r | @ / | I

* u)t /s

Here a :9241743 and 4s is a quantity with dimensions sec2 given by

. 78575 MA /"s l
srs

ao:nffiCM;fr)rF
\E)

The area l.2 under the minimum-mass curve can be obtained from the formula above by interchanging
rn6i1 zrnd ?7]maJK. [f you wish to use geomtrized units in which the solar mass is 4.92 x],0-6 sec simply set
G : c: 1.) The area under the equal-mass curve As cur be obtained by performing a similar integration
along the equal-mass curve

(*) " '

ArotuI : At -f Az - A3 . (5'32'1)

Equation (5.32.I) is the basis of tauspace-area O; the next example shows an application of this func-
tion.

Author: Alan Wiseman, agw@tapir.caltech.edu

Comments: None.

150

A1 : l:::71(n''i"' *l%@o*

, f-or,,l a/s 1 -13 + 2(4+ 2a)u r (5 + 9a)u21: ^ o L M " l
\

, 9a - 1. [t -r 2(L + Qr/s+
E

arctan
l----W-

+ 2(1+ ") t / t l---T-)

, 9 a - 1 , I t + (t-r- -----;- ro8 | -'
6

- - - 1 1 - 2 (1
t - (1 t , , \2 /3 l r ae t
r \ r | @ /

| I- - - - - - : - = - ; | l

+ (1 + u)"/")) u=^^io/^^u*

As: I:::,,{*,*)tuffia*
. 6087b MA I f y'_la/s _ 1 u" ya/sf

2064384(nfoMdtalr l\mo,in / \m^u*/ I

These three results can be combined to sive the total area enclosed

5.33 Example: area program

This example uses the function tauspace-area () described in the previous section to compute the area
of the specified parameter space. The parameters specifying the region are set the minimum and maximum
mass in solar masses and the cut off frequency in seconds-l. The numerical value of the area is retumed
and printed.

/* GRASP: Copyright 1997, Bruce Allen 'rl

inc lude "grasp.h"

int maj-n O {
struct. Scope Grid;
f loa t a rea ;
f loa t templa te-area(sCruc t Scope *) ;

/* Specify the parameter space */
Gr id . rn -mn=0.8 , .
Gr id .m-mx=S0.0 ;
Gr id . f -s ta r t=140 . 0 ;

/* find area of parameter space x/
area=template-area (&crid) ;

/* and print it */
p r i n t f (" T h e a r e a i n p a r a m e t e r s p a c e i s t f s e c o n d . s ^ 2 - \ n ' , a r e a) ;
return 0;

f
I
i a

1 5 1

5.34 The match between two templates

When one performs a search for a gravitational wave signal in noisy instrumental data one lays a grid of

templates out in parameter space. For instance, if one uSoS Te and 1 [see Eqs. (5.28.1) and (5.28.2)] as

parirmeter space coordinates, then one's templates can be described as a set of points ("3,"0 (with i ranglng

from 1 to the total number of templates). One requires these points to be spaced such that no more than

some a priori fraction of SNR is lost due to the discreteness of the template family.

Suppose one has decided that a set templates can lose no more than 3% SNR in a search. Thls means

that if some arbitrary signal b(t) is dropped onto the template grid, there must exist a template, a(t), such

that

,r/:,rr!r##"-2,i.-,, [/l rffiJ''' ll:.,ffif'' (s34 1)
("max ts" indicates the integral on the left hand side is to be maximized over all possible values of to.) The

integral on the left is the SNR obtained when the signal b(t) is measured using the Wiener optimal filter

corresponding to the template a(t). The first integral on the right is the SNR obtained when b(t) is measured

with the Wiener optimal filter coresponding to a template b(f); the second when the signal and template are

both a(t). (The integrals on the right hand side, in other words, describe the sinration in which the template

exactly matches the signal). For a detailed discussion of Wiener filtering, see Section 5.14.

To simplify this discussion, let us introduce the following inner product:

(o,b)to= l* fffi"-%rirto (s.34.2)

[Note: this inner product is not to be confused with the inner product (a, b) defined in Eq. (5.14.9).]

will use the convention that not including the ts subscript on the angle bracket is equivalent to ts :
We
, Q .

Eq. (5.3a.1) can now be rewritten

(a ,b)6 > .97 (s.34.3)

This motivates the definition of the match between a(t) and b(t):

(a,b) t^
gIr : iTrdx ----.r -1o -

t /@,a)(b,b)
(s.34.4)

The match can be thought of as a distance measure between a(t) and b(t) (it is in fact one of the starting

points for the metric that Owen defines in [5]). One uses the match function as a means of determining how

one must space templates on the parameter space. If one requires that no more than 3% of possible SNR be

lost due to template discreteness, then one must require adjacent templates to have a match F : .97.

The next few functions described in this manual are tools that can be used for calculating the match

function and understanding how it varies over one's paftlmeter sPace.

max
to

(a, a) (b,b) .

r52

5.35 Function: compute:natch ()

f l o a E c o m p u t e $ a t r c h (f l o a t m 1 , f l o a t m 2 , f l o a t c h O t i l d e [] , f l o a t c h 9 0 t i l d e [] ,

f loa t inverse-d is tance-sca le , f loa t tsw ice jnv-no ise [] , f loa t f lo , f loa t sJ to ,

f loat s-n90, int npoint, f loat srate, inE err-cd-sprs, int order)

This function computes and retums the match function between a binary inspiral template that is stored in

the arrays chotilde t I and ch90tilde and the binary inspiral template that corresponds to the binary

system whose bodies have masses m1 and m2'

Thetwophasesofthe"referencechiqp",chot i ldet l andchg0t i lde[] ,areassumedtohavebeen

precomputed and run through the function orthonormalize (). (The parameters s-n0 and s-rr90 are

assumed to have been found when the reference chirp was orthonormalized.) This allows efficient

computation of the match of many different templates with the reference chirp.

The arguments to the function are:

m1 : Input. Mass of body I in the template that is cross-correlated with the reference chirp, solar masses.

m2 : Input. Mass of Body 2 in the template, solar masses'

chOti1d.e: Input. The FFT of the 0"-phase reference chirp.

ch9 0 t i lde : Input. The FFT of the 90o-phase reference chirp'

inverse-distance-scale: Input. The inverse distance to the binary system, in i/Mpc. Because the

match is a normalized conelation, this parameter isn't physically relevanc moving the binary twice

as far from the earth has no effect on the match. However, it may be computationally convenient to

scale the inner products that go into the match defintion by some amount to prevent numerical error.

twice-inv:roise: Input. Twice the inverse noise power spectrum, used for optimal filtering. For a

more detailed description, see the routine f ind.-chirp () (which is used within compute:natch ())'

f 1o: Input. The low-frequency cutoff to impose, in Hz. Within the code, this is used as the starting

frequency of the templates; see make-f ilters () .

s-rr0 : Input. The normalization of ch0tilde t L found using orthonormali ze O '

s-n90: Input. The normalization of ch9Oti1de t l, found using orthonormalize () . Note that

only the ratio s-ng / s;rt90 is physically relevant, because the match is normalized; if both s-nO and

s_ng0 are multiplied by some constant, the match is unaffected.

npoint : Input. Defines the lengths of the various affays: chQtilde [0 ' ' npoint-1] '

ch9 Oti lde [0 . .npoint-1] , twice- inverse-noise [0 - . npoint/2] .

srate: Input. The sampling rate, in Hz. Used to convert between integer array time-domain subscripts

and frequency subscripts. For example this is the sample rate of the 0o- and 9Oo-phase reference

chirps, before theY are FFT'd.

err-cd-sprs : Input. The error suppression code to be passed to the chirp generator; see chirp-f i l- ters () '

order: Input. Twice the post-Newtonian order; i.e., the power of (ulc) used in the expansion. See

ch i rp - f i l te rs () .

Author: Scott Hughes, hughes @ tapir-caltech.edu

153

Y*)

)1 :
) f "+ ") - i a -c)2+b2-

6" r - '1rma jor :V
^o ,

o: atan2(uoa,uor) : arctan (VlA- epb+\ ' t '

(r \

[;
j : fmajor cos @ e-6 * rminor sin @ e-1.

(s.36.3)

(Note: because the match is maximal at x : A : 0 and falls off as r and 3l increase, the matrix is negative
definite. The eigenvalues are therefore negative, and so llrl > lA6l.) From these values, it is simple to
construct the equimatch ellipse. If the value of the match on the contour iS Fcont, then the semimajor axis of
the ellipse has length

(s.36.1)

(5.36.2)

(s.36.4)

(5.36.s)

5.36 Function: match-parab ()

in t match-parab(f loat m1ref , f loat
s ra te , f l oa t f I o , f l oa t f t au , cha r
f l o a t * E h e t a , f l o a t m c o e f [])

I

m2ref , f loa t matchcont , in t o rder , f loa t
*no ise f i le , f loa t *semimajor , f loa t *semimino

This function attempts to find a parabolic fit to the match function near a reference template with masses
(m1ref , m2ref). It works in (rs, q) coordinates, and can can use any noise curve listed in detectors . dat
for its inner products when computing the match.

Leithecoordinates of thereference chirpbe(rfi,rf),anddefine x-rs-"6,A: Tr- rf. Then,the fit
to the match is of the form

p : L + a r 2 * 2 b r y * c y 2

: 1 + (c , ' (i) o
Written in the form on the second line, it is easy to show that, if ttre match is in fact parabolic, it has surfaces
of constant value that are ellipses. The (unnormalized) eigenvectors of this matrix are given by

1

u-o : (;)
:

(' -

c) /zb+

u a , : (;)
:

(r ' -

c) / z b -

)

and the eigenvalues are

and the semiminor axis has lensth

, mlnor -

The counterclockwise angle between the semimajor axis and the 16 axis is easily found from ul:

(5.36.6)

(Here, atan2 () is the c math library function; using atan2 () insures that the computer points d to the
correct quadrant of the 16, 11 plane.) If we now define normalized eigenvectors €o : 6o/16ol, dt : {llil,
the ellipses are then easily constructed using the parametric curve

c) l2bl2

154

(s.36.7)

:
with / varying from 0 to 2r.

The arguments to the function are:

mlref : Input. Mass of body I for the reference chirp (solar masses).

m2ref : Input. Mass of body 2 for the reference chirp (solar masses).

matchcont: Input. The value of the match contour.

order: Input. Twice the post-Newtonian order to be used in computing the templates; i.e., the power of
(T.'/c) used in the post-Newtonian expansion.

sratre: Input. The sample rate, in Hz. Used to convert between integer array time-domain subscripts and
frequency subscripts. For example this is the sample rate of the 0o- and 90"-phase reference chirps,
before they are FFT'd.

f 1o: Input. The low-frequency cutoff to impose, in Hz. Within the code, this is used as the starting
frequency of the templates; see make-f ilters () .

f tau: Input. The frequency used to find rs and q; see Eqs. (5.28.1) nd (5.28.2). Different authors use
different conventions forthis frequency-for example, Sathyaprakash uses the seismic wall frequency,
whereas Owen uses the frequency at which the noise power is minimum. f tau is arbitrary, but should
be used consistently: pick a value and stick with it.

noisef ile: Input. A character string ttrat specifies the name of a data file containing information about
the noise power spectnrm P(/) of a dectector. See noise-power () for extended discussion.

semimajor: Output. Thesemimajoraxisoftheellipsealongwhichthematchhasthevaluematchcont.

semiminor: Output. The semiminor axis of the ellipse.

theta: Output. The counterclockwise angle, in radians, between semimaj or and the ro axis.

mcoef : Output. The array mcoef l0 . .2I contains the coefficients of the parabolic fit to the match:
p f r t :1 * mcoef l -01r2 * mcoef l l Jq * mcoef l2 ly2 .

The function works by sampling many templates in (16, 11) coordinates that are close to the template
with masses (mi-ref , m2ref). Periodically, it computes the best parabolic fit to the data it has gathered so
far and constructs the elliptical contour corresponding to that fit. It ttren takes lf"1 steps around this ellipse
and compares the value of the match predicted by the fit with the actual match value at each point. It then
computes the following "X2-fike" statistic:

I

(s.36.8)

If a : L, then each fit point differs from the match by 10-s. A "good" fit will have e of order 1.
This function returns 0 if a good fit is not found (a is greater than 5 yet more than 250 templates have

been used to generate fit data), and 1 otherwise. If a good fit is not found, then the match is not parabolic
in the vicinity of the template (m1-ref , m2ref) down to p : matchcont. This is typically the case if the
masses are large (so that there are few cycles measured, and relativistic effects are very important), and if the
value of matchconE is too far from 1. For instance, with the LIGO 4O-meter prototype, match-parab ()
cannot find a parabolic fit to the .97 match contour for a binary with nz1 - !.2Mo, TTL2 : 1.6M9; but it
does find a parabolic fit for this binary at the .99 match contour.

Author: Scott Hughes, hughes @ tapir.caltech.edu

155

5.37 Function: match-cubic ()

in t match-cub ic (f loa t m1re f , f loa t
s ra te , f loa t f Io , f loa t f tau , char
f l o a t * t h e t a , f l o a t m c o e f [])
This function is almost identical to match-parab (),
form:

m2re f , f l oa t ma tchcon t , i n t o rde r , f l oa t
*no i se f i l e , f l oa t * sem ima jo r , f l oa t * sem im ino :

=:

except that it attempts to fit the match to a cubic .

(s.37.1)

The arguments to the function are:

ml-ref : Input. Mass of body 1 for the reference chirp (solar masses).

m2ref : Input. Mass of body 2 for the reference chirp (solar masses).

matchconE: Input. The value of the match contour.

order: Input. Twice the post-Newtonian order to be used in computing the templates; i.e., the power of

(u/c) used in the post-Newtonian expansion.

srate: Input. The sample rate, in Hz. Used to determine the spacing of frequency bins for the templates.

f 1o: Input. The low-frequency cutoff to impose, in Hz. Within the code, this is used as the starting

frequency of the templates; see make-f i l ters () .

f tau: Input. The frequency used to find 16 and 1; see Eqs. (5.28.1) and (5.28.2). Different authors use

different conventions forthis frequency-for example, Sathyaprakash uses the seismic wall frequency,

whereas Owen uses the frequency at which the noise power is minimum. f tau is arbitrary, but should

be used consistently: pick a value and stick with it.

noisef i1e: Input. A character string that specifies the name of adata file containing information about

the noise power spectrum P(/) of a dectector. See noise-power () for extended discussion.

semimaj or: Output. The semimajor axis of the ellipse along which the match has the value maEchcont.

semiminor: Output. The semiminor axis of the ellipse.

theta: Output. The counterclockwise angle, in radians, between semimaj or and the 16 axis.

mcoef: Output. Theanaymcoef i0. .61 containsthecoeff ic ientsof theparabol icf i t tothematch:

pfr t : 1 + mcoef l0l 12 * mcoef t i - l ry * mcoef l2ly2 * mcoef [3] 13 * mcoef l4JA3 +
t ,m c o e r L 5 J r - a + m c o e r L o J T y - .

The function works in almost exactly the same manner as match-parab () . In panicular, it constructs

an ellipse using the parabolic piece of the cubic fit, and checks the goodness of the fit along that ellipse'

Because the ellipse is not made from the full functional form of the fit, the fit does not have constant

value along the ellipse. Thus, maEch-cubic () does not really find contours with constant match value

matchcont. The ellipses it finds, however, generally have match values tairly close to matchcont; and,

more importantly, the match values along the ellipse are never less than matchcont.

Author: Scott Hughes, hughes @ tapir.caltech.edu

m : L + ax2 * 2bry + ca2 + d,r3 + ey3 + fx2y + graz

156

5.38 Example: match-f it. program

This program will try to find the fit to the match function about some template. It is called with four
arguments: the mass of body 1 (in solar masses), the mass of body 2 (in solar masses), the value of the

i- match for which it tries to fit, and (twice) the order of the post-Newtonian expansion used to compute the
templates. Forexample,match-f i t l -2 1-8 .98 4 wi l l t rytof indaf i t tothe.98matchcontournear
the template for the L.2 Mo - L.8 Mo using post-2-Newtonian templates.

The program first attempts to find a parabolic fit; if it is unable to do so, it then tries a cubic. If the cubic
fails, you are in a region of parameter space where the match is badly behaved. This is typically the case
if you ask for masses that are too large-for example, no fit can be found near a 5 Mo - 5 M9 solar mass

j binary with the LIGO 4O-meter prototype noise curve. When the masses are large, the system radiates very
few gravitational-wave cycles in the instrument's frequency band; and, those cycles typically correspond to
a strongly relativistic regime of inspiral. If you find yourself in this circumstance, either give up on the large
mass binaries, or try to find a fit at a match level closer to 1.

inc lude 'g rasp .h"

#def ine DETECToR-NIIM L5 /x Smooth fit to Caltech 40m prototype x/

#def ine FLo 12 O . /* Hz - low frequency cut off for filtering */
#def ine FTAU 140 . /*. Hz - frequency used in definitions of

tau0, taul. */

/*.#define DETECTOR-NUM 8 /x Caltech 4Om prototype */

/,r#define DETECTOR-NUM 1 /,r LIGO initial interferometer */

/*#define DETECTOR-NUM 12 /x LIGO Advanced interferometer,r./

inE main(in t a rgc .char x r .a rgv)

i
f lqa t xp f i t , r . c f i t , semimaj o r , semiminor , the ta ;
f loat mL, m2 . matchcont, '
f l o a t s r a t e = 5 0 0 0 0 ;
f loat si te-parameters [9] ;
c h a r n o i s e - f i l e [L 2 8] , w h i t e n - f i l e [L 2 8) , s i t e - n a m e t L 2 8) ,
in t o rder , t sep , t , s tc t

/,r, Check that the program is called with the correct number of
arguments; print out argument information if it's not. x/

i f (a r g c l = 5) {
fp r in t f (s tder r , "4 Argruments : 1 . Mass o f body 1 (so la r rnasses) \n") ;
f p r i n t f (s t d e r r , " 2 . M a s s o f b o d y 2 (s o l a r m a s s e s) \ n ") ;
fp r in t f (s tder r , " 3 . Match contour match va lue , ' \n ") ;
€ ^ - i * r € / ^ 5 i ^ - -! v ! r *e ! \o . *=- - , " 4 . Waveform order lpower o f (v /c)] \n ') ;
f p r i n t f (s t d e r r , " \ n E x a m p l e : m a t c h - f i t 1 . 2 l - 6 . 9 7 4 \ n ") ;
e x i t (0) ;

I

)
/x Assign arguments to variables x/
m1=ato f (a rgrv [1]) ;
m 2 = a t o f (a r g v [2]) ;
mat.chcont=atof (arW [3]) ;
order=atoi (argrv [4]) ;

/x Get the file names for the desired noise curve */
detector-si Ee (" detectors . dat " , DETECTOR-NIiM, site-parameters ,

s i Ee-name, no ise- i i 1e , wh i ten- f i1e) , '

p r i n t f (" \ ' n E v a l u a t i n g t e m p l a t e s f o r d e t e c t o r : % s u s i n g d a t a f r o m f i l e : \ " * s \ " \ n \ n \ n " ,
e i i o n : m a n n i c o f i l a l -

r57

/*. Allocate memory for the coefficients used in the parabolic fits */
p f j . t = (f l oa t *)ma l l oc (s i zeo f (f 1oa t) *3) ;
c f i t = (f l oa t *)ma l]oc (s i zeo f (f 1oa t) x7) ;

/* Try to find a parabolic fit x/
tstp=m3gqh-parab (rn1,m2, matchcont, order, srate, FLO, PTAU, noise-fi1e,

&semimaj or, &semiminor, &theea, pfit) ;
i f (csep) {

n r i n t . f (" F n r r n d a n a r a l r n] i e f i f F o f h e m a t c hg - r . 5 e r \ - v $. . Y

p r i n t f (" m 1 = * f , m 2 = * f . \ n \ n " , m L , m 2) ;
p r in t f ("Semimajor ax is o f bes t f i t e l l ipse :

semi.maj orxl- - e3) ;
p r in t f (' semiminor ax i -s o f bes t f i t e l l ipse :

serniminor*1 . e3) ;
p r in t f ("Ang le be tween semimajor and tau0 ax is : t s f rad \n" , the ta) ;
p r i n t f (" F j - t : m = 1 + * e x ^ 2 + * e x y + 8 e y ^ 2 \ n ' ,

p f i t t 0 l , p f i t t L l , p f i t t 2 J) ;
p r in t . f (' lwhere x=dtauO, y=dtau l] \n ") ;

) e l s e
pr in t f ("Unab le to f ind parabo l ic f i t . A t r tempt ing cub ic f i t . \n ") t

/x If the parabola failed, try to find a cubic fit */
i f (l t . s t p) {

tstsc=match-cubic (m1, m2, matchcont, order, srate, FLO, FTAU, noise-f i1e,
&semimaj or, &semiminor, &theta, cf i t) ;

i f (t s t c) {
p r in t f ('Found a cub ic f i t to the match around templa te w i th \n") ;
p r i n t f (" m 1 = * f , m 2 = * f . \ n \ n ' , m l - , m 2) ;
p r in t f ('us ing e l l ipse cons t ruc ted f rom parabo l ic par t o f cub ic . \n ")
p r i n t f (' s e m i r n a j o r a x i s o f b e s t . f i t e l l i p s e : t e m s \ n " ,

semimaj orxl- . e3) ;

around tempLace wiEh\n") ;

8e rns \n ' ,

* e m s \ n " ,

9 a m e \ n "

f o r a m a t c h \ n ") ;
u p o n t h i s \ n ") t

p r i n t f (' S e m i m i n o r a x i s o f b e s t f i c e l l i p s e :
semiminor*1 - e3) ;

p r in t f ("Ang le be tween semimajor and tauo ax is : t f rad \n . , the ta) t
p r i n t f (" F i t : m = 1 + 8 e x ^ 2 + * e x y + * e y ^ 2 \ n " ,

c f i t t 0 l . c f i t [1] , c f i t [2]) ;
p r i n t f (" + 8 e x ^ 3 + t e y ^ 3 + e " e x ^ 2 y +

L r f L L J J , u r r u L = J , u r r u l J l , u l r e L v J / t

pr in t f (' [where x=dtauO, y=dtau1] \n ") ;

) e l s e {
p r in t f ("Unab le to f ind a cub ic f i t . T ry look ing
n r i n t - f / n . ^ n i - ^ r r r a C S m a l l e f m a t c h V a f U e ; O f , g i V ey 5 - . r v r

n r i n l - f / " n r c < r a r i m e \ n " \ .
P ! r r : e r

\

l

return 0;

8 e x y ^ 2 \ n ' ,

Author: Scott Hughes, hughes @tapir.caltech.edu

r58

I

5.39 Function: template-grid ()

void template-gr id.(sErucE Scope *Grid)

This function evolved from grid4. f, a FORTRAN routine written by Sathyaprakash. This function lays

down a grid of templates that cover a pafticular mass range (the region inside the distorted triangle shown

in Figure 33).
The arguments are:

Grid.: Input/Output. This function uses as input all of the fields of Grid except for Grid. n-tmplt

and Grid. templates. On refurn from Lemplate-grid. these latter two fields are set. The

function uses ma11oc () to allocate storage space and creates in this space an array containing

Grid.n-tmplt objects of typeTemplate.If you wishtofreettrememory call free (Grid. templat.es).

It is easy to cover the parameter space shown in Figure 33 with ellipses. However each ellipse represents

a filter, and filtering takes computer time and memory so the real problem is to cover the parameter space

completely, using the smallest possible nurnber of templates. This is a non-trivial packing problem; while

our solution is certainly not optimal, it is quite close.
The algorithm used to place the templates works in coordinates (ca,c1) which are rotated versions of

("o,rt), aligned along the minor and major (or major and minor) axes of the template ellipses. The input

angle erid. theta,in the range (*n,n), is the counterclockwise angle through which the (16, 11) pxes

need to be rotated to bring them into alignment with the principal axis of the template ellipses.

Although each template is an ellipse, the problem of packing templates onto the parameter space can be

more easily described in terms of a more familiar packing problem: packing pennies on the plane. One can

always transform an ellipse into a circle by merely scaling one coordinate uniformly while leaving the other

coordinate unchanged. So we introduce coordinates 11 along the major diameter and to along the minor

diameter of the ellipse, and then "shrinking" the ,rr coordinate by the ratio of major to minor diameters. In

this way the ellipses are transformed into circles.

Figure 34: Covering a plane with a squarc lattice of pennies (or templates) leaves ZlVo of the area exposed

First, a template is taid down at the point where the equal mass line intersects the maximum mass line.

Then additional templates are placed along the equal mass line, at increasing values of ,0. These templates

are staggered up and down in the 11 direction. After laying down this set of templates, the remaining

part of parameter space is covered with additional templates, in columns starting at each of the previously

determined template locations. These columns have the same value of 16 as the previously determined

templates but increasing values of 21. The columns are continued until the "leading edge" of the final

template lies outside the parameter space.
We can describe the packing (and the "efficiency") of the packing in terms of the penny-packing prob-

lem. Suppose we start by setting pennies of radius Il2 on all points in the plane with integer coordinates,

159

as shown in Figure 34. It is easy to show that the fraction of the plane (i.e., parameter space!) which is not
covered by any pennies is e : 1 - T14:0.2L4.. .or aboutLlVo.

Figure 35: Staggering the pennies (or templates) decreases the uncovered fraction of the plane to 9.380

Now suppose that we "stagger" the pennies as shown in Figure 35. In this case, the fraction of area not
covered is e : L-

#:0.093.. .orabout 9.3Vo. I f wewishtocompletely coverthemissing bi ts of

the plane, then we can do so by increasing the radius of each penny AV tFF (or, equivalently, by moving
the points at which the pennies lie closer together by that same factor). The resulting diagram is shown in
Figure 36. By increasing the number-density of pennies on the plane by 25Vo we have successfully covered
up the remaining 9.3Vo of the arca.

Figure 36: Decreasing the spacings of the pennies (or templates) by a factor of (5/qrl2 : 1.118-- . then
covers the entire plane.

Now it is not possible to implement this algorithm exactly, because we are not attempting to cover the
entire plane, but rather only a finite region of it. You might think that we could just start laying down
templates in the same was as for Figure 36 and stick in a few extra ones for any parts of the parameter space
which were not covered, but unfortunately this would then lead us to place templates centered at points in
("0, "r) space that do not correspond to r7 I lf 4, and for which the very meaning of a "chirp" is ill-defined.

The code in templat.e-grid () thus uses a heuristic method to place templates, trying whenever
possible to stagger them in the same way as Figure 36 but then shifting the center locations when necessary
to ensure that the template corresponds to physical values of the mass parameters m1 auitd rn2. This is often
refened to as "hexagonal packing". In practice, to see if this placement has been successful or not, the
function plot-template () can be used to visually examine the template map.

Table 7 gives information about the appropriate template sizes, spacings and orientations as found in

160

Author Detector fotHz 0lrad radius 11 (msec) radius 12 (msec)

Sathyaprakash Caltech 40m (Nov 94) 140 0.307 8.0
Owen Initial LIGO 200 0.5066 2.109
Owen Advanced LIGO 70 0.4524 3.970

0.6
0.162
4352

Table 7: Orientation and dimensions of 0.97 ambiguity templates.

the recent literature; and using the rnatch-f it example program. The angle 0 is the angle to the axis of
the ellipse whose radius is 11, measured counterclockwise from the 16 axis. The other radius (semi-axis)

of the ellipse has Iength 12. Equation (3.16-18) of reference [5] do not appearto agree with Table 7, but
that is because the 4 : dri of [5] are defined by (dr;)e*. n : dhlt/E. The dh are the edge lengths of
a hypercube in dimension N, chosen so that if templates are centered on its verfices, fhen the templates

touch in the center of the cube, so that (d"r)o*",, : dhlt/-4. In our N = 2 dimensional case, this gives

ri : dri : (dx)or."/rt. Note also that in this table, Owen and Sathyaprakash use different definitions

of /9, so that their results may not be directly compared. In Owen's case, /s refers to the frequency of
maximum sensitivity of the detector, whereas in Sathyaprakash's case it refers to the frequency at which

the chirp first enters the bandpass of the detector. In the case of the November 1994 data set, we quote two

different sizes an orientations for the ellipses, depending upon the choice of /e.

Author: Bruce Allen, ballen @dirac.phys.uwm.edu

Comments: This rbutine evolved from grid4 - f, which was written by Sathyaprakash. The method used

to stagger templates is heuristic, and could perhaps be improved. Very small regions of the parameter

space along the equal-mass line (q : 1l$ may not be covered by any templates.

161

5.40 Function: plot-template ()

void plot- template(char *f i l -ename, struct Scope Grid, inL npages, int number)
This function generates a PostScript (tm) file that draws a set of templates on top of the region of parameter
space which they cover.

The arguments are:

f i I ename: Input. Pointer to a character string. This is used as the name of the output file, into which
postscript output is written. We suggest that you use " . ps" as the final three characters of the file-
name. These files are best viewed using GhostView.

Grid: Input. The mass range specified by Grid is used to draw an outline of the region in (rs,4)
pararneter space covered by the mass range, and an ellipse for each template included in Grid is then
drawn on top of this outline.

npages: Input. If there are more than a few templates (and there can be thousands, or more) it is impossi-
ble to view this graphical output unless it is spread across many pages. npages specifies the number
of pages to spread the output across. We suggest at least one page per hundred templates.

nurnber: Input. Each template specified in Grid. is numbered by the field eria. n-tmpIt. If numper
is set to l, then when each ellipse is drawn in parameter space, the number of the template is placed
inside the ellipse so that the particular template associated with each ellipse may be easily identified.
If number is set to 0, then the templates are not identified in this way; each template is simply drawn
as an empty ellipse,

Figure 37: Pan of some sample output from ploE-template () .

Note that the output postscript file is designed to be edited if needed to enable clear viewing of details. Each
file is broken'into pages. At the beginning of each page are commands that set the magnification scale of
each page, and determine if the page will be clipped at the boundaries of the paper or not. You can edit these

162

lines in the postscript file to enable you to "zoom in" on part of the parameter space, if desired. By turning
off the clipping, you can easily move off the boundaries of a given page, if desired. Some sample output
from plot-t,emplate () is shown in Figure 37. (In fact, this is part of the output file produced by the
example program, showing a small number of the total of 1001 templates required).

Author: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: Another option should be added, to print out at the center of each template, the mass parameters
rrtl aftd m2 associated with the template.

163

5.4I Example: template program

This example lays down an optimal grid of templates covering parameter space. It also outputs a postscript

file (best viewed with GhostView) which shows the elliptical region of parameter sPace covered by each

template.

/x GRASP: Copyright 1997, Bruce Allen '*f
inc lude "grasp.h"

int rnain O {
struct Scope Grid;

/* Set parameters for the inspiral search in CIT 40 meter */

G r i d . m - m n = 0 . 9 ;
Grid.m-mx=3 . 0;
G r i d . t h e t a = 0 . 3 0 7 ;
G r i d . d p = 2 x 0 . 0 0 8 ;
Gr i -d . dq=2x0 . 0006;
G r i d . f - s t a r t = 1 4 0 . 0 ;

/+ construct template set covering parameter space x/

template-grid (&crid) i

fx create a postscript file showing locations of templates */
p loE- tsemp1ate (' templaEes-40meter .ps " , Gr id , l -5 ' 1) ;
reeurn 0;

)

Part of a typical picture contained in the output file temp-list . ps is shown in Figure 37 (though for

different parameters than those shown above).

164

t
1

I

I
I

5.42 Example: multif i lter program

This example implements optimal filtering by a bank of properly-spaced templates. One could do this
with trivial modifications of the example optimal program given earlier. Here we have shown something
slightly more ambitious. The multif ilterprogram is an MPl-based parallel-processing code, designed
to run on either a network of workstations or on a dedicated parallel machine. It is intended to illustrate a
particularly simple division of labor among computing nodes. Each segment of data (of length NporNT)
is broadcast to the next available node. That node is responsible for filtering the data through a bank of
templates, chosen to cover the mass range from MMIN to MI4AX. The output of each one of these filters is a
set of 1l signals, which measure the following quantities:

l. The largest signal-to-noise ratio (SNR) at the output of the filter, for the given segment of data,

2. The distance for an optimally-oriented source, in Mpc, at which the SNR would be unity.

3. The amplitude a of the zero-degree phase chirp matching the observed signal.

4. The amplitude B of the ninety-degree phase chirp matching the observed signal.

5. The offset of the best-fit chirp into the given segment of data

6. The offset of the impulse into the given segment of data, which would produce the observed output.

7. The time of that impulse, measured in seconds from the sta:t of the data segment,

8. The time (in seconds, rneasured from the start of the data segment) at which an inspiral, best fining
the observed filter output, would have passed through the start frequency FLo.

9. The time (in seconds, measured from the start of the data segment) at which an inspiral, best fitting
the observed filter output, would have passed through coalescence.

10. The observed average value of the output SNR (should be approximately unity).

1 1. The probability, using the splitup technique described earlier, that the observed filter output is consis-
tent with a chirp plus stationary detector noise.

For completeness, we give this code in its entirety here. We also show some typical graphs produced by
the MPE utility nupshot which illustrates the pattern of communication and computation for an anaiysis
run. For these graphs, the analysis run lasted only about four minutes, and analyzed about three minutes of
IFO data. We have performed an identical, but longer run, which analyzed about five hours of IFO ouput
in just over three hours, running on a network of eight SUN workstations. The data is analyzed in 6.5
second segments, each of which is processed through a set of 66 filter templates completely covering the
mass range from 1.2 to 1.6 solar masses. For the run that we have profiled here, STORE-TEMPLATES is
set to 1. This means that each slave allocates memory internally for storing the Fourier-transformed chirp
signals; the slaves only compute these once. However this does place demands on the internal storage
space required - in the run illustrated here each individual process allocated about 34 Mbytes of internal
memory, Another version of the code has also been tested; in this version the slave nodes compute the
filters and Fourier transform them each time they are needed, for each new segment of data. This code
has sToRE-TEMPLATES set to 0. This is less efficient computationally, but requires only a small amount
of internal storage. For a given hardware configuration, the optimal balance between these extremes, and
between the amount of redundant broadcasting of data, depends upon the relative costs of communication
and computation, and the amount of intemal storage space available.

Based on'these figures, it is possible to provide a rough table of computation times. These are given in
tabular form in Table 8.

165

Figure 38: Output of the nupshot profiling tool, showing the behavior of the multifilter program

running on a workstation network of 8 machines (the fastest of these are Sparc-20 class processors). This
shows the first 8 seconds of operation (tirre on the horizontal axis). The gray segments show the slave pro-

cesses receiving the template list. During the orange segments, the slave processes are waiting for data; the
blue seguoents show the master transmitting data to each slave. During the light gray segnoents, the slaves are
conrputing the templates, during the green segments they ale computing the FFT's of those templates, and
during the purple segments they are correlating the data against the templates. During the brown segment
ttre master is waiting to receive data back from the slaves.

Task Color Approximate time Frocessing done
data --+ slaves
data -+ master
correlate
splitup (likelihood)
real FIFT (one phase)
connpute template
orthonormalize templates

dark blue 350 msec
yellow l msec
purple 500 rnsec
light blue 330 msec
green 150 rnsec
gr:ay 350 msec
wheat 25 msec

transfer 384 kbytes
transfer 3 kbytes
2 ffis of 64kfloats, and search
several runs through 64k floats
1 fft of 64k floats
compute 2 arrays of n: 18k floats
several runs through 64k floats

Table 8: Approxiurate computation times for different elements of the optimal-filtering process.

166

j

t
l

I
r_"'
i
i

!
f__'
I

t
t
t
i
i
I

t
r'

:
i

b
t
I

tr
i -
t
!

[|

I
f
atr
f
i
I{
t
i

|l

I
I
t
I

{
I
I

I
i

j
ts
i
I
I
I
U
i

I
5

Ir

i

b

;

T

I
Ir

Figure 39: This is a continutation of the previous figure. Slave number t has completed its computation
of the templates, and during the orange segment, waits to nnake a connection with the master. This is
followed by a (very small) yellow segment, during which fhe slave transmits data back to the master, and a
blue segment during which the master transmits new data to slave number 1. Immediately after this, slave
number 1 begins a new (purpte) se,quence of correlation calculations on the newly received block of data-
Notice that because slave L has already computed the templates, the light gEay and green operations are no
longer needed.

Figure 4O: This is a continutation of the previous figure, and represents the "long-term" or "steady-state"

behavior of the multiprocessing system. In this state, the d!fferent processors are spending all of their time

doing correlation measurements of the data, as indicated by the purple segments, and the master is waiting

for the results of the analysis (brown segments).

r67

F'igure 41: This is a continuation of the previous figure, and shows the termination of some of the slave
processes (all the data has been analyzed, and there is no new data remaining). The blue segments (data
being sent to slaves) are achrally termination messages being sent to the different processes 2,3,4 and 6.
Frocesses 5 and 7 are still computing. In the case of process 7, the data being analyzed contains a non-
stationary "spurion" which ftiggered most of the fi.lters beyond a pre-set tlueshold level. As a result, process
7 is performing some additional cornputations (the split-up likelihood test, shown as lightblue segments) on
the data.

I
f-*

(

l'.*

168

I

Author: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: There are many other ways in which this optimal filtering code could be parallelized. This pro-
gram illustrates one of the possibilities. Other possibilities include: maintaining different templates on
different processes, and broadcasting identical IFO data to these different processes, or parallelizing
across both data and templates.

r69

/* GRASP: Copyright 1997, Bruce Allen */

/* multifilter.c
This code is intended for machines where computation is cheap,
and communication is expensive. The processsing is organized as
master/slaves (or manager/workers!). The master process sends out data
chunks to individual slave processes, These slave processes analyze
the data against all templates, then return the largest signal values
obtained for each template, along with other parameters like the time of
coalescense and the phase ofcoalescence. They then get a new data chunk.
If STORE-TEMPLATES is set to l, then the filters are computed once,
then stored internally by each slave. This is the correct choice if each
slave has lots of fast memory available to it. If STORE-TEMPLAIES is set
to 0, then the slaves recompute the templates each time they use them.
This is the correct choice if each slave has onlv small amounts of fast
memory available.

j-nclude "mpi . h"
inc lude "mpe.h"

* inc lude "grasp.h"

#def ine NPoIIflf 6553 6 /* The size of our segments of data (6.5 secs) */

#define FLo 120.0 /xThelowfrequencycutoffforf i l ter ing*/
#def ine ARMLENGTH 4 0 . 0 /* Armlength of the IFO, in meters */

*define HSCALE I - e23. /x A convenient scaling factor; results independent of it ,r/

#def ine MIN-INTo-LoCK 3 . 0 /* Number of minutes to skip into each locked section x/

#def ine SAFETY 2 0 0 /* Padding safety factor to avoid wraparound errors */

#define CHIRPLEN 18000 /* length oflongest allowed chirp x/

#def ine MMfN 1 .2 /* min mass object, solar masses {./
#def ine MMAX 1-. 6 /* max mass object, solar masses */

#def i.ne DATA-SEGMENTS 2 5 /* largest number of data segments to Process */

#def ine NSIGNALS 11 /* number of signal values computed for each template *,/

#def ine STORE-TEMPLATES L /* 0: slaves recompute templates. 1: slaves save templates. */

v o i d s h i f t d a t a O ;
vo id rea l f t (f loa t * ,uns igned long, in t) ;

struct Saved {
f loa t ts ta rc ;
i n i a : r r c c -

) ;

shor t xda tas t
i .nt npoint, remain=O, needed, dif f , gauss-test, nunusent= 0 . f i 1 l-buf f er O ;
f 1 oat *twice-inv-noi se, *ht i lde, *,data, {.mean-pow-spec . ts tart ; '
f l oa t s ra te=9858 . 4208984375, decay t ime, da tas tarc . * responset

double norm.decay;
F ILE * , fp i f o , + fpss , * fp lock ;

in t ma in(in t a rgc ,char xargv [])

t

int xlchirppoints, nurn-stored, '
f L o a t * 1 t c , * l c h O t i l d e , x l c h 9 O t i l d e ;

in t my id ,numprocs , i , j ,max i . impu lseof f , r . ch i rppo in ts , ind ices [8] ,nurn- templa tes ;
in t s lave ,more-data , temp-no,nurn- recv=0,namelen ,comple ted=0, Ionges t - templa te=0, '
f f o a t r . t c , m 1 , m 2 , x t e m p l a t e - l i s t , * s i g - b u f f e r , d i s t a n c e , s n r l n a x , v a r , t i m e o f f , t . i m e s t a r t ;
f l o a t n 0 , n g O , i n v e r s e - d i s t a n c e - s c a l e . * o u t p u E 9 0 . * o u t p u t O , * c h O t i l d e , * c h g O t i l d e ;
f l o a t 1 i n O , l i n 9 0 , v a r s p l i t , s t a t s [8] . g a m m q (f l o a t , f l o a t) ;

170

:-
i

l'-'

I

double prob;
r l- lE {<rDouE;
MPl-scaius status;
char processor-narne IMPI-IVIAX-PROCESSOR-NAME] . logf ile-narne [54] , nane [54] ;

scruct Scope Grj.d;
st.rucc Sawed *saveme;

/* start MPI, find number of processes, find process number */

MPI-Init , (&argc, &arw) ;
Upf -Comtn-J i z e (MPI -COMM-WORLD, &numproc s),'
MPf -Comrn-rank (MPI-COMM-WORLD, &rnyid) ;
MPI -Ge t.-proc es s or-name (pr o c e s s or-name, &name I en) ;
MPE-Init- logO t

/x number of points to sample and fft (power of 2) x/

needed=npoint=NPOIMf ;

/* Gravity wave signal (frequency domain) & twice inverse noise power 'r'/

h t i l d e = (f 1 o a t x) m a l l o c (s i z e o f (f 1 o a t) * n p o i n t + s i z e o f (f l o a t) * (n p o i n e / 2 + t l) i
twi ce-inv_nois e=hti 1de+npo int ;

/{. Structure for saving information about data sent to slaves */

saveme= (struct Saved xlmalloc (sizeof (sErucE Saved) *numprocs) , '

/x MASTER x/
aLI (my1o==u) {

MPE-Descr ibe-s ta te (1 ,2 , "Templaees->Slaves" , ' red :v l ines3 ") ;
MPE-Describe-stsate (3 , 4 , " Data->Slaves " , "b1ue : gray3 ") ;

MPE-Descr ibe-s ta te (5 , 6 , "Master Rece ive" , "b rown: l igh t -g ray") ;
MPE-Descr ibe-s ta te (? .8 , "Data->Master " , "ye]1ow:dark -gray") ;
MPE-Descr ibe-s ta te (9 , 10 , 'S lave Rece ive ' , "o range:wh i te") ;

MPE-Descr ibe-s ta te (t3 ,] -4 , " S laves<- templaEes " , "g ray :b lack") ;
MPE-Descr ibe-s t .a te (15 , l -6 , ' compute templa te " , - lavender : b lack ') ;
M P E - D e s c r i b e - s t a t e (1 ? , 1 8 , ' r e a l f f t ' , - I a w n g r e e n : b l a c k ") ;
M P E - D e s c r i b e - s t a t e (t 9 , 2 0 , ' c o r r e l a t e ' , ' p u r p l e : b 1 a c k ') ;
MPE-Descr ibe-s ta te QI , 22 , " o r thonormal ize ' , 'wheat :b lack") ;

M P E - D e s c r i b e - s t a t e (2 3 , 2 4 , " l i k e l y h o o d t e s t " , ' l i q h c s f u b l u e : b l a c k ') ;

/* Set parameters for the inspiral search x/

Grid.m-mn=MMIN;
Grid.m-mx=MMAX;
c r i d . t h e t a = 0 - 9 6 4 ;
G r i d . d p = 1 a 0 . 0 0 2 1 3 ;
G r i d . d q = 2 * 0 . 0 3 2 0 ;
Gr id . f -s ta r t=140 - 0 ;

/* construct template set covering parameter space, ml m2 storage x/

template-grid (&Grid) ;
nun-tempL a tes =Grid. n-tmPl E ;
p r inL f ("The number o f templa tes be ing .used is *d \n" .nurn- templa tes)

template-l is t= (f loat x) ma1 loc (s izeof (f loat) x2*nurn-lemplates) ;

/*. put mass values into an anaY * f
f o r (i = 0 ; i < c r i d . n - t m p l t ; i + +) i

templa te- l i s t [2x i] =Gr id . templa tes I i] . m1 ;
t e m p l a t e - 1 i s t [2 * i + 1 -] = G r i d . t e m p l a L e s I i] ' m 2 ;

-
p r i n t f (" M a s s v a l u e s a r e m 1 = % f m 2 = % f \ n ' , G r i d . t e m p l a t e s [i] . m 1 , G r i d - t e m p l a t e s I i] . m 2) ;

J
f f l u s h (s t d o u t) ;

t7r

/* storage for returned signals (NSIGNALS per remplate) ,r,/
s i g-buf f er= (f loat *) mal 1oc (s i zeof (f loat) *nurn-templates*NSlGNAlS),.

/* broadcast templates */
MPE-Log-event (1.,myid, "send") ;
MPI -Bcas t (&nurn-templaees, 1 . MPI -rNT, O, MPI-COMM-WORLD) ;
MPf-Bcast (template-list, 2 *nun-t.emp1ates, MPI-FLOAT, 0 , MPI-COMM-WORLD) ;
MPE-Log-event (2,myid, " sen!") ;

/* number of points to sample and fft (power of 2) * /
needed=npoints=NPOTNT ;

/* stores ADC data as short integers */
daLas= (shor t *)ma l1oc (s izeo f (shor t) xnpo in t) ;

/* stores ADC data in time & freq domain, as floats */
data= (f loat x) malloc (sizeof (f loat) xnpoint) ;

/* The response function (transfer function) of the interferometer x/
response= (f loa t *) ma11oc (s izeo f (f loa t) * (npo in t+2)) ;

/x The autoregressive-mean averaged noise power spectrum */
mean-pow-spec= (f1oat *)ma l loc (s izeo f (f1oat) * (npo in t /2+1-)) ;

/* Set up noise power spectrum and decay time x/
n o r m = O . 0 ;
c lear (mean-pow-spec , npo in t f 2+7 , l \ ;
decaytime=10 . 0xnpoint/srate ;
decay=gxp (- 1 . 0xnpoint/ (srate*Cecaytime)) ;

/* open the IFO output file, lock file, and swept-sine file ,r./

fpi-fo=grasp-open ('GRASP_DATAPATH' , " channel . 0 ") ;
fp1 ock=grasp-open ('GRASP_DATAPATH' , 'channel . 10 ") ;
fpss=girasp-open ('GRASP_DATAPATH" , , swept-sine . ascii ") ;

/* get the response function, and put in scaling factor *f
normalize-gw (fpss , npoint, srate, response) ;
f o r 1 1 = g ; i (n p o i n t + 2 ; i + + l

response I i] *=HSCALE/ARMLENGTH ;

/* while not finished, loop over slaves */
fo r (s lave= l ;s lave(numprocs ;s lave++1 {

i f (ge t -ca l ib ra ted-data()) {
/* ifnew data exists, then send it (nonblocking?) '*/

fp r in t f (s tder r , "Master b roadcas t ing da ta segment 8d \n ' , nurn-sent+L) ;
MPE-Log-event (3 , my id , " send") ;
MPI -Send(h t i lde ,NPOINT+NPOINT/2+1,MPIJLOAT,s l "ave .++nr .un-sent ,MPI -COMM-WORLD) ;
MPE-Log-event (4, myid, " sent ") ;

t ^ 1 - - - ^ r 1saveme I s rave- J- I . giauss=gauss-tesC,'
t ' e t r r ro_1 I . es ta r t=d .a tas tar t ;

c h i f f A r f = / \ .

l)

/* tell remaining processes to exit {./
M p F T . ^ d a \ r a n f / ? - , , i ' l d ^ ^ * A n \ .
r r ! ! - ! v y - e v e a r L \ J , r l r y I u , > 9 1 1 u / ,

MPI-Send (hr i lde, NPOINT+NPOrUI/2 + 1, MpI JLOAT, s lave, 0, MPI-COMM-WORLD) ;

\
M P E - L o g - e v e n t (4 , m y i d , " s e n t ") ;

172

I

T

/x now loop, gathering answers, sending out more data x f
while (nun-sentl=nurn-recv) {

more-data=geE-ca1 ibrated-data () ;

/* listen for answer x/
MPE-Log-event (5,myid, "receivin9. - . ") ;
MPI-Recv (sig-buffer, NSfcNAls'Fnum-templates , MPI-FLOAT, MPI-ANY-SOURCE,

MPI-ANY-TAG, MPI-COMM-WORLD, &SEAtl]S) ;
MPE-Log-event. (5 . myid, 'received") ;

/* store the answers... x/

spr in t f (name. "s igna ls .805d ' , s ta tus .MPI -TAG-1) ;
fpoub=fopen (name, 'w") ;
i f r e * ^ , , r - - m n r l f! ! \ r I / g U L - - l r v ! ! / I

fp r in t f (s tder r , "Mut t , i f i l te r : can ' E open ou tpu t f i l e *s \n ' ,name) ;
MPI-Final ize () ;
r o f r r r n 1 .

)
fpr intf (fpout, " # Gaussian Bd\n', saveme l stacus .MPT-SOURCE-L l . gauss) ;

fp r in t f (fpout , " * t s ta r t t f \n " , saveme [s ta tus .MPf -soLrRcE-1] - t s ta r t) ;
fp r in t f (fpout , "# snr d is tance phase0 phase90 maxi\

impulseoff impulsetime startsinspiral coalesce variance prob\n') ;

fo r (i=0 ; i (nurn- t rempla tes ; i++1 {
fo r (j=0 ; j (NSIGNALS- I ; j++)

fprintf (fpout, " tg\ t ' , sig-buffer I i*NSTGNAIS+j]) ;
fpr intf (fpout . " *f \n " , sig-buffer I i*NSIGNALS+j]) ;

f,, if data stream has no obvious outliers, and chirp prob is high, print */

i f (s ig iu f fe r l i *NSrGNArs+1O1>0.03 && savemels ta tus .MPr-souRcE-11 -gauss) {
p r in t f ('POSSIBLE CHIRP: s igmal f i le td , Cempla te 8d , SNR = $ f , p rob = * f \n " ,

s ta tus .MPI -TAc-1 , i . . s ig -bu f fe r l i *NSIGNALSl .s ig -bu f fe r t i *NSIGNALS+101) ;

f f lush (s tdouE) ;

)

]
f c l o s e (f p o u t) ;

/* if there is more data, send itoff */
i f / m n r o d a t a l f

L

fpr intf (stderr, 'Master broadcasLing data segrment *d\n",nurn-sent+1) ;
M D F T . ^ d a r r a n l - I ? m r r i r l " q a n d u ! :r r ! s - s v Y - v v

MpI-Send (hri1de, NPOINT+NPOINT/2+1, MPULOAT, status.MPI-SOURCE, ++nun-sent, MPI-COMM-WORLD)
M D F T . ^ d a r r a n t 1 4 m r r i d " c a h i . " I .
r f r s - g v : - v v

saveme I s tatus . MPf -SOURCE-1] . gaus s =giaus s-Les t ;
saveme I s tatus . MPI-SOURCE- 1] . ts tart=daEas tart t
c h i f f a a t - a / l :

l

/* or else tell the process that it can pack up and go home */

e l s e {
p r in t f ("ShutL ing down s lave process 8d \n" , s ta tus .MPI -SOURCE) ;
M D F T . ^ d o r r o n l - / ? m r r i d u < o n d " I :
r f r ! - s v Y - e w

MpI-Send (hri Ide, NPOINT+NPOINI f2+1, ,MPISLOAT, s uatsus . MPI-SOURCE, 0 , MPr-COMM-WORLD) ;

MPE-Log-event (4 ,my id , "sent ") ;
l

I r

173

/x when all the answers are in, print results */
p r i n t f ("Th i s i s t he mas te r - a l l ans l re rs a re i n ! \ n ') ;

)

/* SLAVES */
e l se {

pr in t f ("S1ave *d (ts) just got s tarEed. . . \n ' ,myid,processor-name) ;
f f l ush (s tdou t) ;

f,r allocate storage space */

/* Ouput of matched filters for phase0 and phase pi/2, in time domain, and temp storage x/
ou tpu tO= (f1oat *)maI loc (s j -zeo f (f loa t) *npo in t) ;
ou tpu t90= (f Ioa t x)ma1 loc (s izeo f (f loa t) xnpo in t) ;

/x get the list of templates to use 'F/

MPE-Log-event (13 ,ny id , " rece iv ing . . . ") ;
MPI-BC as t (&nurn-templ at es, 1, MPI -INT, 0, MPI-CoMM-WORLD) ;
si g-buf f er- (f loat *) ma1 1oc (si zeof (f 1 oat) r .nurn-templates{.NslcNAls),
template-l is tr- (f loat *) malloc (sizeof (f loaE) *2{<nurLtemplaEes) ;
MPI-Bcast(template-l ist,2xnurn-templates,MPI-FLOAT,0,MPI-COMI,LWORLD);
MPE-Log-event (L4 , myid, " received ") ;
p r i n t f (" S l a v e B d (t s) j u s t g o t t e m p l a t e 1 i s c . . . \ n " , m y i d , p r o c e s s o r - n a m e) ;
f f l u s h (s t d o u t) ;

/x Orthogonalized phase 0 and phase pi/2 chirps, in frequency domain *,/

nurn- s L o red= STORE-TEMPLATE S,r, (nurn- t emp 1 a t e s - 1) + 1 ;
1chOt i1de= (f foa t *)ma1Ioc (s izeo f (f loa t) *npo in t r .nun-s to red) ;
1ch9 0 t i lde= (f loat *) mal1oc (sizeof (f loat) *npointxnurn_stored),-

]ch i rppo in ts= (in t x)maI1oc (s izeo f (f1oaE) xnurn-s t ,o red) i
fgq= (f1oat x)mal loc (s izeo f (f1oat) xnurn-s to red) ;

i f (1chOti1de==NUll, l l lchgOti lde==NUi,]- l l lchirppoints==NUll l l l t .c==NULL)
fp r in t f (s tsder r , "Node td on mach ine ts : cou ld no t ma l locO memory ! \n " ,

myid, processor-name) ;
abort () ;

)

/*. now enter an infinite loop, waiting for new inputs 'r./
awnr_re t l) I

/* listen for data, parameters from master x./
MPE-Log-event (9 ,my i -d , " rece iv ing . . . ") ;
Mpr-Recv (hrilde, NPorrrfft+NporN,t f Z+t ,vet-rLoAT. 0 , MPI-INy-TAG, MPI-COMM-WORLD, &staeus) ;
M D F T . ^ d a r r a n l - f 1 O n r r i d n r a a o i r r o d " \ -

pr in t f ("S lave td (8s) go t h t i lde (and no ise spec t . rum) fo r segr rnent ?d \n" ,
myid, processor-nane, s t .atus . MPI-TAG) t

f f l u s h (s t d o u t) ;

/* if this is a termination message, we are done! x/

i f (s ta tus .MPI -TAG==0) b reak ;

/* compute signals */
for (temp-no=0 ; temp-no<num-templates ; temp-no++) {

ch0 t. i lde= 1 ch0 t i lde+noo int* temp-lo x STORS-TEMPLATES ;
ch9 0ti lde=1ch9 0 t i lde+npoint*temp-no'TSTORE-TEMPLATES ;
c hi rpp o i n t s = 1 chi rpp o i n Cs + e emp-no * STORE-TEMPLATE S ;
tc=l t c+t pmn noxSTORE-TEMPLATES ;

/* Compute the template, and store it internally, if desired *,/

t74

i f (completed! =nurn-templates) {
/x manufacture two chirps (dimensionless strain at I Mpc distance) */

m1=temp1atse-1 ist [2xt,emp-no] ;
m2=template-l is t [2*temp-no+1- I ;

MPE-Log-event (L5, myid, " computing") ;
m a k e - f i l t e r s (m l , m 2 , c h 0 t i 1 d e , c h 9 O t i 1 d e , F L O . n p o i n t , s r a t e , c h i r p p o i n t s , t c , 4 0 0 0 , 4) ;
MPE-Log-event (15, myj-d, " computed") ;

i f (xchirppoint.s) longest-template) lonqest-cemplate=*chirppoint.s ;

i f (*chirppoinr.s>CHlRplEN) {
fp r in t f (s tden, ' ch i rp rn1=8f m2=* f leng th *d too long! \n ' ,m1 ,m2,

xch i rppo in ts) ;
fprintf (stderr, 'Maximum al lowed lenqth is td\n",CHIRPLEN) ;
fprintf (stderr, 'Please recompile with larger CHIRPLEN value\n") ;
f f l u s h (s t d e r r) ;
abort () ;

]

/x normalize the chirp template */

/x normalization of next line comes from GRASP (5.6.3) and (5.6.4) ',/

i-nvers e-di s tance-scal e= 2 - 0 *HSCALE* (f SOLAR*C -ITSHT ftIPC) i
f o r (i = 0 , ' i < x c h i r p p o i n t s ; i + +) {

chO t i lde I i] x=1nr"r=e-distance-scale, '

ch90t i lde I i] x= inv . rce-d is tance-sca le ;

)

/x and FFT the chirps */
MPE-Log-event (17 ,my id , "s ta r t i .ng f f t ") ;
rea l f t (chOt i lde-1 , npo in t , 1) ;
M D F T - ^ - 6 r ' 6 n t - l 1 e n r r i A , ' a n n i h d f f l - n l
- . - s - ! v y - v Y v 4 . s + a . Y

MPE-Log-event (17 ,my id , "sEar t ing f f t ") ;
r a : 1 f | . l n h Q O t - i I A o - 1 n n a i n i 1 \ .

MPE-Log-event. (l-8,myid, "ending ff t") ;

i f I e l]anpF rFFMDt. l ' I lFe \ -^mnl 6i a. i++ .

/x print out the length of the longest template ,k/

i f (completed==nurLtemplates)
p r inEf ("S1ave 8d : templa tes comple ted .

myid, Iongest-template) t
f f l u s h (s t d o u t) ;

/x done computing the template x/

Longest i s td po in ts \n" ,

/* orthogonalize the chirps: we never modify ch0tilde, only ch9Otilde x/

MPE-Log-event (21 ,my id . "s ta r t ing") ;
orthonormal ize (chO t i 1de, ch9 0 t i 1de, twj. cejnv-noise, npoint . &n0, &n9 0) ;
MPE-Log-event r (22 ,my id , "done") ;

/x distance scale Mpc for SNR=I x/

d i s L a n c e = s q r t (1 . 0 / (n 0 x n 0 | + L . 0 / (n 9 0 x n 9 0)) ;

/+ find the moment at which SNR is a maximum x/

MPE-Log-event (l -9 ,my id , "search ing") ;
f ind-ch i rp (h t i lde , cho t i lde , ch90t i lde , tw ice- inv-no ise , n0 . n9 0 , ou t .pu to , ouEpuE9 0 ,

. npo in t ,CHIRPr ,en ,&:nax i ,&snr - rnax ,& l inO,&1 in90,&var) ;
MPE-Log-event, (20, nyid, "done') ;

175

/'r identify when an impulse would have caused observed filter output */
impulseof f = (maxi+*chirppoints I Snpoint ;
t . imeo f f =impulseo f f /srate ;
t imestart=maxi /srate, '

/* collect interesting signals to retum */
s i g-buf f er I temp-no*NSf GNALS] = snrrnax ;
s i g-buf f er I temp-no*Ns f GNALS+ 1-] =di s tance ;
s i g-buf f er I temp-no*NsIGNAIS+ 2] =1 inO ;
s i gi-buf f er I temp-no*NsIGNALS+3] =1 in9 0 ;
- : - L . . € € ^o re-uur r cr I temp-no{.NsIGNAIS+4] =maxi ;
s i g-buf f er I temp-no*NSIGNATS + 5] = impul s e o f f ;
s i g-buf f er I temp-no*NSIGNALS+ 5] =cimeof f ;
s i g-buf f er I temp-noT.NSIGNALS+ 7] = times tart ;
sig-buffer I temp-noxNSIGNALS+8] -eimesEart+*tc t
si g-buf f er I t.emp-not NSIGNALS+ 9] =var ;

p r o b = 0 . 0 ;
i f (snr - :nax>5.0) {

MPE-Log-event (23,rnyid, " Eestsing") ;
varsp l i t=sp l i tup- f req2 (1 in0* .n0 f sqr tQ.0) , 1 in90*n90/sqr t (2 .0) , chOt i lde ,

ch9Ot i1de, 2 - 0 / (n0*n0) , tw ice- inv-no ise , npo in t ,max j - , 8 ,
ind ices , s taLs , ou tpu tO, h t i lde) i

prob=gammq (4. 0, 4. O*varspl i t) ;
MPE-Log-evenE (24, myid, " done') ;

t)
s i g-buf f er I temp-no*NSIGNAIS+ L 0] =prob i

) /x eird of loop over the templates */

/'r return signals to master */
MPE-Log-event (?, nyid, " send") ;
MPI-Send(sig-buffer,NSIGNALS*num-eemplates,MPI-FLOAT,0,sCatus.MPI-TAG,MPI-COMM-WORLD);
MPE-Log-event (8, nyid, "sent ") ;

) /x end ofloop overthe data*f

)

/x both slaves and master exit here *f
p r in t . f (' *s p repar i -ng to shut down (process *d) \n" ,p rocessor -name.my id) ;
sprintf (logfi Ie-name, "mul- t i f i l ter. 8d - *d. 1og " , numprocs , DATA-SEGMENTS) t
MPE-Finish-1og (logf i 1e-name) ;
M D T E ' i n a l . i z o I I .

pr int f ("?s shut t ing down (process ?d) \n" ,processor-name,myid) ;
return 0;
i

/* This routine gets the data set, overlapping the data buffer as needed */

in t ge t -ca l ib ra ted-dataO {
i n t i , c o d e ;

if (nurn-senE)=DATA-SEGMENTS)
re tu rn 0 ;

w h i l c l r c m a i r . - n e e d e d) {

code-get -da ta (fp i f o , fp lock , & ts ta r t , MIN- l lmo-LocK*60* .s ra t .e ,
da tas , &remain , &sra te , 1) , '

i - f (c o d e = = 0) r e t u r n 0 ;
)
l

r76

i{

/* Cet the next needed samples of data x/
diff=npoint-needed;
66fls=get-data (fpifo, fplock, &tstart. ,needed, datas+diff , &remain, &srate, 0) ;
datas tart,=ts tart.-di f f /srate ;

f* copy integer data into floats */
f o r (i = 0 ; i (n p o i n t ; i + +) i l a t a t i l = d " a . " t ' , .

/x find the FFT of datax/
rea l f t (da ta-L , npo in t , 1) ;

/x normalized delta-L/Ltilde *./
product (ht i1de, data, response, npoint/2) ;

/* update the inverse of the auto-regressive-mean power-spectrum ,r./

avg-inv-spec (FLO, srate. npoint, decay, &norm, ht i ld.e, mean-pow-spec, twice-inv-noise) ;

/* see if the data has any obvious outliers */
gauss- tes t= is -grauss ian (da tas , npo inE, -2048, 2047, 0) ;

re tu rn 1 ;
l
J

/x this function shifts data by CHIRPLEN points in buffer x/
vo id sh i f tda ta() {

i n E i ;

/* shift ends ofbuffer to the start */
needed=npoint- CHIRPLEN+ 1 ;
fo r (i=0 ; i (CHIRPLEN-L; i++) da tas I i]=datas [i+needed] ;

/* reset ifnot enough points remain to fill the buffer */
i f (remain<needed) needed=npoint;

1 6 F r r h .

J

177

5.43 Optimizationand computation-speed considerations

The previous subsection describes the multif ilter program, which filters data through a bank of tem-

plates. We have experimented with the optimization of this code on several platforms, and here recount

some of that experience.
The first comment is that the Numerical Recipes roufine realf t () is not as efficient as possible. ln

order to produce a production version of the GRASP code, we suggest replacing this function with a more-

optimal version. For example, on the Intel Paragon, the CLASSPACK library provides optimized real-FFT

functions. To replace the realf t () routine, we provide a replacement routine by the same name, which

calls the CLASSPACKlibrary. This routine may be found in the src/optimization/paragrondirec-
tory of GRASP. By including the object file for this routine in the linking path, before the Numerical Recipes

library, it replaces the realf t () routine. (Note: GRASP cunently contains optimized replacement rou-

tines for the FFT on SGVCray, Sun, Paragon and Intel Linux machines; see the src/optimization/*

directories of GRASP).
The second comment is related to inspiral-chirp template generation. The binary inspiral chirps may be

saved in the multifilter program, but one is then limited by the available memory spage, as well as incurring

the overhead of frequent disk accesses if that memory space is swapped onto and ofFthe disk. To avoid

this, it is attractive to generate templat€s "on the fly", then dispose of them after each segment of data is

analyzed. This corresponds to setting STORE-TEMPLATES to 0 in multif ilter. In this instance' ttre

computational cost of computing binary chirp templates may become quite high, relative to the cost of the

remaining computation (FFT's, orthogonalization, searching for the maximum SNR).

To cite a specific example, cn the Intel Paragon, we found that the template generation was almost a

factor of ten more time-consuming than the rest of the searching procedure. Some profiling revealed that

the two culprits were the cube-root operation and the calculations of sines and cosines. Because the floating
point hardware on the Paragon only does add, subtract and multiply, these operations required expensive

library calls. In both cases, a small amount of work serves to eliminate most of this computation time.

In the case of the cube root function, we have provided (through an ifdef INLINE-CUBEROOT in the

code) an inline computation of cuberoot in 15 FLOPS, which only uses add, subtract and multiply. This

routine shifts r into the range from ! -, 2, then uses a fifth-order Chebyshev approximation of z-2l3 then

make one pass of Newton-Raphson to clean up to float precision, and returns rr/e - r-2/3r.In the case

of the trig functions we have provided (through an ifdef INLINE-TRIGS in the code) inline routines to

calculate the sine and cosine as well.After reducing the range of the argument to u € [-n-, ?r], these use a 6th

order Chebyshev polynomial to approximate the sine and cosine. These techniques speed up the template

generation to the point where it is approximately as expensive as the remaining computations. While there

is some small loss of computational accuracy, we have not found it to be significant. Shown in Figure 42 is

a timing diagram illustrating the relative computational costs of these operations.

178

I
b

f "
!

J
I-

4
1

ir

{
i
l
T

{
1
rl

i

{
I'|r

i r
EI

!

i

t t .- ' ,

f

i
I
I

I

Ir

:

t

i
c

I

/

'J

Figure 42: This shows the performance of an "on the fly'' template search on tfie Intel Paragon, with dif-

ferent levels of optimization. The top diagram uses the Numerical Recipes FFI routine realf t. () , and

takes about 4.2 seconds to process 6 seconds of data. The middle diagram shows identical code using the

CLASSPACKoptimized FFT routine, and takes about 2. L seconds. Note that the template generation process

is now becoming expensive. The bottom diagram shows identical code which includes inline functions for

cube-root and sine/cosine functions to speed up the template generation process. The template generation

takes about 325 msec, and the entire search procedure (including template generation) takes 780 msec per

template per processor per 6-second stretch of data. Relative to the top diagram, this represents a speed-up
factor of nnore than 5. Running on 256 nodes, it is possible to filter 5 hours of data through 66 templates
(representing the mass range from 1.2 to t.6 solat masses) in 5x3600x66x(0.780) lQ56x6) seconds = 10.1
minutes.

179

I
I

I
il

I

i
a

6 GRASP Routines: Black hole ringdown

Stellar-sized black hole binaries are an important source of gravitational radiation for ground-based inter-
ferometric detectors. The radiation arises from three phases: the inspiral of the two black hole companions,
the merger of these two companions to form a single black hole, and the ringdown of this initially distorted
black hole to become a stationary Kerr black hole. The gravitational radiation of the black hole inspiral has
been discussed in section 5; calculations of the late stages of inspiral, the merger, and the early stages of the
ringdown have not yet been completed; the radiation produced in the late stages of black hole ringdown is
the topic of this section.

At late times, the distorted black hole will be sufficiently "similar to" a stationary Kerr black hole that
the distortion can be expanded in terms of "resonant modes" of the Kerr black hole. By "resonant modes"
we refer to the eigenfunctions of the Teukolsky equation-which describes linear perturbations of the Kerr
spacetime-with boundary conditions corresponding to purely ingoing radiation at the event horizon and
purely outgoing radiation at large distances. These resonant modes are also called the quasinormal modes;
they are described in the next subsection.

1 8 0

i
I
I

l

6.1 Quasinormal modes of black holes

Gravitational pernrrbations of the curvature of Kerr black holes can be described by two components of
the Weyl tensor: i!6 and i[4. Because these are components of the curvature tensor, they have dimensions
of lL-2). Of particular interest is the quantity \Pa since it is this term that is suitable for the study of
outgoing waves in the radiative zone. The formalism for the study of pernrrbations of rotating black holes
was developed originally by Teukolsky [18] who was able to separate the differential equation to obtain
solutions of the form

1i - tlta)4V4 -a-iat Rtm?I-tsi;(ilao^0 (6.1.1t

where -zRm(r) is a solution to a radial differential equation, and -zSm(p) is a spin-weighted spheroidal
wave function (see [18], equations (4.9) and (a.10)). The black hole has mass M and specific angular
momentum a : cJ lM (which has dimensions of length) where J is the angular momenturn of the spinning

black hole. We shall often refer to the dimensionless angular momentum paramercr, d, : c2a/GM :

csJlcttt2. For a Kerr black hole, d must be between zero (Schwarzschild limit) and one (extreme Kerr
limi$. The observer of the perturbation is located at radius r, inclination p : cos L, and azimuth 0 (see

figure 43). The perturbation itself has the spheroidal eigenvalues / and rn, and has a (complex) frequency ar.
The constants G and c are Newton's gravitational constant and the speed of light.

axis of
perturbation

Figure 43: The polar angle, r, and the azimuthal angle, B, of the observer relative to the spin axis of a black
hole and the (somewhat arbitrary) axis of perturbation.

The important physical quantities for the study of the gravitational waves arising from black hole per-

turbations can be recovered from the field Va. In particular, the "+" and "x" polarizations of the strain
induced by the gravity waves are found by [18]

)"2
h + - i h x : - i " i ; V a

la r

The quantity h+ : hn is the metric perturbation that represents the linear polarization state along e; and e6,
while the quantity hx : hrp represents the linear polarization state along ei * e6. The power radiated

towards the observer (per unit solid angle) is

. 1 ' H : r ' T ot , - , n
- : l t r - l u t . l "

d tdQ r :a QvQ lq l2 t ̂
+ t

(6.r.2)

1 8 1

(6.1.3)

Thus, in order to compute the relevant information about gravitational waves emitted as perturbations to

rotating black hole spacetimes, one needs to calculate the value of Va at large radii from the black hole.

The quasinormal modes are resonant modes of the Teukolsky equation that describe purely outgoing

radiation in the wave-zone and purely ingoing radiation at the event horizon. The quasi-normal modes are

described by a spectrum of complex eigenvalues (which include the spectrum of eigenfrequencies c.l,n), and

eigenfunctions -2R6(r) and -zSm(p) for each value spheroidal mode / and m. These eigenvalues and

functions also depend on the mass and angular momentum of the black hole. We shall only consider the

fundamental (n : 0) mode since the harmonics of this mode have shorter lifetimes. For the salne reason,

we are most interested in the quadrupole ({. : 2 and m: 2) mode. The observer is assumed to be at a large

distance; in this case, one can approximate the pernrrbation as follows:

A
i[4 =

^
"-it'ttret-2St^(ti"u*0

r

Here t.u1 : t - r* /c represents the retarded time, where r* is a "tortoise" radial parameter. For large radii,

ttre tortoise radius behaves as r - r'rLog(rf r.lr) where r.. is the "radius" of the black hole event horizon-

Thus, we see that the tortoise radius is nearly equal to the distance of the objects surrounding the black hole,

and we shall view it as the "distance to the black hole." The parameter ,4 represents the amplitude of the

perturbation, which has the dimensions of [I-1].
Given the asymptotic form of the perturbation in equation 6.1.4, we can integrate equation 6.1.3 over the

entire sphere and the interval tr"1 € [0, m) to obtain an expression for the total energy radiated in terms of

the amplitud e A of the perturbation. Thus, we can characterize the amplitude by the total amount of energy

emitted: 42 : 4Gc-T n1w121-tmar). The gravitational waveform is found to be

h+ - ihx = -y(jtr)''' (T)'/' u-0,,,"" -2se*(p)ei*o. (6.1.s)

In order to simulate the quasinormal ringing of a black hole, it is necessary to determine the complex

eigenvalues of the desired mode, and then to compute the spheroidal wave function Sm}").The routines to

perform these computations are discussed in the following sections.

Rather than computing the actual gravitational strain waveforms at the detector, the routines will calcu-

late the quantity H+ -itx : (c2r f GMs)(h+ -ihx); the normalization of these waveforms to the correct

source distance is left to the calling routine. The distance normalization can be computed as follows:

:

&: (o"'*') : z'oso x lo1e (#)

(6.1.4)

(6.1.6)

(6.r.7)

where To : 4.g254gLps is the mass of the sun expressed in seconds (see equation 5.0.2). It will be

convenient to write the time dependence of the strain as the complex function 1l(Urur) so that H+ - iH, --

tl(ur"1)-65aS(p)l)08. The dimensionless eigenfrequenc%, ti.t : GMwf c3, depends only on the mode and

the dimensioniess angular momentum of the black hole. In terms of this quantity, the function ft(U'"1) is

?/(u,",) = -^e*/et ffir (ffi"*ol-)^(?J) (#) -]

where e is the fractional mass loss due to the radiation in the excited quasinormal mode.

t82

a_''

:

i-'
!
I

6.2 Function: qn-eigenvaLues ()

vo id . gn_e igenva lues(f loa t e igenva lues [] , f loa t a , inE s , in ! 1 , in t m)

This routine computes the eigenvalues associated with the spheroidal and radial wave functions for a speci-

fied quasinormal mode. The arguments are:

eigenvalues: Output. An array, eigenvaluestO..3l, which contains, on output, the real and

imaginary parts of the eigenvalues d'and A (see below) as follows: eigienvaluesl0l : Red',
^ ' : -^*"-r "^s [1] : ImO, eig:envalues [2] : ReA, and eigenvalues [3] : ImA'e J - g g l l v a i u E > L r J - L t L L w t s l v s r J

a: Input. The dimensionless angular momentum parameter of the Ken black hole, lal < 1, which is

negative if the black hole is spinning clockwise about the r : 0 axis (see figure 43).

s: Input. The integer-valued spin-weight s, which should be set to 0 for a scalar perturbation (e.g., a scalar

field pernrrbation), *1 for a vector perturbation (e.g., an electromagnetic field perturbation), or *2

for a spin two perturbation (e.g., a gravitational perturbation).

1: Input. The mode integer I > l=1.

m: Input. The mode integer l*l < I.

For a Kerr black hole of a given dimensionless angular momentum parameter, &, with a perturbation

of spin-weight s and mode l, and m, there is a spectrum of quasinormal modes which are specified by the

eigenvalues bn and Arr. As discussed in the previous subsection, the eigenvalue 6n is associated with the

separation of the time dependence of the pernrrbation, and it specifies the frequency and damping time of

the radiation from the perturbation. The additional complex eigenvalue /,', results from the separation of the

radial and azimuthal dependence into the spheroidal and radial wave functions. Both of these eigenvalues

will be necessary for the computation of the spheroidal wave function (below).

The routine qn-eigenvalues () can be used to compute the eigenvalues of the fundamental (n : 0)

mode. To convert the dimensionless eigenvalue D to the (complex) frequency of the ringdown of a Kerr

black hole of mass M, one simply computes , : csAlGM. The eigenfrequency is computed using the

method of Leaver [15]. Note that Leaver adopts units in which 2M : 1, so one finds that fr : i,r"uuu",
and d : 2a""uu", in our notation. The eigenvalues satisfy the following symmetry: if p,n - -i6^ and A^

are the eigenvalues for an azimuthal index rn, then p-^ : pi and A-^ : A\ are the eigenvalues for the

azimuthal index -rn.

Author: Jolien Creighton, jolien @tapir.caltech.edu

Comment: For simplicity, we require that the spin-weight number, s, be an integer. Thus, the spinor

perturbations ts and Xl, associated with " : i j respectively [18], are not allowed-

r '
!

t
l

!
I

1 8 3

6.3 Exanryrle: eigenvalues program

This example uses the function qn-eigenvalues () to corrpute the eigenvalue s "At^ and sArnafor the
s spin-weighted quasinormal mode specified by !. and rn, Lrrd for a range of values of the dimensionless
atrgular momentum parameter, d,. To invoke the program, type:

eigenvalwes s I rn

for the desired (integer) values of s, l, ard m. Make sure that l,) lsl and 0 1 m < I (the eigenvalues for
negative values of rn cax be infened from the symmeties discussed in subsection 6.2). The output of the
program is five columns of data: the fust column is the value of d running from just geatrr than -L to just
less than L (or between 0 and L if m :0), the second and third columns are the real and imaginary parts
of the eigenfrequency 6, and the fourth and fifth colurnas are the real and imagtnary parts of the angular
separation eigenvalue A. For the values of d, (0, the eigenvalues correspord to the mode with azimuthal
index -m so tbat the real part of the eigenfrequency is positive. A plot of the eigenfrequency output of the
program eigenvalues for several runs with s : -2 is shown in figure 44. The blue curves in figure 44
can be compared to figure 5 of reference [16] keeping in mind the conversion factors between Leaver's
convention (which is also used in [16]) and the convention used here (see subsection 6.2).

Figure 44: T'he real and imaginary parts of the eigenftequencis, O, as computed by the program
eigienvalues with s : -2. Each curve coresponds to a rarge of values of d from -0.9 (1ef0 to *0.9
(righQ for a single mode I ard lrnl. The open circles are piaced at the values & : -0.9, -0.6, -0.3, 0,
+0.3, +0.6, and +0.9 except when rn : 0 in which case there are no negative values of d plotted. The blue
curves correspond to the I : 2 modes aad the red curves correspond to the l.: 3 modes.

E

184

ro+ 1

/x GRASP: Copyright 1997, Bruce Allen */
* i n n l r r d a t r d r ^ c h } t "

main(in t a rgc ,conse char xargv [])

f l o a t a , d a = 0 . L , e i g e n [4 i ;
i n t s , 1 , m ;

/x process the command line arguments x/
if (argq==a) { /*correct numberofarguments */

s = a to i (a rgrv [] - l) ;
1 = a to i (a rgv l2J) i
m = a t o i (a r g r v [3 j) ;

) else { /* incorrectnumberof arguments x/
fprintf (stderr, "usage: qn_eigen_values s 1 m\n"),-
return 1t

)

f * scan through the rnge of a *f
f o r (3 = l - 6 a ; a) - l - ; a - = d a) {

/* compute the eigenvalues x/
i f (a < 0) {

i f (rn==Q) break;
m a i a a n r r e l r r c < l c i d a n a c I - m \ .

, 4 . 9 , 1 , . | L l ,

) e lse {

-
qn-e igenva lues (e igen, a , s , I , rn) ;

J

/+ pint the eigenvalues x/
p r i n t f (' t f \ t * f \ t B f \ t t f \ t * f \ n " , a , e i g e n [0] , e i g e n [] . l , e i g e n [2] , e i g r e n [3]) ;

)

re tu rn 0 ;

Author: Jolien Creighton, jolien @tapir.caltech.edu

1 8 5

6.4 Function: sw-spheroid()

vo id sw-sphero id (f loa t * re , f loa t * im, f loa t mu, in t rese t ,
f l -oa t a , in t s , in t I , in t m, f loa t e igenva lues [])

This routine computes the spin-weighted spheroidal wave function ,Sern(pt).The arguments are:

re: Output. The real part of the spin-weighted spheroidal wave function.

im: Output. The imaginary part of the spin-weighted spheroidal wave function.

mu: Input. The independent variabls, F : cos r with r, being a polar angle, of the spin-weighted spheroidal
wave function; -1 < mu < 1.

reset: Input. A flag that indicates that the function should reset (reset : 1) the internally stored
normalization of the spin-weighted spheroidal wave function. The reset flag should be set if any of
the following five arguments are changed between calls; otherwise, set reset. : 0 so that the routine
does not recompute the normalization.

a: Input. The dimensionless angular momentum parirmeter, -L < a (1,, of the Kerr black hole for which

the spin-weighted spheroidal wave function is associated

s: Input. The integer-valued spin-weight s, which should be set to 0 for a scalar perturbation (e.g., a scalar
field perturbaticn), tl fcr a vector perturbation (e.g., an electromagnetic field pert'Jrbation), or t2
for a spin two pernrrbation (e.g., a gravitational pernrrbation).

1: Input. The mode integer 1 > l=1.

m: Input. The mode integer l*l < 1.

e igenva lues : Input .Anar ray ,e igenva lues [0 . .3] ,wh ichconta ins therea land imag inarypar ts
oftheeigenvalues OandA(seebelow)asfol lows: eigenvalues [0] : Re6, eigenvalues [] - l
ImD, eigenval-ues l2l : ReA, and eigenvalues [3] : ImA. These may be calculated for

a quasinormal mode using the routine qn-eigrenvalues () .

The spin-weighted spheroidal wave function is also computed using the method of Leaver [15]. We

have adopted the following normalization criteria for the spin-weighted spheroidal wave functions ",Sa-(p).
First, the angle-averaged value of the squared modulus of ,Sm|t) is uniry: I]rlrSm|il'dp :1. Second,

the complex phase is partially fixed by the requirement that "52-(0) is real. Finally, the sign is set to be

1-;l-max(rn'") for the real part in the limit that pr --* -1 in order to agree with the sign of the spin-weighted

spherical harmonics ,Yt*(pt,0) (see [14]).
It is sufficient to compute the spin-weighted spheroidal wave functions with s < 0 utd au : 6,A) 0

because of the following symmetries [17]:

and

-"St*(p,aa) - ,Sarn(-p',au) with -'Ez-(a..,) : sElm(al,r)

,St*0,1, -au) : r52,-n (-1.t,,a.^,) u,ith rEz-(-a-) : sEl,-m(a{r)

where ,E2^: ,At^ * s(s + 1).

Author: Jolien Creighton, jolien@tapir.caltech.edu

(6.4.1)

(6.4.2)

1 8 6

a
i
I

6.5 Example: sBherical program

The program spherical is an example implementation of the routine sw-spheroid () to compute
the standard spin-weighted spherical harmonics [14]. The program also computes these functions using
equation (3.1) of [14] forcomparison. According to the normalization convention stated in subsection 6.4,
the relationship between the spin-weighted spheroidal harmonics and the spin-weighted spherical harmonics
is:

,Ym(o,47 : Qn)-L/2 "Sp^(cos0)ei*0 (6.5.1)

with oc,., : 0 and A : ({ - s)(t+ s + 1).
To invoke the program, type:

soherical s (. m

for the desired (integer) values of s, 1,, andm (l > lsl and lrnl < l). The output is three columns of
data: the first column is the independent variable p between -1 and *1, the second column is the value
of (%r)-L/2rSm(p), and the third column is the value of ,Ym(p,O) as computed from equation (3.1)

of [14]. A comparison of the results produced by the program sphericaL for I : rTt : -s : 2 with the
exact values of -2Y22(p,,0) = (516Lfl'/'(L + pr)2 is shown in table 9.

p Goldberg sw-spheroid () exact
-0.99 1.576955 x 10- 1.576955 x 10- 1.576958 x 10
-0.95 3.942387 x 10-a
-0.75 9.855968 x 10-s
-0.55 3.193334 x 10-2
-0.35 6.662639 x 10-2
-0.15 1.139351 x L0-1
+0.15 2.085525 x 10-r
+0.35 2.874004 x 10-1
+0.55 3.788640 x 10-l
+0.75 4.829430 x 10-1
+0.95 5.996378 x 10-r
+0.99 6.244906 x 10-t

3.942387 x 10-a
9.855967 x 10-3
3.193333 x L0-2
6.662639 x 10-2
1.139351 x 10-1
2.085525 x 10-1
2.874005 x 10-1
3.788639 x 10-1
4.829430 x 10-I
5.996379 x 10-1
6.2M906 x 10-1

3.942395 x L0-a
9.855986 x L0-3
3.193340 x L0-2
6.663647 x L0-2
1.139352 x 10-1
2.085527 x L0-i
2.874006 x L0-1
3.788641 x L0-1
4.829433 x 10-l
5.996382 x L0-1
6.244911x 10-l

Table 9: A comparison of the values of the spin-weighted spherical harmonic -zYzz(1",0) calculated by
equation (3.1) of Goldberg [1a], the values of (2n)-r/2 -zSzz(ti using routine sw-spheroid () , and the
values of the exact result (5/64 r)L/2 (t + p)2 .The three methods give excellent agreement.

187

/* GRASP: Copyright 1997, Bruce Allen x/

l ! i n a l r r A a . n r . c n h n

* d e f i n e T W O P I 5 - 2 8 3 L 8 5 3 0 7 L 8
#def ine FOURPI 12 .5653 '706144
stsatic int imaxargl, imaxarg2 ;
*d.ef ine IMAX(a,b) (imaxargl-= (a) , imaxarg2=(b) , (imaxargl)

(imaxargL) : (imaxarg2))
suat ic in t im inarg l , im inarg2;
#def ine IMIN(a .b) (im inarg l= (a) , im inarg2= (b) , (im inarg l)

l i m i n : r a 1 \ I i m i n a r a ? l \\ r r . r 4 r r e r Y r / . \ f r r t 4 . . s r y & / /

f loa t sw-spher j -ca l (f loaE mu. in t s . in t I . in t m)

/,k Computes the spin-weighted spherical harmonic (with phi=0) using

equation (3. l) of Goldbery et al (1967). * I
t

> (imaxarg2)

(iminarg2) ?\

f l o a t f a c t r l (i n t) ;
f 1 o a t . b i c o (i n t , i n t) ;
f l o a t s u m , c o e f , x ;
. l - r - i - - - - - . 1 *rnE. sJ-gn, r , rmrrt, rmax;

r . I (m u = = - I . u J t
fp r in t f (s tder r , 'e r ro r in sw-spher ica l () : d iv is ion by zero ') ;
r 6 i r 1 ? n n .

] e l s e {
x = (1 + r n u) / (L - m u) ;

l)
c o e f = f a c t r l (1 + m) * f a c t r l (1 - m) * (2 x l + 1) / (f a c t r l (l - s) * f a c L r l (L + s) * F O U R P I) ;
r m i n = I I 4 A X (0 , m - s) ;
n r a x = I M I N (1 - s . 1 + m) ;
sum = 0 ;
f o r (r = r m i n ; r < = r m a x ; r + +) {

(((1 - r + s) * 2) = = 0) ? (s i g n = 1) : (s i g n = - 1) ;
sum += s igm*b ico (1 -s , r) xb ico (1+s , r+s-m) *pow (x , 0 . 5* (l , t1+5-6) 1 ;

])
s u r n x (= s q r t (c o e f) * p o w (0 . 5 * . (L - m u) , 1) ;

r a t s t t r n q l l m .

I)

main(in t a rgc , char *a rgv [])
{
t

f loa t Sre , S im,Y,norm=l - . O/sqr t . (TWOPI) ,mu=0, dmu=0 - 02 ;
f loaL e igenva lues [4] ;
i n t s , L , m ;

/* process arguments */
i f (argc== 4I { /* colrect number of arguments x/

s = a r o i (a r W [l]) ;
1 = a t o i (a r g v [2]) ;
m = a t o i (a r g n r [3]) ;

) else { /* inconect number ofarguments x/
f n r i n f f (s f r i e r r " r r q a d F ' s n h a r i e a l s L m \ n ") ;l y r f !] e r \ r u s e r :

r a l - r t r n
' 1 -

l)

/x set the eigenvalues to produce spin-weighted spherical harmonics *./

r88

e igenva lues [0]
eigenvalues [2]

e i g e n v a l u e s [1 i = e i g e n v a l u e s [3] = 0 ;

(t - s) * (1 + s + 1) ;

/x reset the normalization x/

sw-sphero id (&Sre , &s im, mu. l - , 0 ' 0 , s , l ,m, e j -genva lues) ;

fo r (mu=-1+0. 5*dmu, 'mu<1 ;mu+=dmu) {

/*. compute the spin-weighted spheroidal harmonic */

s w - s p h e r o i d (& S r e , & s i m , m u , 0 , o ' 0 , s , 1 . m , e i g e n v a l u e s)

/* compute the spin:weighted spherical h4qqonic x/

Y = sw-spher ica l (mu,s , 1 ,m) ;

/x print results with correct normalization for the spheroidal harmonic x/

.
p r i n t f (" * e \ t * e \ t * e \ n " , m u , n o r m * S r e ' Y) ;

J

return 0;

Author: Joli en Creighton, j olien @ tapir. caltech'edu

189

6.6 Exaurple: sxrlleroid proErarn

This is a second irnplerrentation of the function sw-spheroid() which is used to compute the spin-
weighted spheroidal wave function associated with a quasinormal ringdown mode of a Kerr black hole with
a certain (specified in the code) dimensionless angular nnomentuur parameter. To invoke the program, t5pe:

spheroid s I rn

for the desired (integer) values of s,l, and rn (l > lsl and lrnl < l) of the desired mode. The output is three
columns of data: the first coluaon is the independent variable pr between -L and ,*1, the second column is
the value of the real part of. "Syrr(p,), and the third colurnn is the value of the imaginary part of tSm(l.t).
Figure 45 depicts the output for the spin-weighted spheroidal wave function -zSzz(tt).

- real part
-. l0 * imaginary part

0
cosine of polar angle, p

Figure 45: A plot of the real and imaginary parts of the I : rn : -s : 2 spin-weighted spheroidal wave
function, -zSzz(t"), associated with a black hole with dimensionless angular momenfirm parameter d =
0.98. The imaginmy part is scaled by a factor of ten.

a
t 1

o

o
(U
=
.!- 0
'x

o

o

-1
a

190

/x GRASP: Copyright 1997, Bruce Allen */

inc lude 'g rasp .h"

*defi-ne SPIN 0 -98 /r' the dimensionless angular momentum parameter */

main(int argrc, char *argv[j)
1

f loat re, im. mu=0 , dmr.r=0 . 02 , a=SpIN;
f loa t e igenva lues [4] ;
i n t s , 1 , m t

/* process ar6'uments */
if (arg,s==Al { /x correctnumberof argumens x/

s = a to i (a rw[] . i) ;
I = a to i (a rg iv [2]) ;
m = a t o i (a r W [3]) ;

) else { /x inconectnumberof arguments x/
fp r in t f (s tsder r , 'usag le : sphero id s 1 m\n") ;
r c i . r r r n 1 .

)

/* get the eigenvalues forthe appropriate quasinormal mode */
qn-e igenva lues (e igenva lues , a , s , 1 ,m) ;

/x reset the normalization x/
sw-spheroid (&re, &in, mu, l- , a, s, L , m, eigenvalues) ;

f or (mu=-1+0 . 5xdmu;mu(1;mu+=drnpl 1
/* compute the spin-weighted spheroidal harmonic */
sw-sphero id (&re , & im,mu, 0 , 0 . O, s , 1 ,m, e j_qenva lues) ;
/* print results */

-
p r i n t f (" 8 e \ E B e \ t t e \ n " , m u , r e . i m) ;

I

r a f - r r t s h n -

l)

Author: Jolien Creighton, jolien @tapir.caltech.edu

I

1 9 i

6.7 Function: en-ringr()

i n t qn_r ing(f loa t io ta , f loa t be ta ,
f l o a t e p s , f l o a t M , f l o a E a , i n t 1 , i n t m ,
f loa t d t , f loa t a t ten , in t max,
f loa t * *p lusPt r , f loa ! * *c rossPt r)

This routine is used to compute the *+" and "x" polarizations of the gravitational waveform, H(tra),
produced by a black hole ringdown at a distance GM6f c2 : Toc - 1.4766km. To obtain the waveforms

at a distance r, multiply the result by GM6lc2r : Tsc/r. The arguments are:

iota: Input. The polar angle (inclination), r (in radians), of the sky position of the observer with resPect

to the (positive) spin axis of the black hole, 0 (iota (n'.

beta: Input. The azimuth, B (in radians), of the sky position of the observer with respect to the axis of

the perturbation at the start time. (0 < beta < 2r.)

eps: Input. The fraction of the total mass lost in gravitational radiation from the particular mode. (0 <
eps (1.)

M: Input. The mass of the black hole in solar masses.

a: Input. The dimensionless angular momentum parameter of the Kerr black hole, lol (L, which is

negai're if ',he black hole is spinning clockwise about the r : 0 axis (see figure 43).

1: Input. The mode integer (.. (L > 2)

m: Input. The mode integer nz. (lml < t)

dE: Input. The time interval, in seconds, between successive data points in the returned waveforms.

atten: Input. The attenuation level, in dB, at which the routine will terminate calculation of the wave-

forms. I.e., the routine will terminate when the amplitude, A : Aoexp(-Ima.'trut), falls below the

level z4."111o6 : L9 alog16(-0.f x atten).

max: Input. The maximum number of data points to be returned in the waveforms.

plusPtr: Input/Output. A pointer to an array which, on return, contains the waveform f[sampled at
intervals dt. If the array has the value NULL on input, the routine allocates an amount of memory to
*plusPtr to hold max elements.

crossPtr: Input/Output. A pointer to an array which, on return, contains the waveform If* sampled at

intervals dt. If the array has the value wul,l, on input, the routine allocates an amount of memory to
* crossPtr to hold max elements.

The routine qn-ring () returns the number of data points that were written to the arrays (*plusPtr) []
and (*crossPtr) t I ; this is either the number specified by the input parameter max or the number of

points computed when the waveform was attenuated by the threshold atten. The eigenvalues are ob-

tained from the function qn-eigenvalues (). The waveform is then computed using f/a - iHy :

tl(u."1)-.Ss$(p)l)0B with ?i(u;s1) given by equation (6.1.7). The spheroidal wave function is obtained

from the function sw-spheroid () .

Author: Joli'en Creighton, jolien@tapir.caltech.edu

r92

'

t
f

f
L
i "

L
r

t
t
f
t
t
I
t;
i

t
t
h
i

L
I
t
1

I
I

lr
i

t
;

L
t
I

b
I
I

I
I

;

Ir

I|r

i
T

I

L

6.8 Example: ringrd,owl progrann

This example uses the function qn-ring () to compute the black hole quasinormal ringdown waveform
for a preset mode and inclination. The waveform as a function of time is written to standard output in tbree
columns: the time, the plus polarization, and the cross polarization. A Flot of the quasinormal ringdown
waveform data is shown in figure 46.

time (ms)

Figure 46: Aplot of the plus and cross polarizations of the gravitational wave strain, at a (unphysical!)
distance GMslcz : Toc * L.4766km, for the firndamentd, !. : rn : 2 mode of a black hole with mass
M : 50Mo, dimensionless angular momentum pararlster 0.98, and fractional mass loss e : 0.03, with
inclination and azimuth r : 0 and 0 : 0. T'he data was produced by the program ringdown.

193

/* GRASP: Copyright 1997, Bruce Allen x/

* i n n ' l r r A a " a r a e n h "

*def ine
* A o f i r a

#def ine
#def ine
* d c f i n a

#define
* d a f i n a

4 J ^ a i - ^

*define
*define

r o T A 0 . 0
BETA O. O
E P S 0 . 0 3
M A S S 5 0 . 0
s P r N 0 . 9 8
MODE-L 2
MODE-M 2
S R A T E L 5 0 0 0 . 0
A.FTFI\T ? N N

MAX L024

/*. inclination (radians) */

/* azimuth (radians) ,r/

/x fractional mass loss */

/r. mass (solar masses) */

/* specific angular momentum */

/* mode integer I ,r/

/* mode integer m ,r/

/*. sampling rate (Hz) 'rf

/* attenuation leven (dB) x/

/x max number of points in waveform

main ()
{
t

f l o a t ' r p] u s , * c r o s s , t , d t = I / S R A T E ;
i r i i n .

/x set arrays to NULL so that memory is allocated in called routines */

p l u g = c r o s s = N U L L ;

f * geneftte the waveform function data ""/

N = qN-TJ-NS(TOTA,BETA,EPS,MASS,SPIN,MODE-L,MODE-M,dC,ATTEN,MAX,&PIUS,&CTOSS)

/x output the data */
€ a r / i - ^ f - n . i 1 n . i + + . t + = d t) o r i n t f (, ' 8 e \ t % e \ t % e \ n " , t , p I u s I i l , c r o s s I i]) ;\ 4 - v , L - w g r + i r e ' \

re tu rn O;

Author: Jolien Creighton, jolien@tapir.caltech.edu

194

I

6.9 Function: qn-ering()

i n t qn_qr ing(f loa t ps iO, f loa t eps , f loa t M, f loaE a ,
f loa t d t , f loa t a t ten , in t max, f l -oa t * *s t ra inPt r)

The routine qn-qring () is a quick ringdown generator which constructs a damped sinusoid with a fre-
quency and quality approximately equal to that of the t : m : 2 quasinormal mode of a Kerr black
hole and an amplitude approximately equal to angle-averaged strain expected for black hole radiation at
a distance GMs/c2 : Toe = L.4766km- To obtain the waveforms at a distance r, multiply the result
by GMslc2r : Tac/r.The arguments to the routine are:

psi0: Input. The initial phase (in radians) of the waveform (see below).

eps: Input. The fractional mass loss in quadrupolar ((.: m: 2) radiation. (0 < eps (L.)

M: Input. The mass of the black hole in solar masses.

a: Input. The dimensionless angular momentum parameter of the Ken black hole, lal < 1, which is
negative if the black hole is spinning clockwise about the r : 0 axis (see figure 43).

dt: Input. The time interval, in seconds, between successive data points in the returned waveform.

atEen: Inpuc The attenuation level, in dB, at which the routine will terminate calculation of the wave-

forms.

max: Input. The maximum number of data points to be returned in the waveforms.

strainPtr: Input/Output. A pointer to an zuray which, on return, contains the angle-averaged waveform

sampled at intervals d.t. If the array has the value NULL on input, the routine allocates an amount of

memory to *strainPtr to hold max elements.

Theroutineqn-ringO retumsthenumberofdatapointsthatwerewrittentothearray (*strainPtr) [];
this is either the number specified by the input parameter max or the number of points computed when the

waveform was attenuated by the threshold atten. The anay contains the angle averaged waveform

(6.e.1)

where Tl(J,"t) is given by equation (6.1.7), sampled at time intervals dt. The constant ry's defines the initial
phase of the waveform. The amplitude factor is set by the following argumenl The gravitational strain (at a

distance GM6lc2:Toc-I .4766km)thatwouldbeobservedbyaninterferometer isgivenbylf(t ."r) :

F+(0,d,r{;)H+(tr.t,L,,P) + Fr(0,Q,rb)H"(tr"t,t,B) where F+ and F* represent the antenna patterns of

theinterferometer. Whenaveragedoverg, d,ndls,onefinds ({) : (Fi) : } and(F+&) :0. Thus,

(H2(tr.r))e,o,,t , .r,g = IQt'*(t,"r, t , g) t H?(tr"r,4 F)),,8
1 t t t t r . i i \ / t ^ \ t t \

: iilfi .'1i")(t'ut' t' tr)t')''e
I l ' f \"" ' i1

r H!-.^

where the overbar indicates a time average over a single cycle; approximate equality becomes exact in

the limit of zi high quality ringdown. It is in this sense that the quantity l/..,u(f."t) can be viewed as an

angle-averaged waveform.

r{uu" (r,ut) :
**"

[?l(t-l."r)l)/'],

(6.e.2)

r95

Rather than compute the eigenfrequency using the routine qn-eigenvalues () , this routine uses the
analytic fits to the eigenfrequency found by Echevenia [13]. These expressions are:

a- f@)G-I tg@)) (6 .e .3)

with

f @) : 1- 0.63(1 - d)slro 6.s.4)

sG) : Q-a1s/zo. (6.9.s)

Author: Jolien Creighton, jolien @tapir.caltech.edu

Comnnents: Since this routine does not need to compute the spheroidal wave function and uses an analytic
approximation to the eigenfrequency, it is much simpler than the routine qn-ring () . The approxi- l
mate eigenfrequencies are typically accurate to within - 570, so this routine is to be prefened when
computing quadrupolar ((.: rn: 2) quasinormal waveforms unless accuracy is critical.

196

6.10 Function: qn-f ilter ()

int qn-f j - lCer(f loat f reg, f loat qual,

f l o a t d . t , f l o a t a t E e n , i n t m a x , f l o a t * * f i l t e r P t r r)

Quasinormal ringdown waveforms are characteri zedby two parameters: the central frequency of the wave-

form; and the quatity of the waveform. The parameter space is most easily described in terms of these

variables (rather than the mass and the angular momentum of the corresponding black hole), so it is useful

fo Construct filteiS fof quasinormal ringdowlt waveform searches in terms ofthefrequency and quality of the

waveform. This routine constnrcts such a filter, with a specified frequency and quality. The routine retums

the number of filter elements computed before a specified attenuation level was reached. The arguments are:

f reg: Input. The central frequency, in Hertz, of the ringdown filter.

qual: Input. The quality of the ringdown filter.

dt: Input. The time interval, in seconds, between successive data points in the returned waveform.

atten: Inpuc The attenuation level, in dB, at which the routine will terminate calculation of the wave-

forms.

max: Input. The maximum number of data points to be returned in the waveforms.

f ilterptr: InpuuOutput. A pointer to an array which, on return, contains the filter sampled at inter-

vals dt. If the array has the value NULL on input, the routine allocates an amount of memory to

* f ilterPtr to hold max elements.

The constructed filter, g(t), is the function

q(i) : e-nftlQ cos(2trft) (6 .10.1)

where / is the central frequency and Q is the quality. The routine qn-filterO perforrns no normal-

ization, nor does it account for different possible starting phases. The latter is not important for detection

template construction. Normalization is achieved using the function qn-normalize () , which is described

later.

Author: Jolien Creighton, j olien @ tapir. caltech. edu

t97

6.11 Function: qn-rlormal.ize ()

vo id qn_normal ize(f loa t *u , f l_oa t *q , f]oa t * r , in t n , f loa t *norm)

Given a filter, q(/), and twice the inverse power spectrum, r(/), this routine generates a normalized tem-
plate d(/) for which t : (N2) -' |correlate (. . . ,lr, u, r, n). The arguments are:

u: Output. The array u[0- -n-]-l contains the positive frequency part of the complex template func-
tion d(/), packed as described in the Numerical Recipes rourine realf t () .

q: Input. The anay S [0 . . n-1] contains the positive frequency part of the complex filter function q(f),
also packed as described in the Numerical Recipes routine realf t () .

r: Input. The array r[0- .n/2] contuns the values of the real function r(f) : Z/Sn(lfl) used as a
weight in the normalization. The array elements are ananged in order of increasing frequency from
the DC component at subscript 0 to the Nyquist frequency at subscript n/2.

n: Input. The total length of the a:rays u and q. Must be even.

norm: Output. The normalization constant, a, defined below.

Given a filte r, q(t),this routine computes a template, u(t) : aq(t),which is normalized so that (u, u) -

2, where (.,-) it the inner product defined by equation (5.14.9). Thus, the normalization constant is given
by

1 1 , ,
" , 2 : t \ q ' q) '

Author: Jolien Creighton, jolien @ tapir.caltech.edu

(6 .11 .1)

198

f-

6.L2 Function: f ind.-ring ()

vo id f ind- r ing(f loa t *h , f loa t . *u , f loa t * r , f loa t *o ,

in t n , in t 1en, in t sa fe , in t *o f f ,

f loat. *snr, f loat *mean, f loat *var)

This optimally filters the strain data using an input template and then finds the time at which the SNR peaks.

The arguments arel

h: Input. The FFT of the strain aaan1fl.

u: Input. The normalized template d(/).

r: Input. Twice the inverse power spectrum ZlSn(lf l).

o: Output. Upon retum, contains the filter outPut.

n : I n p u t . D e f i n e s t h e l e n g t h s o f t h e a r r a y s h t O . . n - 1 1 , u [0 . . n - 1] , o [0 - . n - 1 -] , a n d r [0 . . n / 2) .

Ien: Input. The number of time domain bins for which the filter u(t) is non-zero. Needed in order to

eliminate the wrap-around ambiguity described in subsection 5-18.

safe: Input. The additional number of time domain bins to use as a safety margin' This number of

points are ignored at the beginning of the filter output and, along with the number of points len, at

the ending of the filter output. Needed in order to eliminate the wrap-around ambiguity described in

subsection 5.18.

off: Output. Theoffset"intherangesafeton-len-safe-l,forwhichthefilteroutputisamaximum.

snr: Output. The maximum SNR in the domain specified above.

mean: Output. The mean value of the filter output over the domain specified above.

var: Output. The variance of the filter output over the domain specified above. Would be unity if the input

to the filter were Gaussian noise with a spectrum defined by Sn-

Author: Jolien Creighton, jolien @ tapir.caltech.edu

r99

6.13 Function: qa-inject ()

vo id gn_ in jec t (f loa t *s t ra in , f loa t *s igmal , f loa t * response, f loa t *work ,

f loa t invMpc, in t o f f , in t n , in t 1en)

This routine injects a signal s(t), normalized to a specified distance, into the strain data h(t), with some
specified time offset. The arguments to the routine are:

strain: Input/Output. The array strain [0 . . n-1] containing the strain data on input, and the strain
data plus the input signal on output.

sigmal: Input. The array signal [0 . . 1en-1] containing the signal, in strain units at 1 Mpc distance,
to be input into the strain data stream.

response: Input. The array response [0 . . n+11 containing the response function rR(/) of the IFO.

work: Output. A working array work [0 . . n-1] .

invMpc: Input. The inverse distance of the system, measured in l/lvlpc, to be used in normalizing thq
sienal.

of f : Input. The offset number of samples (in the time domain) at which the injected signal starts.

n : I n p u t . D e f i n e s t h e l e n g t h o f t h e a r r a y s s t r a i n [0 - - n - 1] , w o r k [0 . . n - 1] , a n d r e s p o n s e [0 . . n +] - 1 .

len: Input. Defines the length of the array signal [0 . - len-1] .

Author: Jolien Creighton, j olien @ tapir.caltech. edu

Comments: See the description of the routine time-inj ect () .

200

+
I

6.14 Vetoing techniques for ringdown waveforms

Vetoing techniques for binary inspirals have already been described in subsection 5.22; these techniques are
equally applicable to searches for ringdown waveforms. However, since ringdown waveforms are short lived
and have a narrow frequency band, it is much more difficult to distinguish between a ringdown waveform and
a purely impulsive event. Furtherrnore, since the ringdown waveform will be preceded by some unknown
waveform corresponding to a black hole merger, one should not be too selective as to which events should
be vetoed.

NeverttreleSi, the Caltech 4O meter interfeiometer data has many qpuribus eVettS that will triggei a
ringdown filter, and we would expect that other instruments will have similar properties. These spurious
events will (hopefully) not be too common, and most will be able to be rejected if they are not reported
by other detectors. At present, however, we have only the Caltech 40 meter data to analyze, so we must
consider every event that is detected by the optimal filter. The single vetoing technique that we will use at
present is to look for non-Gaussian events in the detector output using the routine is-gaussian () . Since
the expected ringdown waveforms will be only barely discernible in the raw data, such a test has no chance
of accidentally vetoing an actual ringdown, but it will veto the obvious inegularities in the data.

201

6.15 Example: qn-optimal program

This program is a reworking of the program optimal to be run on simulated 4O-meter data. Instead
of searching for binary inspiral, qn-optimal searches for an injected quasinormal ringdown waveform.
Refer to the sections on optimal filtering and the opt.imal program for a detailed discussion.

The program is setup to inject a quasinormal ringdown, produced by the routine qn-qring () , due to
a black hole of mass M - 50M6, dimensionless angular momentum parameter d : 0.98, and fractional
mass loss of e : 0.03. The injection occurs at a time of 500 s and the source distance is set to 100 kpc. The
filter is constructed from the same waveform.

The following is some sample output from qn-optimal:

m a x s n r : 3 . ' 7 4 (o f f s e t 3 0 4 6 9) d a t a s t a r t : 4 5 6 - 7 7 v a r i a n c e : 0 . 7 2 1 5 9
m a x s n r : 4 . 0 3 (o f f s e t 5 0 1 5 5) d a t a s t a r t : 4 7 9 . 8 0 v a r i a n c e : 0 . 7 8 5 5 0

M a x S N R : 9 . 2 5 (o f f s e t 7 0 7 8 5) v a r i a n c e 0 - 7 9 6 2 6 3
f f r ingdown, es t imated d . i sEance: 0 .114364 Mpc, s t ,a r t t ime: 499 .999968
D i s t r i b u t i o n : s = 4 0 , N > 3 s = 0 (e x p e c t 3 5 3) , N > 5 s = 0 (e > p e c t 0)

J iPOSSIBLE RINGDOWN: Drstribution does not atcpear t.o have outliers

m a x s n r : 3 . 5 8 (o f f s e L 7 0 9 7 4) d a t a s t a r t : 5 0 5 . 8 6 v a r i a n c e : 0 - 7 7 4 3 2

m a x s n r : 3 - 5 2 (o f f s e t 1 2 3 0 0 5) d a t a s t a r t : 1 3 3 9 . 8 1 v a r i a n c e : 0 . 7 0 8 8 5

M a x S N R : 6 7 . 0 L (o f f s e t L 2 6 L 2 9) v a r i a n c e 4 . 6 3 7 3 0 4
I f r i n g d o w n , e s t i m a t e d d i s t . a n c e : 0 . 0 0 9 7 7 7 M p c , s t a r t t i m e : 1 3 6 5 - 6 1 8 1 - 0 8
D i s t r i b u t i o n : s - - 4 0 , N > 3 s = 3 2 0 (e > c p e c t 3 5 3) , N > 5 s = 7 9 0 (e > < p e c t 0)
D is t r ibu t ion has ouEl ie rs ! Re iec t

M a x S N R : 9 3 . 0 3 (o f f s e t L 2 9 5) v a r i a n c e 4 . 4 4 4 3 3 5
I f r i n g d o w n , e s t , i m a t e d d i s t a n c e : 0 . 0 0 5 9 3 4 M p c , s L a r t t i m e : 1 3 6 5 - 9 9 8 7 8 0
D i s t r i b u t i o n : s = 4 0 , N > 3 s = 1 0 9 (e x p e c E , 3 5 3) , N > 5 s = 2 8 0 (e : < p e c t 0)
D is t r ibu t ion has ouL l ie rs ! Re iec t

m a x s n r : 2 . 7 L (o f f s e t L 2 7 3 8 9) d a t a s t a r t :] - 3 7 8 . 9 0 v a r i a n c e : 0 - 2 9 8 1 - 0

m a x s n r : 4 . 8 5 (o f f s e t 1 1 8 1 3 7) d a t a s t a r t : 2 L 5 2 . 1 8 v a r i a n c e : 0 . 9 1 - 8 7 0

M a x S N R z L 2 - 7 4 (o f f s e t 6 9 4 2 6) v a r i a n c e l - . 3 3 2 3 2 4
f f r i n g d . o w n , e s t i m a t e d d . i s L a n c e : 0 . O B L L 4 4 M p c , s t a r t t i m e : 2 1 7 2 . 2 4 9 5 2 4
D i s t r i b u t i o n : s = 3 9 , N > 3 s - 0 (e x p e c t 3 5 3) , N > 5 s = 0 (e > < p e c t r 0)
POSSIBLE RINGDOWN: Distr ibut ion does not appear to have ouEl iers

m a x s n r : 3 . 6 5 (o f f s e t 3 5 9 7 5) d a t 4 s t a r t : 2 L 7 8 . 2 4 v a r i a n c e : 0 - 7 7 8 2 0
m a x s n r : 3 . ' 7 6 (o f f s e t L 2 2 8 5 4) d a t a s t . a r E : 2 1 9 1 , - 2 8 v a r i a n c e : 0 . 6 7 8 4 9

As can be seen, qn-optimal is able to find the ringdown and correctly estimates its distance and time
of arrival.

202

Author: Jolien Creighton, jolien@tapir.caltech.edu

203

/x GRASP: Copyright 1997, Bruce Allen */

* inc lude "grasp.h"

#define NPOINT l3I0'72
#def ine HSCALE L .0e2 l ,
#define ARMLENG?H 40.0
* d e f i n e F L O 1 2 0 . 0
#define MIN-IIf l |O-LOCK 3.0
*define THRESHOLD 6.0
*def ine ATTEN 30.0
#define SAFETY 1000
#define DATA_SBGMENTS 3000

/* manufacture quasinormal
ring = 5111,1,-
len = qn_qr ing(ps iO,

/* number of data points x/

/x convenient scaling factor x/

/x armlength (meters) x/

/*, low frequency cutoff for filtering */

/* time (minutes) to skip into each locked section */

/* detection threshoid SNR */

/,k attenuation cutoff for ringdown waveforms r./

/* padding safety to avoid wraparound errors x/

/* maximum number of data segments to filter *./

ring data; obtain length of signal */

eps .mass , sp in , 1 - O/s ra t ,e .ATTEN. n , &r ing) ;

double datastart;
f loa t {< response, s ra te=9858 - 4208984375 ;
short *datas;
int. needed=NPOINT;

main ()

{
vo id rea l f t (f loa t * , uns igned long, in t) ;

double norm;
f loa t *da ta , xh t i lde , +outpu t ;
f loat *mean-pow-spec, *tv/i ce-inv-noise ;
f loa t x r ing , x r ing t i lde , , r templa te ;
f loat decayt irne, decay, scaLe, snr, mean, var, tmpl-norm, di st, .
f l o a t m a s s = 5 0 . 0 , s p i n = 0 - 9 8 , e p s = 0 . 0 3 , p s i 0 = 0 . 0 , i n v M p c = L 0 . 0 , r i n g s t , a r t = 5 0 0 . 0 ;
in t i , code. len , sa fe=SAFETY, d i f f , o f f ,n=NPOIMI ;

/* allocate memory for arrays */
response= (f loa t . x)mal loc (s izeo f (f loa t) * (NPOINT+2)) , -
da tas= (shor t *)ma l loc (s izeo f (shorE) *NpOINT) ;
da t ra= (f loa t *)ma l loc (s izeo f (f loa t) *NpOINT) ;
h t i lde= (f loa t *)ma l1oc (s izeo f (f loaE) *NpOINT) ;
ouEput= (f loa t *)ma1 loc (s izeo f (f loa t) , r .NpOINT) ;
r ing t i lde= (f loa t x)mal loc (s izeo f (f1oat) *NPOINI) ;
templa te= (f1oat x)ma11oc (s izeo f (f loaL) *NPOINT) ;
mean-povr -spgq= (f1oat x)ma1 loc (s izeo f (f1oat) * (NpOfMr /2+1)) , -
tw ice- inv-no ise= (f loa t *)maI loc (s izeo f (f Ioa t) * (NpOfMf /2+1)) ;

/* normalize quasinormal ring to one megaparsec x/
scale = HSCALE*M-SOLAR/MPC;
f o r (i = 0 ; i (1 e n ; i + + 1 s i t t n g i l d e t i l - r i n g l j _ l x = s c a l e ;
f o r (i = l e n ; i < n ; i + +) r i n g t i l d e t i l = r i n g I i] = 6 ;

/x FFT the quasinormal ring waveform */
r a a l f F / r i n a f i " l A a - 1 n 1 \ .

i f (n< len+2*sa fe) abor t () ;

w n r . L e (I) I

/* fill buffer with number of points needed ,r./

c o d e = f i l l - b u f f e r O ;

204

r

/* if no points left, we are done! '* f
i f (code==Q) break ;

/* ifjust entering a new locked sretch, reset averaging over power spectrum '*/
(

r r (c o q e = = r , l I
norm = 0 ;
c lear (mean-pow-spee, n / 2+L, L) i

f * decay time in seconds: set to 15 x length of NPOINT sample r./

decay t ime = 15 .0*n /s ra te ;
decay = exp (-1 .0*n / (s ra t ,e*decay t ime)) ;

\

/x copy data into floats */

f o r (i = 0 ; i (N P o I ! i l I ; i + +) d a t a l i l = d a t a s l i l ;

/* inject a time-domain signal before FFT (note outPut is used as temp storage only) */

qn_inj ect (data, r ing, response, output, invMpc, (int) (sraLe*. (r ingstart-datastarg 1) , n, len) ;

/*. compute the FFT of data */
r a : ' l € l l A = t : - 1 n 1) -

/* normalized dI-/Ltilde */
p roduc t (h t i lde , da ta , response ,n f 2 l ;

fx update auto-regressive mean power spectrum */

avg-inv-spec (FLo, srate, n, decay, &norm. ht i lde, rnean-pow-spec, twice-inv-noise) ;

/*, normalize the ring to produce a template */
qn-normal i ze (template, r ingti lde, Ewi ce-inv-noise, n, &tmpI-norm) ;

/* calculate the filter output and find its maximum */

f i n d - r i n g (h t i l d e , t e m p l a t e , t w i c e - i n v - n o i s e , o u t p u t , n , l e n , s a f e . & o f f , & s n r , & m e a n , & v a r) ;

/x perform diagnostics on filteroutput,r/
if (snr<THRESHOLD) { /* threshold not exceeded: print a short message x/

p r in t f ("max snr : ? .2 f (o f f se t , B6d) " , snr , o f f) , '
n r i n r - f (" d a r a s t - a r t : * . 2 f v a r i a n c e : ? . 5 f \ n ' , d a t a s t a r t , v a r) ;

) else { /*thresholdexceeded*/
/* estimate distance to signal (template distance [Mpc] = I / tmpl-norm) *'/

dist = 2/ (tmpl-normr.snr) ;
p r i n t f (" \ n M a x S N R : 8 - 2 f (o f f s e t t d) v a r i a n c e t f \ n ' , s n r , o f f , v a r) ;
p r i n t f (" I f r i n g d o w n , e s t i m a t e d d i s t a n c e : * f M p c ' " ' d i s t) ;

p r in t f ("s ta r t t ime: * f \n " , da tas tarc+of f /s ra te) ,

/* See if time domain statistics are non-Gaussian x/

i f (i s -gauss ian (da tas ,n , -2048 ,204 '7 ,1 '))
p r in t f (, POSSIBLE RINGDOWN: D is t r ibuc ion does no t appear to have ou t l ie rs \n \n") ;

e l s e
nr i n t - f / , , n i sgs i fsg ion has ou t l ie rs ! Re j ec t , \n \n") ;

\
t

/* shift ends ofbuffer to the start */

d i f f = 1en + 2*sa fe ; f *sa fe ty is
n e e d e d = N P O I N T - d i f f ;
! u I l r - v , f \ u J r L I L t a I q d u e > L r l

l)

re tu rn 0 ;

applied at beginning and end of buffer */

= da tas I i+needed) ;

2,05

I

/* this routine gets the data, overlapping the data buffer as needed */

t
I

s ta t i c F ILE * . fp i fo , * fp lock ;
s ta t i c in t f i r s t=1 . remain=0,nun_sent=0;
f l o a t t s t a r t ;
int i , Eemp, code=2, di-f f =NpOINT-need.ed,.

if (f j-rst) { l* on first call only +,/
f L L . E * I P S S t

f i r s t = o ;
d i f f = 0 ;

/* open the IFO ourput file, lock file, and swept-sine file x/
fpifo = grasp-open(.GRASP_DATAPATH., ' ,channel - 0,,) ;
fplock - g:rasp-open ('GRASP_DATAPATH', ' channel. 10,,) ;
fpss = girasp-open(.GRASP_DATAPATI{,, "swept-sine.asci i") ;
/'r get the response function and put in scaling factor rrf
normalize-gw (fpss, NPOINT, sraee, response) ;
for (i=0 r i<NPOINI,- i++) response I i] *= HSCALE/ARIVILENGTH;
5 ^ l ^ ^ ^ / € - ^ ^ \ -
! L r v - E \ t P > > , 1 t

)

if (nurn-sent==DATA-SEGMENTS) return 0;

f* if new locked section, skip forward *f
while (remain(needed) {

fp r in t f (s tder r , " \nEnter ing i new locked se t o f da ta \n ' ,) ;
temp = ge t -d .a ta (fp i fo , fp lock ,&ts ta rc ,MIN- IMno-LocK*60 is ra te ,da tas ,&remain ,&sra te ,1) ;
i f (LenP-=g; re tu rn 0 t

/x number of points needed will be full length x/
needed = NPOINT;
d i f f = 0 ;
code = 1 ;

\)

f * get the needed data and compute the start time of the buffer */
Eemp = ge t -da ta(fp i fo , fp lock ,&ts ta r t ,needed,da tas+d i f f ,&remain ,&sra te ,0) ;
i f (t e m P = = 0) r e t u r n 0 ;
da tas tar t = ts ta r t - d i f f / s ra te ;

num-sent++;
return code;

l

l

206

I

6.16 Structure: stnrct qnTemplate

The structure that will hold the filters for quasinormal ringdown waveforms is: struct

int num: The number of the particular filter.

f loat freq: The central frequency of the filter template.

f loat qual: The quality of the filter template.

qnTemplatre{

) ;
The actual filter data that corresponds to the parameters set by the fields freq and qual is generated

by the routine qn-f ilter () above.

207

6.L7 Structure: striuet, qnScope

The structure struct gnscope specifies a domain of parameter space and contains a set of templates
that cover this domain. The fields of this structure are: struct crns.nnc{

int n-tmplt.: The total number of templates required to cover the region in parameter space. This
typically set by qn-template-grid O.

f loat freq-rnin: The minimum frequency of the region of parameter space.

f loat f req-rnax: The maximum frequency of the region of parameter space.

f loat qual-rnin: The minimum quality of the region of parameter space.

f loat qual-rnax: The maximum quality of the region of parameter space.

struct qnTemplate *templ-ates: Pointer to the array of templates. This pointer is usually set by
qn-template-grid () when it allocates the memory necessary to store the templates and creates
the necessary templates.

'I

) t

Although we are interested in the physical parameters, such as the mass and angular momentum, of the
black hole sources of gravitational radiation, it will be more convenient to work with the frequency and
quality parameters of damped sinusoids when creating detection templates. For the fundamental quadrupole
quasinormal mode, there is a one-to-one correspondence between the mass and angular momentum param-
eters and the frequency and quality par:rmeters which is approximately given by Echeverria [13].

208

6,18 Function: qn-template-grid,()

void qn_template_grid(f loat dI , struct qnScope *gr id)

This function is responsible for allocating the memory for a grid of templates on the parameter space and
for choosing the location of the templates. The argqments are:

dI: Input. The length of the 'sides' of the square templates. This quantity should be set to d,l. :

l(2ds!6,."6^,0) (see the discussion below).

grid: Input/Output. The grid of templates of type struct qnscope. On input, the fields that relate
to parameter ranges should be set. On output, the field n-tmpJ-t is set to the number of templates
generated, and these templates arc put into the array field templates [0 . . n-tmplt-1-] (which is
allocated by the function).

The function qn-template-grid () attempts to create a set of templates, {U(t)|, which "cover"

parameter space finely enough that the distance between an arbitrary point on the parameter space and one
of the templates is small. A precise statement of this goal, and how it is achieved, can be found in the paper
by Owen [5]. We hilight the relevant parts of reference [5] here.

The templates {ui (t)} are damped sinusoids with a set of frequency and quality parameters {(f , Q)t} .
They are normalized so that (ulu) : 1 where (.1.) ir the inner product defined by Cutler and Flanagan [11].
Since we are most interested in the high qualiry region of parameter space, it is a good approximation that
the value of the one-sided noise power spectrum is approximately constant, Si,(/) x Sn(f), over the
frequency band of the template. This approximation simplifies the form of the inner product as the noise
power spectrum appears in the inner product as a weighting function.

In order to estimate how close together the templates must be, we define the distance function dsl, :

L - (u;lui) corresponding to the mismatch between the two templates u; and ui. This interval can be
expressed in terms of a metric as ds2 - goBdrad.xP where xo : (f ,Q)" arc coordinates on the two
dimensional parameter space. Such an expression is only valid for sufficiently close points on parameter

space. In the limit of a continuum of templates over parameter space, the metric can be evaluated by goB :
-l6la"aBu) where Eo is a partial derivative with respect to the coordinate xd. We find that the mismatch
between templates that differ in frequency by df and in quality by dQ is given by

d,s2 : *{ffi .Q2 - rdffidQ dr +Y *'l
L da2x s @ rdQd f , nzd f2

4 8 7 - ' 7
In the approximate metric of equation (6.18.2), we have kept only the dominant term in the limit of high
qualiry. The minimum number of templates, .A/, required to span the parameter space such that there is no
point on parameter space that is a distance larger than ds?i,.".r,ord from the nearest template can be found by
integrating the volume element 1/ det gop over the parameter space. Using the approximate metric and the
parameter ranges Q < Q^ * and / € [.f-i., .f^*], we find that the number of templates required is

1
N =

Vj{at?n *r,ora)-1Q,".* log("f-u*/,fn'i,,)

= ,r ro(d '?\ , r " ! ,aa)- t fq+) i t* .1_f ,o r - f -u* r , I / * ' - r1 ')
\ o.os / \ roo / l - ' rog100L-'s(ff iJ -bs(ff i)Jj r0' ta'r i

The issue of template placement is more difficult than computing the number of templates required.
Fortunately, for the problem of quasinormal ringdown template placement, the metric is reasonably simple.

(6 .18.1)

(6.18_2)

209

By using the coordinate d : Iog / rather than .f, we see that the metric components depend on Q alone.

We can exploit this property for the task of template placement as follows: First, choose a "surface" of

constant Q : Q^in, and on this surface place templates at intervals in { of d,Q : d[.lg6qfot the entire

range of $. Here,42 : ,/(2ds?u.or,ora). Then choose the next surface of constant Q with dQ : dtlgee

and repeat the placement of templates on this surface. This can be iterated until the entire range of Q has

been covered; the collection of templates should now cover the entire parameter region with no point in the

region being farther than dsf1r.o5oi6 from the nearest template.

Author: Jolien Creighton, jolien @tapir.caltech.edu

210

7 GRASP Routines: Stochastic background detection

7.1 Data File: detectors . dat

This file contains site location and orientation information, a convenient name for the detector, and filenames
for the detector noise power spectrum and whitening filter, for 11 different detector sites. These site are:

(1) Hanford, Washington LIGO site,
(2) Livingston, Louisiana LIGO site,
(3) VIRGO site,
(4) GEO-600 site,
(5) Garching site,
(6) Glasgow site,
(7) MIT 5 meter interferometer,
(8) Caltech 40 meter interferometer,
(9) TAMA-300 site,
(10) TAMA-2O site,
(11) ISAS-100 site.

As explained below, information for additional detector sites can be added to detectors . d.at as needed.
The data contained within this file is formatted as follows: Any line beginning with a # is regarded as

a comment. All other lines are assumed to begin with an integer (which is the site identification number)
followed by five floating point numbers and three character strings, each separatdby white space (i.e., one
or more spaces, which may include tabs). The first two floating point numbers specify the location of the
central station (the central vertex of the two detector arms) on the earth's surface: The first number is the
latitude measured in degrees North of the equator; the second number is the longitude measured in degrees
West of Greenwich, England. The third floating point number specifies the orientation of the first arm of
the detector, measured in degrees counter-clockwise from true Norttr. The fourth floating point number
specifies the orientation of the second arm of the detector, also measured in degrees counter-clockwise from
true North. The fifth floating point number is the arm length, in cm. The three character strings specify:
(i) a convenient name (e.g., VIRGO or GEO-600) for the detector site, (ii) the name of a data file that
contains information about the noise power spectrum of the detector, and (iii) the name of a data file that
contains information about the spectrum of the whitening filter of the detector. (We will say more about
the content and format of these two data files in Secs. 7.3 au;rd7.4.) The information currently contained in
detectors - dat is shown below:

Hanford, Washington LIGO Site (ini t ial detector)
F r e d R a a b f j r G l i g o . c a l t e c h . e d u
L 4 6 . 4 5 2 3 6 1 1 9 - 4 0 7 5 3 3 6 . 8 1 2 6 . 8 4 . e 5 L r G O - W A _ i n i r n o i s e _ l i g r o _ i n i r . d a r w h i r e n _ 1 i g o _ i n i r . d a r
#
L iv ings ton , Lou is iana L fco S iLe (in i t ia l de tec tor)
F r e d R a a b f j r G l i g o . c a l t e c h . e d u
2 3 0 . 5 6 2 7 7 9 0 - ' 7 7 4 2 5 1 0 8 . 0 1 9 8 . 0 4 . e 5 L r c o - L A - i n i t n o i s e - l i g o - i n i t . d a t w h i t e n - 1 i g o - i n i t . . d a t
#
vrRco sire
B ip lab Bhawal b ip lab@iucaa. iucaa.erne t . in
* 3 4 3 . 3 - 1 0 - 1 ? t _ . 5 3 4 1 . 5
Raf fae le F la rn in io f lamin ioGlapphp0. in2p3 . f r
Carlo Bradaschia BRADASCHIA@VAXPIA.PI.INFN.TT
Rosa Pogg ian i POGGIANIGpisa . in fn . i t
J 4 J . b J J J - I U . 5 1 L . 5 3 4 I - 5 3 . e 5 V I R G O n o i s e _ v i r g o . d a t w h i t e n _ v i r q o . d a t

211

*
cEO-500 as o f Apr i l L995
* Albrecht Ruediger atrempq.mpg.de
4 5 2 - 2 4 6 7 - 9 . 8 2 1 " 6 7 2 5 . 9 4 2 9 ! . 6 1 6 . e 4 G E O - 6 0 0 n o i s e - g e o . d a t w h i t e n - g e o - d a t
4

* Garching 30 Meter Interferometer
* Albrecht. Ruediger atr@mpq.mpg.de
5 48-244 -11 .675 329.0 239.0 3 .e3 Garch ing-30 xxxxx XXXXX
+

n "la"nor 10 Meter Incerferometer
Albrecht Ruediger atrGmpq.mpg.de
+ 5 5 5 . 8 6 4 . 2 3 ' 1 ' 7 - 0 1 6 7 . 0
#J im Hough hough@phys ics . g la . ac-uk
6 55 . 8567 4 .28333 62 .0 L52. 0 L . e3 Glasgow-J-O X)O(XX X l lxxx
#
+ MIT 5 Meter fnterferometer
Gabriela Gonzalez gg@tristan.mit -edu
7 42-3667 7 t .L 34 .5 304.5 5 .e2 MIT-s XXXX) i) ()Q<XX
+

+ C-tt".t 40 Meter Interferomet.er NEEDS coRREcTroN
Fred. Raab f j r@l igo .ca l tech .edu
8 3 4 - L 5 5 7 1 1 8 - l - 3 3 1 - 8 0 . 0 2 7 0 . 0 4 . e 3 C a l E e c h - 4 0 n o i s e - 4 o . d a t w h i t e n - A 0 . d a t
#
+ TAI"IA 300 Meter
Masa-Katsu Fu j imoEo fu j imoto@grav i - ty .mtk .nao.ac . jp

9 3 5 - 6 7 5 6 - 1 3 9 . 5 3 6 9 0 . 0 1 8 0 . 0 3 . 0 e 4 T A M A - 3 0 0 n o i s e - t a m a . d a t w h i t e n - t a m a . d a t

#
TAI{A 20 Meter
Masa-Katsu Fu jJ .moto fu j imoto@grav i ty .mek.nao.ac . jp

1 0 3 5 . 6 7 5 1 " - L 3 9 . 5 3 5 4 5 . 0 3 L 5 . 0 2 . 0 e 3 T A M A - 2 0 X) o (x x X x x x x
4

ISAS L00 Meter delay l ine
H i d e M i z u n o h i d e G p l e i a d e s . s c i . i s a s . a c . j p
1 1 3 5 . 5 5 7 8 - l - 3 9 - 4 6 7 4 2 . 0 1 3 5 . 0 L . 0 e 4 I s A s - 1 0 0) o Q o (x x x x x x

#

Site information for new (or hypothetical) detectors can be added to detectors - dat by simply ad-

hering to the above data format. For example, as the noise in the LIGO detectors improves, one can accom-

modate these changes in detectors . d.at by adding additional lines that have the same site location and

orientation information as the "old" detectors, but refer to different noise power spectra and whitening filter

data files. The only other requirement is that the site identification numbers for these "new and improved"

detectors be different from the old site identification numbers, so as to avoid any ambiguity. Explicitly,

one could add the followine lines to detectors . dat to include information about the advanced LIGO

detectors:

4

* Hanford, Washington LIGO Site (advanced detector)
4 r ' roA Paat r f - i rG l i oo ca l l - enh edr :I \ s q v ! J r e r 3 Y v . v s A s v v

t 2 4 6 . 4 5 2 3 6 1 1 9 . 4 0 ? 5 3 3 6 - B 1 2 6 . 8 4 . e 5 L I c O - W A - a d v n o i s e - 1 i g o - a d v . d a t w h i t e n - 1 i g o - a d v . d a t

#
L iv ings ton , Lou is iana L IGO s i te (advanced de tec tor)

F r e d R a a b f j r @ l i g o . c a l t e c h . e d u
1 3 3 0 . 5 6 2 7 ' 7 9 0 . 7 7 4 2 5 1 0 8 . 0 1 9 8 . 0 4 . e 5 L I G O - L A - a d v n o i s e - 1 i g o - a d v . d a E w h i t e n - l i g o - a d v . d a t
+

212

The file detectors.dat currently resides in the parameters subdirectory of enasp. In order
for the stochastic background routines and example programs that are defined in the following sections
to be able to access the information con[ained in this file, the user must set *re environment variable
GRASPJARAMETERS to point to this directory. For example, a command like:
setenv GRASPJARAMETERS /usr / 7oca1 /GRAsP/parameters
should do the trick. If, however, you want to modify this file (e.g., to add another detector or to add another
noise curve), then just copy the detectors . d4t file to your own home directory modify it, and set the
GBASPJARAMETERS enviroru4ent variable topoint to this directory.

Comment If you happen to find an error in the d.etectors.dat file, please communicate it to the
caretakers of GRASP.

213

7.2 Function: det.ector-site ()

vo id de tec tor -s i te (char *de tec tors - f i Ie , in t s i te -cho ice , f loa t s i te -parameters [!

char *si te-rrame, char *noise-f i le, char *whiten-f i1e)

This function calculates the components of the position vector of the central station, and the components

of the two vectors that point along the directions of the detector arms (from the central station to each end

station), for a given choice of detector site, using information contained in an input data file. This function

also outputs three character strings that specify the site name, the name of a data file containing the detector

noise power information, and the name of a data file containing information about the detector whitening

filter, respectively.
The arguments of detecEor-site () are: ,

detectors-fiIe: Input. Acharacterstringthatspecifiesthenameofadatafilecontainingdetectorsite
information. This file is most likely the detectors . dat data file described in Sec. 7.I. Tf the file

is different from detectors . dat, it must have the same data format as d.etecEors - dat, and

it must reside in the directory pointed to by the cRASPJARAMETERS environment variable (which

you may set as you wish). If you want to use the detectrors . dat file distributed with GRASP, use

a command like:
setenv GBASPJARAMETERS / :usr / l-ocal /GRASP/parameters
to point to the directory containing this file. If you want to modify this file (e.g., to add another

detector or to add another noise curve), then just copy the detectors . dat file to your own home

directory modify it, and set the cRASP-PARAMETERS environment variable to point to this directory.

si te-choice:Input.Anintegervalueusedasanindexintotheinputdataf i le 'Thevalueofsi te-choice
should be chosen to match the site identification number for one of the detectors contained in this file.

si te-parameters: Output. s i t .e-parameterstO..Sl isanarrayof ninef loat ingpointvar iables

that define the position of the central station of the detector site and the orientation of its two arms.

The three-vector site-parameEers [0 - . 2J are the (r, y, z) components (in cm) of the position

vector of the central station, as measured in a reference frame with the origin at the center of the

earth, the z-axis exiting the North pole, and the z-axis passing out the line of 0o longitude. The

three-vectorsi te-parameterst3..5l arethe (*,g,") components(incm)of avectorpoint ing

along the direction of the first arm (from the central station to the end station). The three-vector

s i t e - p a r a m e t e r S t 6 . . 8] a r e t h e (, , a , ") c o m p o n e n t S (i n c m) o f a v e c t o r p o i n t i n g a l o n g t h e
direction ofthe second arm (from the central station to the end station).

site-name : Output. A character string that specifies a convenient name (e.g., VIRGO or GEO-600) for

the chosen detector site.

noise-f i1e:Output.Acharacterstr ingthatspecif iesthenameofadataf i lecontaininginformation
about the noise power spectrum of the detector. (See Sec. 7.3 for more details regarding the content

and format of this data file.)

whiten-f ile: Output. A character string that specifies the name of a data file containing information

about the spectrum of the whitening filter of the detector. (See Sec. 7.4 for more details regarding the

content and format of this data file.)

detector-siteO reads input data from the file specified by detectors-file. This file is

searched (linearly from top to bottom) until the value of site-choice matches the site identification

number for one of the detectors contained in this file. The site location and orientation information for the

chosen detector site are then read into variables local to detector-site (). The values contained in

214

the array siEe-parameters [] are calculated from these input variables using standard equations from
spherical analytic geometry. (A conection ls made, however, for the oblateness of the earth, using infor-
mation contained in Ref. 1221.) The site-name, noise-f iIe, and whiten-f i1e character strings are
simply copied from input data file. If site-choice does not match any of the site identification numbers,
detector-site () prints out an error message and aborts execution.

Authors: Bruce Allen, ballen@dirac.phys.uwm.edu, and Joseph Romano, romano@csd.uwm.edu

Comments: None.

215

7.3 Function: noise-power o

void noise-power(char *noise-f i Ie, int n, f loat del ta-f , double *power)

This function calculates the noise power spectrum P(/) of a detector at a given set of discrete frequency
values, using information contained in a data file.

The arguments of noise-power () are:

noise*f iIe: Input. A character string that specifies the name of adatafile containing information about
the noise power spectrum P(/) of a detector. Like the detectors . dat file described in Sec. 7.1,
the noise power data file should reside in the directory pointed to by the GRASP-PARAMETERS envi-
ronment variable (which you may set as you wish). If you want to use the noise power specrum data
files distributed with GRASP, use a command like:
setenv GRASP-PARAMETERS /usr/ local /GRASP/parameters
to point to the directory containing these files. If you want to use your own noise power spectrum
data files, then simply set the cRASPJARAMETERS environment variable to point to the directory
containing these files. Note, however, that if a program needs to access both detector site information
and noise power spectrum data then all of the files containing this information should reside in the
same directory. (A similar remark applies for the whitening filter data files described in Sec. 7.4.)

n: Input. The number N of discrete frequency values at which the noise power spectrum P(/) is tci be
evaluated.

delta-f : Input. The spacing A/ (in Hz) between two adjacent discrete frequency

J i + 7 - J i -

n f

power: Output. powerl0- .n-]-l is an array of double precision variables containing the values of
the noise power spectrum P(/). These variables have units of strain2/Hz (or seconds). power I i]
contains the value of P(/) evaluated atthediscrete frequency f i : iAf , where i :0,1,. . ' ,N - i .

The input data file specified by noise-f il-e contains information about the noise power spectrum
P(/) of a detector. The data contained in this file is formatted as follows: Any line beginning with a # is
regarded as a comment. All other lines are assumed to consist of two floating point numbers separated by
white space. The first floating point number is a frequency / (in Hz); the second floating point number is
the square root of the one-sided noise power spectrum P(/), evaluated at f . P(f) is defined by equation
(3.18) of Ret.[21]:

(7.3.1)

Here () denotes ensemble average, and n(/) is the frequency spectrum (i.e., Fourier transform) of the strain
n(t) produced by the noise intrinsic to the detector. P(/) is a non-negative real function, having units of
strain2fHz (or seconds). It is defined with a factor of ll2to agree with the standard definition used by
instrument builders. The total noise power is the integral of P(/) over all frequencies from 0 to oo (not

from -oo to oo). Hence the name one-sided.
Since the frequency values contained in the input data file need not agree with the desired frequencies

h: iLf , noise-powerO must determine the desired values of the noise power spectrum by doing
an intelpolation/extrapolation on the input data. noise-power O performs a cubic spline interpolation,
using the Numerical Recipes in C routines spline O and splint O. noise-power O assumes that
the length of the input data is < 65536, and it uses boundary conditions for a natural spline (i.e., with zero
second derivative on the two boundaries). noise-power () also squarcs the output of the splint o
routine, since the desired values are P(f)-and not their square roots (which are contained in the input data
file).

6,.(f)n(f'), : ' i/,rt - J) P(f) .

216

Authors: Bruce Allen, ballen@dirac.phys.uwm.edu, and Joseph Romano, romano@csd.uwm.edu

Comments: In order for the cubic spline interpolation routines to yield approximations to.P(/) that are not
contaminated by spurious DC orlow frequency (e.g., approximately 1 Hz) components, it is important
that the input data file specified by noise-file contain noise power information down to, and

including, zero Hz. This information can be added in "by hand," for example, if the experimental

data for the noise power spectrum only goes down to I Hz. In this case, setting the values of 1/ffi
at 0.0,0.1, 0.2, . . . ,0.9 Hz equal to its I Hz value seems to be sufficient. (See Sec.7.4 for a similar

2 7 1

7.4 Function: whiten o

void whiten(char *whiten-f i l -e, int n, f loaE delta-f , double *whiten-out)

This function calculates the real and imaginary parts of the spectrum W177 of the whitening filter of a
detector at a given set of discrete frequency values, using information contained in a data file.

The arguments of whiten () are:

whiten-file: Input. A character string that specifies the name of adata file containing information

about the spectrum I{r(/) of ttre whitening filter of a detector. Like the detectors . dat and noise

power spectrum data files described in Secs. 7 .l and 7 .3, the whitening filter data file should reside in

the directory pointed to by the GRASPJARAMETERS environment variable (which you may set as
you wish). If you want to use the whitening filter data files distributed with GRASP, use a command

like:
s etenv GRASP-PARAMETERS / :usr / ! o cal / GRAS P,/parameters
to point to the directory containing these files. If you want to use your own whitening filter data files,

then simply set the GRASP-PARAMETERS environment variable to point to the directory containing

these files. Note, however,'that if a program also needs to access either detector site information or

noise power spectrum data, then all of the files containing this information should reside inthe same

directory.

n: Input. The number N of discrete frequency values at which the real and imaginary pa-rts of the spectrum

W (f) of the whitening filter are to be evaluated.

delta-f : Input. The spacing A/ (in Hz) between two adjacent discrete frequency values: A/ ::
f f

J i + l - J i .

whiten-ouE : Output- whiten-out t 0 . . 2*n-Ll is an arr_ay of double precision variables containing

the values of the real and imaginary parts of the spectrum W(/) of the whitening filter. These variables

have units rHzf strain (or sec-1/2;, which are inverse to the units of the square root of the noise

power spectrum P(/). whiten-out [2*i] and whiten-out. [2*i+]-l contain, respectively, the

values of the real and imaginary parts of W (f) evaluated at the discrete frequency fi : iAf , where

i : 0 r 1 , " ' , I f - 1 .

The input data file specified by whiten-f ile contains information about the spectrum W(f) of the

whitening filter of a detector. The data contained in this file is formatted as follows: Any line beginning

with a # is regarded as a comment. All other lines are assumed to consist of three floating point numbers,

each separated by white space. The first floating point number is a frequency / (in Hz). The second and

third floating point numbers are, respectively, the real and imaginary parts of the spectrum W (f), evaluated

at /. These last two numbers have units of rHz/strain (or sec-l/z;. This is because the whitening filter is,

effectively, the inverse of the ampli tude fffi of the noise power spectrum.

Since the frequency values contained in the input data file need not agree with the desired frequencies

f i=iLf ,whitenO mustdeterminethedesiredvaluesoftherealandimaginarypartsofthespectrumof
the whitening filter by doing an interpolation/extrapolation on the input data. Similar to noise-power ()
(see Sec. 7.3), whiten() performs a cubic spline interpolation, using the spline () and splint ()
routines from Numerical Recipes in C. Lrke noise-power () , whiten () assumes that the length of the

input data is < 65536, and it uses boundary conditions for a natural spline. Unlike noise-power () ,
whitenO does not have to square the output of the splint O routine, since the data contained in the

input file_and the desired output data both have the same form (i.e., both involve just the real and imaginary

parts of W(f)).

Authors: Bruce Allen, ballen@dirac.phys.uwm.edu, and Joseph Romano, romano@csd.uwm.edu

278

F

Comments: In order for the cubic spline interpolation routines to yield approximations to W1;; that are not

contaminated by spurious DC or low frequency (e.g., approximately I Hz) components, it is important

that the input data file specified by whiten-f ile contain information about the whitening filter

down to, and including, zero Hz. This information can be added in "by hand," for example, if the

experimental data for the spectrum of the whitening filter only goes down to 1 Hz. In this case, setting

the values of W (f) at 0.0, 0.1, 0.2, - . . , 0.9 Hz equal to their 1 Hz values seems to be sufficient. (See

Sec. 7.3 for a similar comment regarding noise-power O .)

AlSo; f6f the initial and advaneed LIGO detector noise models, ttre specka= W (f) of the whitening

filters contained in the input data files were constructed by simply inverting the square roots of the

corresponding noise power spectra P(/). The spectra of the whitening filters thus constructed are

real. Although this method of obtaining information about the spectra of the whitening filters is

fine for simulation purposes, the data contained in the actual whitening filter input data files will

be obtained indepen^dently from that contained in the noise power spectra data files, and the spectra

W (f) will in general be complex. The function whiten () described above-and all other stochastic

background routines-allow for this more general form of whitening filter data

219

7.5 Function: overlap o

vo id over lap(f1oat *s i te1-parameters , f loa t , *s i te2-parameters , in t n , f loa t

delta-f , double *gamma12)

This firnction calculates the values of the overlap reduction function 7(/), which is the averaged product

ofthe response ofa pair ofdetectors to an isotropic and unpolarized stochastic background ofgravitational

radiation.
The arguments of overlap () are:

si tel-parameters: Input. s i tel-parameters t0. .81 isanarrayof ninef loat ingpointvar iables

that define the position of the central station of the first detector site and the orientation of its two

arms. Thethree-vectorsi tel-parameterstO..2l arethe (x,g,r) components(incm)of the

position vector of the central station of the first site, as measured in a reference frame with the origin

at the center of the earth, the z-axis exiting the North pole, and the r-axis passing out the line of 0o

longitude. Thethree-vectorsi tel--parameters[3..5] arethe(r,g,z)components(incm)ofa
vectorpointing along the direction ofthe first arm ofthe firstdetector (from the central station to the

end station). The three-vector sitel-parameters [5. .8] are the (z,g,z) components (in cm)

ofavectorpointing along the direction ofthe second arm ofthe first detector (from the central station

to the end station).

site2-parameters : Input. site2-parameters t 0 . . 81 is an array of nine floating point variables

that define the position of the central station of the second detector site and the orientation of its two

arms, in exactly the same format as the previous argument.

n: Input. The number .|y' of discrete frequency values at which the overlap reduction function 7(/) is to

be evaluated.

delta-f : Input. The spacing A/ (in Hz) between two adjacent discrete frequency values: A/ :=

J i + l
-

J i -

gammal2: Output. gammal2 [0. -n-i-] is an array of double precision variables containing the val-

ues of the overlap reduction 1(/) for the two detector sites. These variables are dimensionless.
1' r'i 1 contains the value of 'y(/) evaluated at the discrete frequency fi : i\f , wherel JAruua lz L r J

i : 0 , 1 , . . . , N - 1 .

The values of ,y(/) calculated by overlap () are defined by equation (3.9) of Ref. [21]:

(7.s.1)

Here O is a unit-length vector on the two-sphere, Af is the separation vector between the two detector sites,

d 4'" is the response of detector z to the + or x polarization. For the first detector (t : 1) one has

i l f \,: ! [49 "2nifa Lil" (r! pj+ F,"ry)
6n Jsz \ ^ - ,/

(7.s.2)

where the directions of the first detector's arms are defined AV *i and fro, and ej;*(Ct) are the spin-two

polarization tensors for the "plus" and "cross" polarizations, respectively. (A similar expression can be

written down for the second detector.) The normalization of l(/) is determined by the following statement:

For coincident and coaligned detectors (i.e., for two detectors located at the same place, with both pairs of

arms pointing in the same directions), 7(/) : 1 for all frequencies.

Authors: Bruce Allen, ballen@dirac.phys.uwm.edu, and Joseph Romano, romano@csd.uwm.edu

Comments: None.

F,*,* : * (rrur - ?f?i),Jd" (0),

220

I

7.6 Example: overlap program

The following example program shows one way of combining the functions detector-site () and

overlap () to calculate the overlap reduction function .y(/) for a given pair of detectors. In particu-

lar, we calculate f(/) for the Hanford, WA and Livingston, LA LIGO detector sites. The resulting overlap

reduction function data is stored as two columns of double precision numbers (fi nd lUtD in the file

LlGo-overlap. dat. Here fi : i\f with i : 0,1,..., N - 1. The values of .A/ and A/ are input

par4lneters to the program, which the user can change if heAhe desires- (See the #defile statements

listed at the beginning of the program.) Also, by changing the site location identification numbers and the

output file name, the user can calculate and save the overlap reduction function fot any pair of detectors-

e.g., the Hanford, WA LIGO detector and the GEO-600 detector; the GEO-600 and VIRGO detector; the

Garching and Glasgow detectors; etc. The overlap reduction function data that is stored in the file can then

be displayed with ><rngr, for example. (See Fig. 47.)

/* main program to illustrate the function overlap0 x/

inc lude "grasp.h"

#def ine DETECToRS-FrLE " detectors . dat.' /* file containing detector info */

#define SITE1-CHOICE 1 /* l=LIGO-Hanford site */

#def ine sITE2-cHoIcE 2 /x 2=LlGO-Livingston site */

#def ine N LOOOO /*. number of frequency points */

#def ine DELTA-F l-. O /x frequency spacing (inHz) */

#define OUT-FILE "LlcO*overlap.dat"
/* output filename +/

int main (int argc, char 'r.r,argv)

{
int
double

f loat si tel-paramet.ers [9] , si te2-parameters [9] ;
c h a r s i e e l - n a m e [] . 0 0 l , n o i s e L - f i l e t L 0 0 l , w h i t e n L - f i l e [1 0 0] ;
c h a r s i t e 2 - n a m e [1 0 0] , n o i s e 2 - f i 1 e [1 0 0] , w h i c e n 2 - f i l e [1 0 0] ;

double *giamma12;

F ILE x fP ;

fp= fopen(oUT-FTLE, "w") ;

/* ALLOCATEMEMORY x/
gammal -2= (doub le *)ma11oc (Nxs izeof (doub le)) ;

/'r CALL DETECTOR-SITE0 TO GET SITE PARAMETER INFORMATION x/

de tec tor -s i te (DETECTORS-FILE, S IT lE I -CHOICE, s i te l -para lne ters , s iCe l - Iame,
n n i e o 1 f i 1 a r . r h i t a n l f i l a \ .

detec tor -s i te (DETECTORS-FILE. S ITE2-CHOICE, s i te2-pararne ters , s i te2-name,

n o i s e 2 - f i 1 e , w h i t e n 2 - f i l e) ;

/ * CALL OVERLAP0 AND WRITE DATA TO THE FILE * /
overl ap (s i te1-parameters, s i te2-paranneters, N, DELTA-F, garnmal 2) ;

f s 3 (i . = 0 ; i < N ; i + +) {
f=i*DELTA-F;
f p r i n t f (f p , " t e * e \ n " , f , g a n m a 1 2 [i]) ;

]

L ;

? .

221

f a] a c o I € n \ .
- v . v v 9

\ - ! , ,

r a l _ r r r h n .

Overlap reduction function
(for the UGO detector pair)

0.4

0.2

0.0

-0.2

-0.4

-0.6

-0.8

- 1 . 0
0.0 100.0 400.0 500.0

f (Hz)

Figure 47: The overlap reduction function 1ff) tor the Hanford, WA and Livingston, LA LIGO detecror
pair.

222

,'

i

7.7 Function: get-IFO12 o

get r - IFOI -2(F ILE * fp1 , F ILE * fp2 , F ILE * fp1-1ock , F ILE * fp2 l -ock , in t n , f loa t
*ou t l - , f loa t *ou t2 , f loa t *s ra te1 , f loa t *s ra te2)

This function gets real interferometer output (IFO) daa from two detector sites.
The arguments of get-IFol-2 () are:

fp1: Input. A pointer to a file that contains the interferometer ouQut (IFO) data produced by the first
detector.

fp2 : Input. A pointer to a file that contains the interferometer output (IFO) data produced by the second
detector.

fp1-lock: Input. A pointer to a file that contains the TTL lock signal for the interferometer output
produced by the first detector.

fp2lock: Input. A pointer to a file that contains the TTL lock signal for the interferometer output
produced by the second detector.

n: Input. The number N of data points to be reffieved.

outL: Output. outl- [0. .n-1] is an array.of floating point variables containing the values of the inter-
ferometer output produced by the first detector. These variables have units of ADC counts. outL I i]
contains the value of the whitened data stream o1(t) evaluted at the discrete time f; : iAtr where
' i :0 ,1 , . . . ,N- landAt l i s thesampl ingper iodof the f i rs tde tec tor ,de f inedbe low.

out2: Output. out2[0..n-L] is an array of floating point variables containing the values of the

interferometer output produced by the second detector, in exactly the same format as the previous

a.rgument.

sratel: Output. The sample rate Afi (in Hz) of the first detector. At1 :: I/Lh (in sec) is the

corresponding sampling period of the first detector.

srate2: Output. The sample rate Af2 (in Hz) of the second detector. At2 :: Ll&fz (in sec) is the

corresponding sampling period of the second detector.

get-IFOl-2 () consists effectively of two calls to get-data () , which is described in detail in Sec. 3.6

It prints out a waming message if no data remains for one or both detectors. For that case, both outl []
and out2 [] are set to zero.

Authors: Bruce Allen, ballen@dirac.phys.uwm.edu, and Joseph Romano, romano@csd.uwm.edu

Comments: Currently, get-IFOl-2 O calls qet-data O and get-data2 O , where get-data2 O is

simply a copy of the get-data () routine. get-data () should eventually be modified so that it

can handle simultaneous requests for data from more than one detector. After this change is made, the

function get-data2 () should be removed.

223

7.8 Function: simul-atenoise o

vo id . s imu la te -no ise(in t n , f loa t de l ta - t , doub le
f loa t *ou t , in t r *pseed)

double *whiten-out,

This function simulates the generation of noise intrinsic to a detector. The output is a (not necessarily
continuous-in-time) whitened data stream o(t) representing the detector output when only detector noise is
present.

The arguments of simulate-noise O are:

n: Input. The number N of data points corresponding to an observation time 7 :: l/ Af, where At is the
sampling period of the detector, defined below. lf should equal an integer power of 2.

delta-t : Input. The sampling period At (in sec) of the detector.

power: trnput. power l0 . .n/2-1"1 is an array of double precision variables containing the values of the
noise power spectrum P(/) of the detector. These variables have units of strain2fHz (or seconds).
power I i] contains the value of P(/) evaluated at the discrete frequency fi : i/(N A,t), where

i : 0 , 1 . , - . - , N / 2 - L .

whiten-out : Inpiut. whiten-out t 0 - . n-11 is an array of double precision variables containing the
values of the real and imaginary parts of the spectrum W (f) of the whitening filter of the detector.
These variables have units rHz/strain (or sec-1/2;, which are inverse to the units of the square root

of thenoisepowerspectrum P(/) . whiten-ouc[2'k i] andwhit .en-out[2*i+1] contain, re-

spectively, the values of the real and imaginary parts of W(1) evatuated at the discrete frequency

f i : i , / (NLt) , where i : 0 ,1 , . . . , N /2 - L

out : Oufput. out [0 . . n- L] is an array of floating point variables containing the values of the whitened

data stream o(t) representing the output of the detector when only detector noise is present. o(t) is

the convolution of detector whitening filterW(t) with the noise n(t) intrinsic to the detector. The
variables out [] have units of rHz (or sec-1/2;, which follows from the definition of n(t) as a strain
nd W (f) as the "inverse" of the square root of the noise power spectrum P(f). out I i] contains

the value of o(t) evaluated at the discrete time tt: iLt, where i : 0, 1,' ' ' ,Ar - 1.

pseed: Input. A pointer to a seed value, which is used by the random number generator routine.

simulate-noise () simulates the generation of noise intrinsic to a detector
of steps:

following series

(i) It first constructs random variables n(f;) in the frequency domain that have zero mean and satisfy:

(n- (fr)n(f i) l :
i , 6r i P(fr) , (7 .8.1)

where () denotes ensemble average. The above equation is just the discrete frequency version of

Eq. (7.3.1). This equation can be realized by setting

(7.8.2)

where u; utd u; are statistically independent (real) Gaussian random variables, each having zero mean

and unit variance. These Gaussian random variables are produced by calls to the Numerical Recipes

in C random number generator routine gasdev () .

')', /l

(ii) simulare-noise () then whitens the data in the frequency domain by multiplying il(f) by the

frequency componenrs w (il of the whitening filter of the detector:

6(f) :: nU) w(f) (7.8.3)

This (complex) multiplication in the frequency domain corresponds to the convolution of n(t) and

W(t) inthe time domain. By convention, the DC (i.e., zero frequency) and Nyquist critical frequency

comPolleots of afi) are set to zero.

(iii) The final step consists of Fourier transforming the frequency components o(/r) into the time domain

to obtain the whitened data stream o(t;)' Here tt : i'atwith i : 0' 1''''' N - 1'

Authors: Bruce Allen, ballen@dirac.phys.uwm.edu, and Joseph Romano, romano@csd'uwrn'edu

Comments: In the context of stochastic background simulations, it would be more efficient to simulate the

noise at tr,r;o detectors simultaneously. Since the time-series data are real, the two Fourier transforms

that would fieed to be performed in step (iii) could be done simultaneously. However, for modularity

of design, and to simulate noise for "single-detector" gravity-wave searches, we decided to write the

above routine instead.

225

7.9 Function: simulate-sb o

vo id s imu la te -sb(in t n , f loa t de l ta - t , f loa t omega-0 , f Ioa t f - low, f loa t fh igh ,
double *gamma12, double *whiten1, double *whiten2, f loat *ouE1, f loat. *out2,
j -nt *pseed)

This function simulates the generation of an isotropic and unpolarized stochastic background of gravita-
tional radiation having a constant frequency spectrum: CIs,u(/) : f,)o for .fro* ("f < "fi,ish. The outputs are
(not necessarily continuous-in-time) whitened data stream ol(t) and o2(t) representing the detector outputs
when only a stochastic background signal is present.

The arguments of simulate-sb () are:

n: Input. The number N of data points corresponding to an observation time 7 :: .Iy' At, where At is the
sampling period of the detectors, defined below. lf should equal an integer power of 2.

delta-t: Input. The sampling period At (in sec) of the detectors.

omegia-0: Input. The constant value Os (dimensionless) of the frequency spectnrm CIs,"(/) for the
stochastic background:

. f to* (" f<" f i , ieh
otherwise.

f -1ow : Input. The frequency "fro* (in Hz) below which the spectrum Os* (/) of the stochastic background
is zero. fio* should lie in the range 0 (fio* S "firyquist, where "fNyquist is the Nyquist critical
frequency. (The Nyquist critical frequency is defined by.fNvq,ri"t :: 1/(2At), where At is the
sampling period of the detectors.) "fto* should also be less than or equal to "fi,isi.,.

f -high: Input. The frequency "fi,iel, (in Hz) above which the spectrum Os*(/) of the stochastic back-
ground is zero. "fhigl, should lie in the range 0 ("fhisl, (.fNyquist. It should also be greater than or
equal to fio",.

gammal2 : Input. gammal2 l0 . -n/ 2-Ll is an array of double precision variables containing the values
of the overlap reduction function 7(/) for the two detector sites. These variables are dimensionless.
gammal2 [i] contains the value of f(/) evaluated at the discrete frequency f; : i/(NAf), where
i : 0 , 1 , . . . , N 1 2 - 1 .

whi tenl- : Input. whi tenl- [0 . . n- 1- J is an array of double precision variables containing the values of
the real and imaginary parts of the spectrum WtU) of the whitening filter of the first detector. These
variables have units rHz/strain (orsec-1/2;, which are inverse to the units of the square root of the
noise power spectrum P1(/) whiteni- L2*il and whiEenl- [2*i+l] contain, respectively, the
values of the real and imaginary parts of W{f) evaluated at the discrete frequency fi : i/(NLt),
where i : 0 , 1 , . . . , N l2 - I .

whiten2: Input. whiten2 [0. .n-L] is an array of double precision variables containing the values
of the real and imaginary parts of the spectrum Wz(f) of the whitening filter of the second detector,
in exactly the same format as the previous argument.

outl: Output. outl-[0..n-1] is an 4nay of floating point variables containing the values of the
whitened data stream o1(t) representing the output of the first detector when only a stochastic back-
ground signal is present. ,r (t) is the convolution of detector whitening filter WL(t) with the gravi-
tat ionalstrainhr(t) . Thevariablesout l [] haveunitsof rHz(or"""-1/2),whichfol lowsfromthe

oe*(/) : { ?t
O6 should be greater than or equal to zero.

zzo

definition of h1(t) as a strain and W1(/) as the "inverse" of the square root of the noise power spec-

trum p1(/). ourl [i] contains the value of o1(t) evaluated at the discrete time tt : 'iLt, where

i : 0 , 1 , " ' , N - 1 '

out2: Output. out2 [0 - .n-i-] is an anay of floating point variables containing the values of the

whitened data stream o2(t) representing the output of the second detector when only a stochastic

backlround signal is present, in exactly the same format as the previous argument.

pSeed:' Input. A pointer to a seed value; which is used by the random number generator routine.

simulate-sbg simulates the generation of an isotropic and unpolarized stochastic background of

gravitational radiation having a constant frequency spectrum Os'(/) : Oo for .fto* (/ S "fr'ign in the

following series of stePs:

(i) It first constructs random variables h{f) na nz(f) in the frequency domain that have zero mean

and satisfy:

)r ooi ff i r; 'no
l r6t i f f i fao

*, uu, # t:ao r(/,) ,
where () denotes ensemble average. llere fu(f) na nz(f) are the Fourier components of the grav-

itationil strains h1(t) and h2 (t) at the two detectors. The above equations are the discrete frequency

versions of equation (3.L7) of Ref. [21], with Os'(/) : Oo for "fto* ("f < "fi'ier'. They can be

realized by setting

([.i(/,)['(i)) :

(hiff)i,r(f)) :

(i,ij)nr(f)) :

hu)
7 t o tnz\It)

!^n (BH|\'/' , ,r" elo/, @rn * iyt)
tu ' \ t oP /

r i

in(f;.) tU) +

!^m (tHE\'/' ,-rt, ato/, ,F- 1r@ (xzr * iyu)
t" \r ;u/

r i

(7.e.t)

(7.?.2)

(7.e.3)

(7.e.4)

(7.e.s)

(7.e.6)

(7.e.7)
(7.e.8)

where xri,, ALi, r2;, rtnd A2i are statistically indepurdent (real) Gaussian random variables, each having

zero mean and unit variance. (Note: The z1;, UIi, I2i, Nd Azt random variables are statistically

independent of the q and u; random variables defined in Sec. 7.8.) These Gaussian random variables

are produced by calls to the Numerical Recipes in C random number glngatglroutine grasdev () '

Note also that the second term of irz}) (which is proportional to {t -fffi\ is needed to obtain

equation (7.g.2). Without rhis rerm, 1n;1fin2$)) would include an additional (unwanted) factor of

"f (f).
(iii) simulare-sb O rhen whiren_s the data in the frequency domain by multiplying [r(/,) ana n26n7

by the frequency components W{f ;) nd W2(f) of the whitening filters of the two detectors:

o{f) :: h{ft) wtj)

ozff) :: hzU) WzU)

This (complex) multiplication in the frequency domain corresponds to the convolution of h1(t) and

I4z1(t), and h2(t) andWzft) in the time domain. By convention, the DC (i.e', zero frequency) and

Nyquist critical frequency components of o1(fi) and 62(f ,) are set to zero.

(iii) The final step consists of Fourier transforming the frequency components or(/r) and 52(fi) into
the time domain to obtain the whitened dara streams o1(t;) and oz(t). Here t.i : iLt with i :

0, 1, - . - , -ly' - 1. Since ,i(/r) nd oiff6) are the Fourier transforms of real data sets, the two Fourier
transforms can be performed simultaneously.

Authors: Bruce Allen, ballen@dirac.phys.uwm.edu, and Joseph Romano, romano@csd.uwm.edu

Comments: Although it is possible and more efficient to write a single function to simulate the genera-
tion of a stochastic background and intrinsic detector noise simultaneously, we have chosen-for the
sake of modularity-to write separate functions to perform these two tasks separately. (See also the
comment at the end of Sec. 7.8.)

228

7.I0 Function: combine-data ()

void combine-data(int which, int n, f loat * in1 , f loat * ! t t2, f loat *outr)

This low-level function takes two :urays as input, shifts them by half their length, and combines them

with one another and with data stored in an internally-defined static buffer to produce output data that is

continuous from one call of combine-data () to the next.

The arguments of combine-data () are:

*hiCF: Input. An int€gef variable Speci$,ing which intemally-defined static buffer should be used when

combining the input arrays with data saved from a previous call. The allowed values are 1 S which (

16.

n: Input. The number lir of data points contained in the input and output alrays. N is assumed to be even.

in1- : Input. in1 t 0 . . n- l- I is an array of floating point variables containing the values of the first input

array.

in2: Input. j1n2[0..n-1] isanarrayof f loat ingpointvar iablescontainingthevaluesof thesecond

input array.

out : Output. out [0 . . n-1] is an array of floating point variables containing the output data, whioh is

continuous from one call of combine-data () to the next.

combine-dataO produces continuous output data by modifying the.appropriately chosen static

buffer buf [0 . .3*n/2-L] as follows:

uu t [i]+ : s in l i *M-PI /n] * in1 [i] fo r o < i < n lz - t

uur [i]+ : s in [i *MJI /n] * in1 [i]+s in [(i - i l 2) xM-PI /n] * in2 [i - i l2] fo r 42< i (n - 1

uur [i]+ : s in [(i -n l2) *M] r /n l * in2 [i -L l2) fo r n (i 13*n ' /2 - 7 '

The values of the output :uray out [0 . . n- 1] are taken from the first two-thirds of the buffer, while the

last one-third of the buffer is copied to the first third of the buffer in preparation for the next call. When this

is complete, the last two+hirds of the buffer is cleared-

One nice feature of combining the data with a sine function (rather than with a triangle function, for

example) is that if the input data represent statistically independent, stationary random Processes having

zero mean and the same variance, then the output data will also have zero mean and the same variance- This

is a consequence of the trigonometric identity

sin2[i *MJr/n] + sln2[(i - nl2)*M_er/n] : 1 . (7 .10.1)

Thus, combine-data () preserves the first and second-order statistical properties of the input data when

constructing the output.

Authors: Bruce Allen, ballen@dirac.phys.uwm.edu, and Joseph Romano, romano@csd-uwm'edu

Comments: In the context of stochastic background simulations, the two input arrays would represent two

whitened data streams produced by a single detector, which are then time-shifted and combined to

simulate continuous-in-time detector output. Since the contents of the internally-defined static buffer

are equal to zero when combine-data () is first called, the amplinrde of the output array initially

builds up from zero to its nominal value over the course of the first N 12 datapoints. This corresponds

to an effective "turn-on" transient, with turn-on time equal to N Lt/2 (At being the time between

successive data samples).

229

7.LI Function: monte-carlo o

void. monte-carlo(int fake-sb, int fake-:roise1, int fake-noise2, int n, f loat

delta-t , f loat omega-0, f loat f - low, f loat fhigh, double *grammal-2, double
*powerL, double *power2, double *whiEenl- , double *whiten2, f loat *out l- , f loat
*ou t2 , in t *pseed)

This highJevel function simulates (if desired) the generation of noise intrinsic to a pair of detectors, and

an isotropic and unpolarized stochastic background of gravitational radiation having a constant frequency

spectrum: CI*(/) : Oo for.fro* ("f < "fhigh. The outputs are two continuous-in-time whitened data

streams o1(t) and o2(t) representing the detector outputs in the presence of a stochastic background signal

plus noise.
The arguments of monte-carlo () are:

fake-sb: Input. An integer variable that should be set equal to 1 if a simulated stochastic background is

desired.

fake-noisel: Input. Anintegervariablethatshouldbesetequalto l if simulateddetectornoiseforthe
first detector is desired.

f ake-noise2 : Input. An integer variable that should be set equal to 1 if simulated detector noise for'the

second detector is desired.

n: Input. The number N of data points corresponding to an observation time ? :: lf Af, where At is the

sampling period of the detector, defined below. N should equal an integer power of 2.

delta-t: Input. The sampling period Ai (in sec) of the detector.

omega-0 : Input. The constant value Os (dimensionless) of the frequency spectrum CIs* (/) for the

stochastic background:

-f to-(" f<"f i ' igr '
otnerw$e.

O9 should be greater than or equal to zero.

f -1ow: Input. The frequency fio* (in Hz) below which the spectrum CI*(/) of the stochastic background

is zero. /1o* should lie in the range 0 (fio," (.fNyq,ri"t, where "/Nyqutst is the Nyquist critical

frequency. (The Nyquist critical frequency is defined by filyqutrt :: 1/(2Lt), where At is the

sampling period of the detector.) ,fro* should also be less than or equal to .fi,ie1,.

f -tri-gh : Input. The frequency ,fi,igr, (in Hz) above which the spectrum Os,'(/) of the stochastic back-

ground is zero. "fi,ign should lie in the range 0 ("fi,ier, (.fNyquist. It should also be greater than or

equal to fio*.

gammal2: Input. gamma12 t0..n/2-11isanarrayof doubleprecisionvariablescontainingthevalues

of the overlap reduction function 1ff) tor the two detector sites. These variables are dimensionless.
gammal2 [i] contains the value of r(/) evaluated at the discrete frequency fi : i,l(N Lt), where

i : 0 , 1 , . . - , N l 2 - 1 .

powerl-: Input. powerl lO. -n/2-11 is an array of double precision variables containing the values

of the noise power spectrum &(/) of the first detector. These variables have units of strain2fHz

(or seconds). powerl [i] contains the value of &(/) evaluated at the discrete frequency /i -

i l (N Lt) ,where i : 0, 1, " ' , Nl2 - 1.

0s"(/):
{ ?

230

power2 : Input. power2 l0 . .n/ 2-Ll is an array of double precision variables containing the values

of the noise power spectrum P2 (/) of the second detector, in exactly the same format as the previous

argument.

whitenl- : Input. whitenl [0 . . n-L] is an array of double precision variables containing the values of
the real and imaginary parts of the spectmm W{f) of the whitening filter of the first detector. These
variables have units rHz/strain (or sec-1/2;, which are inverse to the units of the square root of the
noise power spectrum P1(l)- whiten1 [2ii] and whitenl- [21i+1] contain, respectively. the
values of the real and imaginary parts of Wt(f) evaluated at the discrete frequency f i : il(N Lt),
w h e r e i : 0 , 1 , . . . , N / 2 - L .

whiten2: Input. whiten2 [0. .n-]-l is an array of double precision variables containing the values

of the real and imaginary parts of the spectrum WzU) of the whitening filter of the second detector,

in exactly the same format as the previous argument.

outl: Output. outl[0..n-]-l is an array of floating point variables containing the values of the
continuous-in-time whitened data stream o1(t) representing the output of the first detector. o1(t) is
the convolution of detector whitening filter I4z1(t) with the data stream s1(t) :: h(t) +nt(t), where

h1(t) is the gravitational strain and n1(t) is the noise intrinsic to the detector. These variables have
units of rHz (or .u.-1l2), which follows from the definition of s1(t) as a strain na W1$1as'the
"inverse" of the square root of the noise power spectrum Pl (/). out l- [i] contains the value of o1 (t)

evaluated at the discrete time t;.: iLt, where i : 0, 1, . . . ,N - 1.

ouE2: Output. out2[0..n-]-l is an anay of floating point variables containing the values of the

continuous-in-time whitened data stream o2(t) representing the output of the second detector, in ex-
actly the same format as the previous argument.

pseed: Input. A pointer to a seed value, which is used by the random number generator routine.

monte-carlo O is avery simple function, consisting of calls to simulate-sb O , simulate-noise O ,
and combine-data () . If f ake-sb=l, monte-carlo O calls simulate-sb O twice,producing two

sets of data that are time-shifted and combined by combine-data () to simulate continuous-in-time de-
tector output. Similar statements apply when either f ake-noisel or f ake-r:oise2 equals 1.

Authors: Bruce Allen, ballen@dirac.phys.uwm.edu, and Joseph Romano, romano@csd.uwm.edu

Comments: None.

231

7.12 Example: monte-carIo program

The following example progam is a simple demonstration of the function monte-carlo (), which was

defined in the previous section. It produces animated output representing time-series data for simulated

detector noise and for a simulated stochastic background having a constant frequency spectrum: Oe*(/) :

CIs for.fio- < f <.fi,igr,. The output from this prognm must be piped into)sngr. The parameters that were

chosen for the example program shown below produce whitened time-series data for a stochastic background

having Os*(/) : 1.0 x 10-3 for lHz 1/ < 5000 Hz. Forthis particular example, the noise intrinsic to

the detectors was set to zero. A sample "snapshot" of the animation is shown in Fig. 48.

By modifying the parameters listed at the top of the example program, one can also simulate an un-

whitened stochastic background signal (Fig. 49), and whitened and unwhitened data streams corresponding

to the noise intrinsic to an initial LIGO detector (Figs. 50 and 5l). Other combinations of signal, noise,

whitening, and unwhitening are of course also possible. To produce the animated output, simply enter the

command:

monte-carIo I :cngr -pipe e

after compilation.
Note: The amplitude of the animated output initially builds up from zero to its nominal value over

(approximately) the first 1.5 seconds. This "tum-on" transient is aconsequence of the overlapping technique

used by combine*data () to produce continuous-in-time detector ouQut. (See the comment at the end of

Section 7.10.)

f x main program to illustrate monte-carlo0 ,k/

i n c l u d e ' g r a s p . h "
vo id g raphout (f loa t , f1oat r , in t) ;

#def ine DETECTORS-FILE
f,oer t_ne 5f t l l I--UHUJ-UE r

#defi .ne SITE2-CHOICE 2
#define FAKE-SB 1

#define FAKE-NOISEI 0

#define FAKE-NOISE2 0

*clerl_ne wfll- ' I!;t\-uu,t -L f

#define WHI?EN-OUT2 1

* d e f i n e N 5 5 5 3 6
* d o f i n o n F T . l i 1 A T l 5 O c - 5 \

d e f i n e o M E G A - O (1 . 0 e - 3)

+ a e l l _ n e r - L U W (f . u ,
* d o f i n a F I { T C f f t t E O c 1 1

*define NUM-RUNS 5

" deteceors . dat' /* file containing detector info ,r/

/* identification number for site I */

/x identification number for site 2 x f
/x l: simulate stochastic background */

/x 0: no stochastic background */

/x i: simulate detector noise at site 1 */

/* 0: no detector noise at site I */

/'r, l: simulate detector noise at site 2 * f
/* 0: no detector noise at site2 */

/'r 1: whiten output at site I x/

/x 0: don't whiten output at site I */

/x 1: whiten output at site2 a,f

/x 0: don't whiten output at site2 *f

/x number ofdata points */

/x sampling period (in sec) x/

/* omega-0 rr/

/'r minimum frequency (inHz) xl

/* maximum frequency (inHz) *l

/* number of nrns */

int main (int argc, char **argTv)
J

i n t i , j , 1 a s t = 0 , s e e d = - 1 7 ;

f loa t de l ta - f , t s ta r t=O - 0 , t ime-now;

f loa t s ice l -parameters [9] , s i te2-paramecers [9] ;
c h a r s i t e l n a m e [' 1 O O I n n i s e l f i l e f l 0 0 l . w h i f e n l f i l c f

' 1
0 Q] ;

L r v v l t

232

c h a r s i t e 2 - n a m e [L 0 O] , n o i s e 2 - f i l e t 1 0 0 l , w h i t e n 2 _ f i l e [] - 0 0 1 ;

double *powerl , *power2 , *whi tenl , *whiten2 , *gammal_2
f loa t xou t l - , *ou t2 ;

/* ALLOCAIE MEMORY */
powerl-= (double *)malloc ((N/2) xsizeof (double)) ;
povrer2= (doub le *)ma11oc ((N/2) *s izeo f (doub le)) ;
wh1!en]-= (double *)malloc (N*,sizeof (double)) ;
wh iLen2= (doub le x)ma11oc (Nxs izeof (doub le)) ;
gammal -2= (doub le x)ma11oc ((N/2)xs izeof (doub le)) ;
ou t l= (f1oat *)ma l loc (N+s izeof (f1oat)) ;
ou t2= (f loaE x) ma l - Ioc (N, r .s izeo f (f loa t)) ;

/* IDENTITY WHITENING FIUIERS (IF WHITEN-OUTI =WHITEN-OUT2=0) *, /
f o r (i = 0 ; i < N / z ; i + + ; {

whitenL [2t i] =v,t | iE.n2 l2#-l -1-. 0 ;
wh i ten l - [2x i+] - l =wh i ten2 [2x i+1] =0 . 0 ;

\)

/* CALL DETECTOR-SITEQ TO GET SITE PARAMETER INFORMAIION x/
de tector-s i te (DETECTORS-FiLE, SITEI--CHOICE, s i t .e1_parameters, s i t ,el__name,

no iseL- f i1e , wh i ten l_ f i le) ;
detecEor-site (DETECTORS-FfLE, SITEz_CHOICE, site2_parameters, si te2_name,

no ise2- f i1e , wh i ten2- f i le) , -

/* CONSTRUCT NOISE POWER SPECTRA, OVERLAP REDUCTION FUNCTION, AND x/

/* (NON-TRIVIAL) WHITENING FIUTERS,IF DESIRED */
delra_f= (f loar) (1. 0/ (N*DELTA_T)) ;
nois e-power (noi se1-f i Ie, N/2, del t .a-f , powerl) ;
noise-power (noise2-f i le, N/2 , delta-f. power2) ;
overlap (sitel-parameters , si-t.e2-parameters . N/2 , delta_f . gamnal-2) ;
i f (V'HTTBN-OUT1== l-) whi ten (whi tenL_f i le, N f Z, de]- ta_f , whi ren j_) ;
i f (VJHITEN-oUT2==1) whiten (whiten2-f i]-e,N /2, de1tra_f , whi ten2) ;

/* SIMULAf,E STOCHASTIC BACKGROUND AND/OR DETECTOR NOISE */

fo r (j=0 ; j<NUM-RUNs; j++) {
monLe-car1o (FAKE-SB. FAKE-NOTSEI, FAKE-NOISE2, N, DELTA-T, oMEGA-o, F-LoW, F-HIGH,

gamma12 , powerl , power2 . whitenl , whiten2 , outl_ , ouL2 , &seed) ;

/x DISPLAY OUTPUT USING XMGR */
f o r (i = 0 ; i (N ; i + +) {

t ime-no$r= ts tart+ i *DELTA-T ;
p r in t f ("Be\ tge \n ' , t ime-now, oue l I i]) ;

l
i f (j==NIIM-RUNS-1) Last=l;
graphout (tstart, Cstart+N*DELTA_T, last) ;

/x UPDATETSTART*/
ts tart+=N*DELTA-T;

) /* end for (i=6111t19M-RUNSj++) */

r a F r r r n A .

)

voi-d grraphout (f loat :<rnin, f Ioat ><max, j-nt Iast)
{
t

s tac ic in t f i r s t= l ;
n * i n r € t ' l , r - . t .

\
E \ a ' / t

i f (f i r s t) {

/x first time we draw plot,r./
printf ("@doublebuffer true\n') ; /* keep display from f lashing */

p r in t f ("@focus o f f \n ") ;
- - : - L €

P I I I I L !

* . . : - F €

P r r r r u r

"Gwor ld >an in *e \n" .>cn in) ;
"@world :<rnax te\n',><rnax) ;
"Gautosca le yaxes \n") ;

n r i n t - f (" (a x a x i s l a b e l \ ' t (s e c) \ " \ n ") ;
p r in t f ("GL i t le \ "s imu la ted Detec tor Ouput \ ' \n ') ;
pr intf ("@subti t le \" (stochastic backgiround--whitened) \ " \n")
p r in t f ("@redraw \n ') ;
i f (! Iast) princf ('@ki11 s0\n') ; /x ki l l set; ready to read again +/

f i r s t = 0 ;
I

e l .se t

/x other timeOAs we draw plot x/
printf (" @wor1d xnrin Be\n" , :<rnin) ;
printf ('Gwor1d :<rnax Be\n' ,)snax) ;
p r in t f ("Gautosca le yaxes \n") ;
i f (i l a s t) p r i n t f (' G k i l 1 s 0 \ n ") ; / * k i l l s e t ; r e a d y t o r e a d a g a i n * /

]

234

Simulated Detector Ouput
(stochastic background--whitened)

- - ' t s . t
15 .6 16 .1 16 .6 17 .1 17 .6 18 .1

t (sec)

Figure 48: Time-series data (whitened) for a stochastic background having a constant frequency spectrum:

Oe-(/) : 1.0 x L0-3 for 5Hz I I < 5000H2.

235

Simulated Detector Ouput

1 5 . 1 . ' 1 5 . 6 1 6 . 1 16 .6 17 .1 17.6 18.1
t (sec)

Figure 49: Time-series data (unwhitened) for a stochastic background having a constant frequency spectrum:

Oe*(/) : 1.0 x 10-3 for 5Hz 1/ < 5000 Hz.

236

Simulated Detector OuPut
(initial LIGO detector noise-whitened)

1000.0

800.0

600.0

400.0

200.0

0.0

-200.0

-400.0

-600.0

-800.0

- ' " " " ' "15.1
15 '6 1 6 '1 lb 'b I t ' I

t (sec)

Figure 50: Time-series data (whitened) for the noise intrinsic to an initial LIGO detector'

Simulated Detector Ouput
(initial LIGO detector noise-unwhitened)

1.00e-1 1

15.' l ' t 5.6 16.'t 16.6 17.1 17.6 't 8.1
t (sec)

Figure 51: Time-series data (unwhitened) for the noise intrinsic to an initial LIGO detector.

238

7.I3 Function: test-datal-2 o

int test-dat.aL2(int n, f loat

This function tests wo data sets to see

normal distribution'
The arguments of test-data12 ()

*data l - , f loat *d 'ata2)

if they have probability distributions consistent wittr a Gaussian

ate:

n: Input. The nlmber -l[of data points contained in each of the input arrays'

d.atar_ : Input. datal t 0 . . n- 1r is an aray of floating point variables containing the values of the first

array to be tested.

da ta2 : Input .d 'a ta2 t0 . .n_1] isanar rayo f f loa t ingpo in tvar iab lesconta in ing theva luesof the
second array to be tested'

test-datat2 () is a simple function ttrat makes use of the is-gaussian () utility routine' (see

Sec. l0.5formoredetai ls.) test-data12()pr intsawarningmessageifei therofthedataSetscontain
a value too large to be stored in 16 bits. (Trre actuat maximum value was chosen to be 32765') It returns

1 if both data sets pass the is_gaussian ()_ test. It renrrns 0 if either data set fails, and prints a message

indicating the bad set-

Authors: Bruce Allen, ballen@dirac.phys.uwm.edu, and Joseph Romano' romano@csd'uwm'edu

comments: In the context of stochastic background simulations, datal-tl and dat'a? [] contain the

values of the whitened data streams o1(t) and o2(t) that are outPut by the two detectors'

239

7.L4 Function: extract-noise ()

vo id ex t racE-no ise(in t averagre , in t wh ich , f loa t * in ,

double *whiten-out, double *power)

This function calculates the real-time noise power spectrum P(/) of a detector,
averaging the spectrum for two overlapped data sets, if desired.

The arguments of extract-noise () are:

i n t n , f l - oa t de l t a - t ,

using a Hann window and

averagre: Input. An integer variable that should be set equal to I if the values of the real-time noise
power spectra corresponding to two overlapped data sets are to be averaged.

which: Input. An integer variable specifying which intemally-defined static buffer should be used when
overlapping the new input data set with data saved from a previous call. The allowed values are
1 (w h i c h (1 6 .

in: Input. in[O..n-1] isanarrayof f loat ingpointvar iablescontainingthevaluesof theassumed
continuous-in-time whitened data stream o(t) produced by the detector. o(t) is the convolution of
detector whitening filterW(t) with the data stream s(t) :: h(t)+n(t),where h(t) is the gravitational
strain and n(t) is the noise intrinsic to the detector. The variables in [] have units of rHz (or sec-1/2;,
which follows from the definition of s(t) as a strain and W (f) as the "inverse" of the square root of
the noise power spectrum P(f). intil contains the value of o(t) evaluated at the discrete time
t, ; , : ' i ,Lt , where i : 0, 1, - - . , l t r - 1.

n: Input. The number N of data points corresponding to an observation time ? :: N At, where At is the
sampling period of the detector, defined below. l/ should equal an integer power of 2.

delta-t : Input. The sampling period At (in sec) of the detector.

whi ten-out : Input. whi Een-out [0 . . n- 1-] is an array _of double precision variables containing the
values of the real and imaginary parts of the spectrum W(f) of the whitening filter of the detector.
These variables have units rHz/strain (or sec-l/z;, which are inverse to the units of the square root
of the noise power spectrum P(/). whiten-out [2*i] and whiten-out 12*i+Ll contain, re-
spectively, the values of the real and imaginary parts of I4r(/) evaluated at the discrete frequency

f ; : i l (N L t) , w h e r e i : 0 , 1 , " ' , N 1 2 - 1 '

power : Output. power l0 . .n/ 2-Il is an array of double precision variables containing the values of
the real-time noise power spectrum P(/) of the detector. Explicitly,

P(f)F?u. f f)u (t) , (7 .14 . r)

where s(/) is the Fourier transform of the unwhitened data stream s(t) produced by the detector.

These variables have units of strain2/Hz (or seconds). power I i] contains the value of P(/) eval-
uated at the discrete frequency h: i l (NLt), where i :0,1, " ' , N/2 - L.

extract-noise () calculates the real-time noise power spectrum P(/) as follows:

(i) it first stores the input data stream o(t) in the last two-thirds of an appropriately chosen static buffer
buf [0 . -3*n/2-L]. The first one-third of this buffercontains the input data left over from the
previous call.

240

(ii) It then multiplies the first two-thirds of this buffer by the Hann window function:

u(t) (7.14.2)

The factor ,Fre is the "window squared-and-summed" factor described in Numerical Recipes in C,

p.553. It is needed to offset the reduction in power that is introduced by the windowing.

(iii) The windowed data is then Fourier transformed into the frequeney domain, where it is unwhitened

by dividing by the (complex) spectrum W171 of the whitening filter of the detector. The resulting

unwhitened frequency componenfs are denoted by (t)t11;t the superscripJ (1) indicates that we are

analyzing the first of two overlapped data sets.

(iv) The real-time noise power spectrum is then calculated according to:

(1)P(/) , : ? { \ 6" 19
(t) r (/) (7.r4.3)

(v) The data conrained in the last rwo-thirds of the buffer is then copied to the first two-thirds of the buffer,

and steps (ii)-(iv) are repeated, yielding a second real-time noise power spectrum (2) PU).

(vi) If average=l, P(/) is given by:

P(f) :: i 1,"",t, + (')p(/)
]

lB 1 t- /2nt\1, : t / ; ; L t - - ' (, ,) l

l t . I+ .4)

Otherwise, P(f) : <zl P(f).

(vii) Finally, the data conrained in the last two-thirds of the buffer is again copied to the first two-thirds' in

preparation forthe next call to extracttroise () . The data saved in the first one-third of this buffer

will match onto the next input data stream if the input data from one call of extract-noise () to

the next is continuous.

Note: One should call extract-noise () with average f 1, when one suspects that the current in-

put data is nor continuous wittr the data that was saved from the previous call. This is because a discontinuiry

between the..old" and "new" data sets has a tendency to introduce spurious large frequency components into

the real-time noise power spectrum, which should not be present. Since a single input data stream by itself

is continuous, the noise power spectrum (2) PU) (which is calculated on the second pass through the data)

will be free of rhese spurious large frequency components. This is why we set P(/) equal to (')p(/)-*0

not equal to (l)p(/)-*hen average + l.

Authors: Bruce Allen, ballen@dirac.phys.uwm.edu, and Joseph Romano, romano@csd.uwm.edu

Comments: In the context of stochastic background simulations, it would be more efficient to extract the

real-time noise power spectra at two detectors simultaneously. However, for modularity of design,

and to allow this function to be used possibly for "single-detector" gravity-wave searches, we decided

to write the above routine instead.

241

7.LS Function: extract-signal ()

vo id ex t rac t -s igna l (j -n t averag ie , f l -oa t * inL , f loa t * i r t2 , in t n , f loa t de l ta - t ,
double *whitenl- , double *whiten2, double *sigaeal12)

This function calculates the real-time cross-correlation spectrum 5rz(/) of the unwhitened data streams
s1(t) and s2(t), using a Hann window and averaging the spectrum for two overlapped data sets, if desired.

The arguments of extract-signal () are:

average: Input. An integer variable that should be set equal to 1 if the values of the real-time cross-
conelation spectra corresponding to two overlapped data sets are to be averaged.

in1 : Input. inL [0 . . n- 1-] is an array of floating point variables containing the values of the assumed
continuous-in-time whitened data stream o1(t) produced by the first detector. o1(t) is the convolution
of detector whitening filter l4z1(t) with the data stream s1(t) :: h{t) + a(t), where h1(t) is the
gravitational strain and n1(t) is the noise intrinsic to the detector. The variables inl- [] have units of
rHz (or r""-1l2), which follows from the definition of s1(t) as a strain anaW1ff) as the "inverse" of
the square root of the noise power spectrum &(/). inl- til contains the value of o1(f) evaluated at
the discrete time tt : iAt,where i : 0,1,' ", N - 1.

in2 : Input. in2 [0 . -n-1] is an array of floating point variables containing the values of the assumed
continuous-in-time whitened data stream o2(t) produced by the second detector, in exactly the same
format as the previous argument.

n: Input. The number l/ of data points corresponding to an observation time ? :: N At, where At is the
sampling period of the detectors, defined below. N should equal an integer power of 2.

delta-t : Input. The sampling period At (in sec) of the detectors.

whitenl: Input. whitenl [0. .n-]-l isanarrayof doubleprecisionvariablescontainingthevaluesof
the real and imaginary parts of the spectrum WtU) of the whitening filter of the first detector. These
variables have units rHz/strain (or sec-1/2;, which are inverse to the units of the square root of the
noise power spectrum P1(/). whitenl- t2*Ll and whitenl [2*i+1] contain, respectively, the
values of the real and imaginary parts of WU) evaluated at the discrete frequency fi : i/(N At),
w h e r e i : 0 , 1 , . . . , N / 2 - L .

whiten2: Input. whiten2 [0. .n-1-] is an array_of double precision variables containing the values

of the real and imaginary parts of the spectrum Wz(f) of the whitening filter of the second detector,

in exactly the same format as the previous argument.

signal12: Output. signall-2 10. .n/2-Ll is an array of doubleprecision variables containing the

values of the real-time cross-correlation spectrum

snj) : : (5 i (/) sz(/) + c.c.) , (7 .1s .1)

where s1(/) and 52(/) are the Fourier transforms of the unwhitened data streams s1(t) and s2 (t) pro-

duced by the two detectors. These variables have units of strain2'sec2 (or simply sec21. signal12 t i l
contains thevalueof s12(/) evaluated atthediscretefrequency h: il(NAt), wherei : 0,1,"' , N/2-
I

extract-signal () calculates the real-time cross-correlation spectrum sp(f) as follows:

a A. l

(i)

(ii)

It first stores the input data streams o1(t) and o2(t) in the last two-thirds of internally-defined static
buffers buf 1- [0 . .3*n/ 2-]-l and buf2 t O . .3*n/2-11. The first one-third of these buffers con-
tains the input data left over from the previous call.

It then multiplies the first two-thirds of these buffers by the Hann window frrnction:

I
l l

L' (7.rs.2)

The factor 1A,B is the "window squared-and-summed" factor described in Numerical Recipes in C,
p.553. It is needed to offset the reduction in power that is introduced by the windowing.

(iii) The windowed data is then Fourier transformed into the frequency domain, where it is unwhitened by
dividing by the (complex) spectra W{f) andW2(f), which represent the whitening filters of the two
detectors. The resulting unwhitened frequency components are denoted by it)"11; ana (1)S(/); ttre
superscript (1) indicates that we are analyzing the first of two overlapped data sets.

(iv) The real-time cross-correlation spectrum is then calculated according to:

(1)"rz(-f) ,: f
tt ls"lt) (t)rr(/) + c.c.] (7.ls.3)

(v) The data contained in the last two-thirds of the buffers is then copied to the first two-thirds of
the buffers, and steps (ii)-(iv) are repeated, yielding a second real-time cross-correlation spectrum
(2)Frz("f

).

(vi) If average=l, En(f) is given by:

i

:
I

r i

l g 1ro\t) :: tl t- Z
--'(?)l

sr:(/)

Otherwise, "rz(/) : (z)3tr17;.

i
(t)srr(/) * trlsrr(/)

J
1

2
(7.rs,4)

(vii) Finally, the data contained in the last two-thirds of the buffers is again copied to the first two-thirds, in
preparation for the next call to extract-sb () . The data saved in the first one-third of these buffers
will match onto the next input data streams if the input data from one call of ext,racL-sb () to the
next is continuous.

Note: One should call extract-sb () with average f 1, when one suspects that the current input
data is not continuous with the data that was saved from the previous call. This is because a discontinuity
between the "old" and 'hew" data sets has a tendency to introduce spurious large frequency components
into the real-time cross-correlation spectrum, which should not be present. Since a single input data stream
by itself is continuous, the cross-correlation spectrum @ snj) (which is calculated on the second pass
through th9 data) will be free of these spurious large frequency components. This is why we set 5rz(/)
equal to (2)5rz(,f)-und not equal to (1)Srz(,f)-when averag e t I.

Authors: Bruce Allen, ballen@dirac.phys.uwm.edu, and Joseph Romano, romano@csd.uwm.edu

Comments: Although it is possible and more efficient to write a single function to extract the real-time
detector noise power and cross-correlation signal spectra simultaneously, we have chosen-for the
sake of modularity-to write separate functions to perform these two tasks separately. (See also the
comment at the end of Sec. 7.14.)

7,L6 Function: opt.imal-f ilter o

vo id . op t ima l - f i } te r (in t n , f loa t de l ta - f , f f oa t f - low, f loa t f -J : igh , doub le
*gamma12, double *power1, doubfe *po_wer2, double *f i1ter l-2)

This function calculates the values of the spectrum 8(/) of the optimal filter function, which maximizes

the cross-correlation signal-to-noise ratio for an isotropic and unpolarized stochastic background ofgravita-

tional radiation having a constant frequency spectrum: Oe*(/) : f)o for -fto* ("f S "fi'iel,-
The arguments of optimal-f ilter () are:

n: Input. The number N of discrete frequency values at which ttre spectmm QU) of the optimal filter is

to be evaluated.

delta-f : Input. The spacing A/ (in Hz) between two adjacent discrete frequency values: A/
? |

J i + l - l i -

f -Iow: Input. The frequency "fro*_(in Hz) below which the spectrum Oe*(/) of the stochastic background-

and hence the optimal nner Q(/)-is zero. fio* should lie in the range 0 (.fro,o 3 "fNyquist, where

.fNyquist is the Nyquist critical frequency. (The Nyquist critical frequency is defined bY /Nyquist ::

L/(z\t), where At is the sampling period of the detectors.) fio* should also be less than or equal to

J hlgh'

fligh: Input. The frequency .fi,,sr, (in Hz) above which the spectrum CIg*(/) of the stochastic background-

and hence ttre optimal fitter @(1)-is zero. "fnigt should lie in the range 0 ("fi,ier, S .fNyquist. It

should also be greater than or equal to fio*.

gamrnal2: Input. gammal-2[0. -n-]-I isanarrayof doubleprecisionvariablescontainingthevalues

of the overlap reduction function .y(/) for the two detector sites. These variables are dimensionless.

gammal2 [i] contains the value of f (/) evaluated at the discrete frequency fi : iAf , where i :

0 , 1 , - . . , N - 1 .

power l : Input .power l [0 . -n -1] i sanar rayo fdoub leprec is ionvar iab lesconta in ing theva luesof
the noise power spectrum Pr(/) of the first detector. These variables have units of strain2/Hz (or

seconds). powerl [i] containsthevalueof &(/) evaluatedatthediscretefrequency f i : iAf,
w h e r e ' i : 0 , 1 , . . . , N - 1 .

power2 : Input. power2 [0 . . n-]- I is an a:ray of double precision variables containing the values of

the noise power spectrum Pz(fl of the second detector, in exactly the same format as the previous

argument.

filterl2: Output. fi lter12 [0. -n-1] is an uray of double precision variables containing the

valuesofthespectrum0(/)oftheoptimalfilterfunctionforthetwodetectors. Thesevariablesaredi-

mensionlessforourchoiceofnormalization (S): f167. (Seethediscussionbelow.) filterl2 [i]

con ta ins theva lue o f Q j)eva lua tedat thed iscre te f requency f ; : iL f ,where ' i :0 ,1 , " ' ,N- 1 .

[2rl:

(7 .16.1)

The values of QU) calculated by optinal-f ilter O are defined by equation (3.32) of Ref.

nr rt .- \ l(/)CIs*'(/)
w \ J / . _ . , f 3 h U) p z j) .

Such a filter maximizes the cross-correlation signal-to-noise ratio SNR ;: Flo, where

tr\ - 3Ha
1 \ \ - ' � ' -

f L \ " t - ' 2 0 7 T 2

* 2 l c 2 \ - t q t 2 -u . - \ u / - \ r . /

[@

l a t
J -oo

T f e- t
4 J - *

70/l) l/ l-3oc* (ul)0(/) (7.16.2)

(7.16.3)

a A A
-fr

d.f PIQilP20/t)t0(/)| '�

i

I

(? conesponds to the observation time of the measurement.) we are working here under the assumption
13!,11[T":l*"

noise intrinsic to tne a.t""to^ i, r*h larglrtrran the m-agnirude of the signal due
discussed in sec. ,.rgloono'

If this assumption does not hold, Eq. 7.16.3 for o2l".j, ro be modified, as
Note that we have explicitly included a normalization constant ,\ in the definition of QU).The choiceof '\ does not affect the v.aly or tr'" signal+o-noise ratio, sin"rp and. oare both multiplied by the samefactor of)' For a stochastic backgrouna"hauing a constant frequency spectrum

"fto* (,f <,fi,ier,
otherwise,

it is convenient to choose) so that
p: QoT . (7 .16.4)From equations (7.16.1) nd (7.16.2), it follows that

l : [S n. [tn,", o, 72U) l-r
ll0r2

-'u
J.f,on

-r
,f6p-6p@j C7.16.5)

will do the job' with this choice ot ̂ , Q(fl is dimensionless and independenr of the value of o6. This iswhy Qs does not have to be passed * u i**"ter to optimal_fi.1ter () .
Authors: Bruce Allen, ballen@dirac.phys.uwm.edu, and Joseph Romano, romano@csd.uwm.edu
Comments: None.

oe,'(/) :
{ ?

245

7.17 Example: optimal-f ilter program

The following example pro$am shows one way of combining thefunctions d'etector-site () ' noise-power ()

overlap () , and optimal-f ilter () to calculate th9 lnectrum 0(f) of the optimal filter function for

a given pair of detectors. Below we explictly calculate 8(/) rot the initial Hanford, !A and Livingston'

LA LIG9 derectors. (we also choosblo normalize the magnitude of the spectrum Q(/) to 1' for later

convenience when making plots of the output data.) Noise power information for these two detectors is

read from the input data file noise-iniE.dat. This file is specified by the information contained in

detectrors -daE. (see Sec. 7.1 for more details.) The resulting optimal filter function data is stored as

rwo columns of double precision numbers (fi and QUilin the file LIGO-f ilter ' dat' where fi: i1f

and i :0, 1,' ", N - 1. A plot of this data is shown in Fig' 52'

Asusual,theusercanmodifythepararrretersinthe#defineStatements
progrilm to change the number of frequency points, the frequency spacing' etc'

it*, Uy changing the site location identification numbers and the output file

and save the spectrum of the optimal filter function fot any pair of detectors'

of the optimal filter function for the advanced LIGO detectors'

f* main Program to illustrate the function optimal-filter$ */

* inc lude "grasp-h"

#def ine DETECTORS-FILE " detectors . dat' /x file contai-ning detector info 'r'/

#def ine SITEI-CHOICS 1 /* l=LlGO-Hanfordsite.x/

#def ine SITE2-CHoICE 2 l*2=LIGO-Livingston site 'r'/

#define N 500 /*numberoffrequencypoints*/
^*y di F 1 0 /x frequency spacing (in Hz) */

#detrne uE!] ' l+-r r.

#def ine F-LOW 0.0 /* minimum freguency (inHz) */

#def ine F-HIGH (1 . 0e+4) /x maximum frequency (inHz) * I

d e f i n e O U T - F I L E " L l G O - f i l t e r ' d a t " / * o u t p u t f i l e n a m e * /

inc main(int argc,strar ' xxargv)

{
. i - ts i

doub le f ;

double abs-value,max;

f loat si tel-parameters [9] , si te2-parameters [9] ;

char s i te l -name [100] ,no iseL- f i le t i -O0 l 'wh i ten l - f i le i1001 ;

c h a r s i t e 2 - n a m e [1 0 0] , n o i s e 2 - f i I e [1 0 0] ' w h i c e n 2 - f i l e t 1 0 0 l ;

double *powerl, *Power2 ;

double xgammal2;

doub le * f i l te rL2 ;

listed at the beginning of the

used when calculating aU).
ni[ne, the user can calculate

For example, Fig. 53 is a Plot

FfLE * fP ;

fp=f open (OUT-FILE, "w") ;

/i ALLOCATEMEMORY x/

power l -= (doub le *)ma l loc (Nxs izeof (doub le)) ;

power2= (doub le * ')ma11oc (N*s izeof (doub le)) ;

gamroatZ= (double *) rnal loc (Nxsizeof (double))

f i L te r12 = (doub le *) ma l loc (N*s izeof (doub le)) ;

1,, CN-LDETECTOR-SITEQ TO GET SITE PARAMETER INFORMAIION x/

detector-s i te(DETECTOnS-f f f 'e ,SITB1-CHoICE's i te l -parameters 's i teL-name'

246

i
no ise l_ f i1e , wh i ten l_ f i le) ;

detector-site (DETEcroRs-FrLE, SrrE2-cHorcE, sice2_parameters, si te2-'ame,
no ise2_f i -1e , wh i t .en2_f i1e) ;

/*CN,L NOISE_POWER$ AND OVERLAp$ */
noise-power (noisel__fi Ie, N, DELTA_F, powerl) ;
nois e-power (noise2_f i le, N, Onlfa_f , po wer2) ;
overlap (s i teL_parameters, s i te2_parameEers, N, DELTA_F, gamma12) ;

/* c/J'L OPTIMAL-FII4Eno AND DETERMTNE MAXMUMABSOLUTE VALUE */
optimil- f i r ter rN, beLrA-F, F-Low, "-"r"t , g,.r*a1-2, powerl , powerz , f i r ter i .2) ;

m a x = 0 . 0 ;
f o r (i - 0 ; i (N ; i + +)

{
abs_va1ue=f abs (f i1te1L2 t i l | ;

- if (abs-val-ue)max) max=abs_walue;
J

/* WRITE FILTER FUNCTTON (NORMALTZED TO 1) To FrLE x/
f o r (! = 9 ; i (N ; i + +) {

f=i*DELTA-F;
fp r in t f (fp , "?e ?e \n ' , , f , f i l re rL2 t i l /max) ;l

J

f c l o s e (f p) ;

r a l - r r r h n .

a A 1

Optimal fi lter function
(for the initial LIGO detectors)

Figure 52: Optimal filter function 8(/) (normalized to 1) for the initial LIGO detectors.

Optimal filter function
(for the advanced LIGO detectors)

Figure 53: Optimal filter function 8(/) (normalized to 1) for the advanced LIGO detectors.

o2 ,: (s2) - (s)'

of the stochastic background cross-correlation signal ̂ 9. The signal-to-noise ratio SNR is then given by.

(7.18.3)

As described in Sec. 7 .16, if the magnitude of ',he noise intrinsic to the detectors is much larger than *$e

magnitude of the signal due to the stochastic background, then

(7 .18.1)

(7.1,8.2)

(7.18.4)

(7.18.s)

(7.r8.7)

(7 .18.8)

7.18 Discussion: Theoretical signal-to-noise ratio for the stochastic background

In order to reliably detect a stochastic background of gravitational radiation, we will need to be able to say
(with a certain level of confidence) that an observed positive mean value for the cross-correlation signal
measurements is not the result of detector noise alone, but rather is the result of an incident stochastic
background. This leads us natually to consider the signal-to-noise ratio, since the larger its value, the more
confident we will be in saying that the observed mean value of our measurements is a valid estimate of
the true mean value of the stochastic background signal. Thus, an interesting question to ask in regard to
stochastic background searches is: "What is the theroretically predicted signal-to-noise ratio after a total
observation time ?, for a given pair of detectors, and for a given strength of the stochastic background?" In
this section, we derive the mathematical equations that we need to answer this question. Numerical results
will be calculated by example programs in Secs. 7.20 and7.2I.

To answer the above question, we will need to evaluate both the mean value

P:: (^9)

and the variance

SNR := 4
o

l-L
- 3H3t frn'

TI:
I-_* ?(l/l) l/ | -3oe- (| / |)o (/)

df h\f l)P2(/ l) 10(/) | ' � ,

where 8(/) it an arbitrary filter function. The choice

(7.18.6)

maximizes the signal+o-noise ratio (7.18.3). It is the optimal filter for stochastic background searches. As
also described in Sec. 7. 16, if the stochastic background has a constant frequency spectrum

. f to* (" f<" f r ' i gh
otherwise.

it is convenient to choose the normalization constant) so that

(sNR)2 :r aB# l:::" rr F#k6

CIe*(/):
{ ?

- ^r(f \O -. . (f)QU),:xviiffi

For such a A,

which leads to the squared signal-to-noise ratio

250

(7. 18.9)

I

This is equation (3.33) in Ref. [21].
But suppose that we do not assume that the noise intrinsic to the detectors is much larger in magnitude

than that of the stochastic background. Then Eq. (7.18.5) for o2 needs to be modified to take into account
the non-negligible contributions to the variance brought in by the stochastic background signal. (Equation
(7.18.4) for pc is unaffected.) This change in o2 implies that Eq. (7.18.6) tor Qff) is no longer optimal. Bur
to simplify matters, we will leave Qffl as is. Although such aQU) no longermaximizes the signal-to-noise
ratio, it at least has the nice property that, for a stochastic background having a constant frequency spectrum,
the nonaalization constant) can be chosen so that I (l) is independent of 0e. The expression for the actual
optimal filter function, on the other hand, would depend on CI6.

So keeping Eq. (7.18.6) tor Q171,let us consider a stochastic background having a constant frequency
spectrum as described above. Then we can still choose) so that

p : { l oT , (7.18.10)

(the same .\ as before works), but now

o':Tll:" *
."'(#t)
+a3 11,","" ar

trffi1
,{(#),

IiJ_"0,-Y2 (f)

f6hff)Pzj)

I:" 'rff i.",(#r)n"'rFffi
f (f l (1 ,)

fL2p?(f)p](/) \ - , - i ' � (i l)
|

. (7 '18.11)

The new squared signal-to-noise ratio is (tf,T2 divided by the above expression for o2.
Note the three additional terms that contribute to the variance o2. Roughly speaking, they can be thought

of as two "signal+noise" cross-terms and one 'pure signal" variance term. These are the terms proportional
to Qe and Ofr, respectively. When O6 is small, the above expression for o2 reduces to the pure noise
variance term (7.18.8). This is what we expect to be the case in practice. But for the question that we posed
at the beginning of the section, where no assumption is made about the relative strength sf the stochastic
background and detector noise signals, the more complicated expression (7-18.17) for o2 should be used.
The function calculate-var () , which is defined in the following section, calculates the variance using
this equation.

25r

7.19 Function: calculate-var ()

doub le ca l cu la te -va r (i nE n , f l oaL de l t . a - f , f l oa t omega-0 , f l oa t f - l ow , f l oa t .

f h' i rrh f 1 oa f l- , double *gamma12 , double *powerl , double *power2)! J r 4 : j r . ,

This function calculates the theoretical variance o2 of the stochastic background cross-correlation signal .9.

The arguments of calculate-var () are:

n: Input. The number -l/ of discrete frequency values at which the spectra are to be evaluated.

d.elta-f : Input. The spacing A/ (in Hz) between two adjacent discrete frequency values: A/ ::
t t
J i + I - J i .

Oe
0

f -l-ow: Input. The frequency .fro* (in Hz) below which the spectnrm Os,"(/) of the stochastic background

is zero. fio* should lie in the range 0 ("fro- 3 .fNyqutst, where /Nyquist is the Nyquist critical

frequency. (The Nyquist critical frequency is defined by /r.iyqoirt :: Il(2Lt), where At is the

sampling period of the detector.) "fro* should also be less than or equal to "fi'iet''

f-high: Input. The frequency,frrter, (in Hz) above which the spectrum Os*(/) of the stochastic back-

ground is zero. "ftigl, should lie in the range 0 ("fiigr, S -fNyq,ri"t. It should also be greater than or

equal to fio*.

L : Input. The observation time Z (in sec) of the measurement.

gammal2 : Input. gammal2 [0 . . n-]- I is an array of double precision variables containing the values

of the overlap reduction function 7(/) for the two detector sites. These variables are dimensionless.

gamma12 [i] contains the value of .y(/) evaluated at the discrete frequency fr: ilf , where i :

0 , 1 , . . . , N - 1 .

powerl : Input. powerl- [0 . - n- 1] is an array of double precision variables containing the values of

the noise power spectrum F1U) of the first detector. These variables have units of strain2 f&z (or

seconds). powerl I i] containsthevalueof &(/) evaluatedatthediscretefrequency f i : i 'Lf ,
w h e r e i : 0 , 1 , - . . , . 4 f - 1 .

power2: Input. power2 [0. .n-1] is an array of double precision variables containing the values of

the noise power spectrum Pzff) of the second detector, in exactly the same format as the previous

argumenL

The double precision value retumed by calculate-var () is the theoretical variance o2 given by

Eq. (7.18.1i) of Sec. 7.18. As discussed in that section, Eq. (7.18.11) for o2 makes no assumption about

the relative strengths of the stochastic background and detector noise signal, but it does use Eq. (7.18.6) for

the filter function Qi1;, wtrictr is optimal only for the large detector noise case. For stochastic background

simulations, Q6 is usually chosen to equal some known non-zero value. This is the value that should be

passed as a parameter to calculate-var () . For stochastic background searches (where f,)6 is not known

a priori) the .value of of the parameter f,)e should be set to zero. The variance for this case is given by

Eq. (7 .18 .8) .

omega-O: Input. The constant value 06 (dimensionless) of the frequency spectrum CIc".(/) for the

stochastic background:
(

Cle*(/) : {
t

fls should be greater than or equal to zero.

" f to* (" f<" f i , i sh
otherwise.

252

Authors: Bruce Allen, ballen@dirac.phys.uwm.edu, and Joseph Romano, romano@csd.uwm.edu

Comments: None.

253

7.20 Example: snr program

As mentioned in Sec. 7.18, an interesting question to ask in regard to stochastic background searches is:
"What is the theroretically predicted signal-to-noise ratio after a total observation time ?, for a given pair

of detectors, and for a given strength of the stochastic background?" The following example prog&m

show how one can combine the functions detector-site (), noise-power () , overlap (), and

calculate-var () to answer this question for the case of a stochastic background having a constant fre-

quency spectrum: Osr(/) : Oo for.fro,,, (.f < .fineh. Specifically, we calculate and display the theoretical

SNR after approximately 4 months of observation time (? : 1.0 x 107 seconds), for the initial Hanford,

WA and Livingston, LA LIGO detectors, and for Oo : 3'0 x 10-6 for 5 Hz < f < 5000 Hz' (The answer

is SNR : 1.73, which means that we could say, with greater than 95Vo confidence, that a stochastic back-

ground has been detected.) By changing the parameters in the #def ine statements listed at the beginning

of the program, one can calculate and display the signal-to-noise ratios for different observation times 7,

for different detector pairs, and for different strengttrs f,ls of the stochastic background.

Note: Values of l/ and A/ should be chosen so that the whole frequency range (from DC to the Nyquist

critical frequency) is included, and that there are a reasonably large number of discrete frequency values for

approximating integrals by sums. The final answer, however, is independent of the choice of N and A/, for

N sufficiently large and A/ sufficiently srnall.

f* main program to calculate the theoretical snr */

inc lude "grasp.h"

#def ine DETECTORS-FILE " deteceors . dat "
/*, file conraining detector info x/

*def ine SITEI-CHOICE 1 /x l=LIGO-Hanford site *'/

#def ine SITE2-CHOICE 2 /*?;L[GO-Livingston site */

*define OMEGA-O (3.0e-6) /+Omega-O(forinit ialdetectors) x/

#def ine F-LOW 0.0 /* minimum frequency (inHz) x/

#def ine F-HIGH (l-. 0e+4 I /* maximum frequency (in Hz) */

#def ine T (1. 0e+7) /* total observation time (in sec) */

*define N 40000 /x number offrequency points */

#def ine DELTA-F 0 .25 /*. frequency spacing (inHz) */

in t ma in(in t a rgc ,char x*argv)

i
double mean, variance, stddev, snr ;

f loa t s i te l -parameters [9] . s i te2-parameters [9] ;

c h a r s i t e l - n a m e t 1 0 0 j , n o i s e 1 - f i l e [1 0 0] , w h i t e n l - f i l e [] - 0 0 1 ;

c h a r s i t e 2 - n a n e t 1 0 0 1 , n o i s e 2 - f i 1 e [1 0 0] , w h i t e n 2 - f i 1 e [1 0 0] ;

double xpowerl, *Power2 ;
double xqammal2;

/* ALLOCAIEMEMORY *./
power l= (doubLe *)mal loc (N*s izeof (doub le)) ;
power2= (doub le *)ma l loc (N*s izeof (doub le)) ;
ganmal -2= (doub le *)ma l loc (N*s izeof (doub le)) ;

l* CN-LDETECTOR-SITEQ TO GET SITE PARAMETER INFORMATION x/

de tec tor -s i te (DETECTORS-FILE, S ITE1-CHOICE, s i te l -parameeers , s iEe l -name,

no ise l - f i1e , wh i ten l - f i1e) ;

detector-site (DETECTORS-FfLE. SfTE2-CHOfCE, site2-pararneEers, si te2-name,

i s e 2 - f i 1 e , w h i t e n Z - f i 1 e) ;

a < A

/x CALL NOISE-POWERQ AND OVERLAPQ x/
noi se-power (noi s e1-f i I e, N, DELTA_F. powerl) ;
noise-power (noise2-f i1e , N, DELTA_F, power2) ;
overlap (s i tel-paramet.ers, si ue2_parameters, N, DELTA_F, 9amma12) ;

/x CALCULATEMEAN, VARIANCE, STDDEY AND SNR */
mean=OMEGA-0*T;
variance=cal-cu1at.e-var (N, DELTA_F, OMEGA_o, F_LOW, F_HfeH, T, gamma12,

power l ,power2) ;
st.ddev=sqrt (variance) ;
snr=mean/s t,ddev;

/*. DISPLAY RESULTS */
n - i n + € / n \ n t \ .
P 4 4 r r v - \ \ r r , ,

printrf ("Detector sice i_ = 8s\n" , sicel_name) ;
p r in t f ("DetecEor s i te 2 = Bs \n ' , s i te2_name) ;
p r in t f ("Omega_0 = *e \n" ,OI .GGA-O) t
printf (" f_Iow = te Hz\n' , F-LOW) ,-
h ? i h t s € / x €

' | . i a l e
- 9 p H 7 \ n t , F t l T a : 1 ; \ .y ! r r r L r \ r _ r r f : j] r - r _ _ _ _

print. f ("Observation t ime T = 8e sec\n' , T) ;
p r in t f ('Theore t ica l S , /N = ?e \n , , , snr) ;
p r i n t f (" \ n ') ;

? 6 1 - 1 r r n l ' l -

255

7.21 Example: omega-rnin program

The example progmm described in the previous section calculates the theoretical signal-to-noise ratio after

a total observation time ?, for a given pair of detectors, and for a given strength O9 of the stochastic

background. A related-and equally important-question is the inverse; "What is the minimum value of

Qe required to produce a given SNR after a given observation time 7?" For example, if SNR : 1.65,

then the answer to the above question is the minimum value of Oe for a stochastic background that is

detectable with957o confidence after an observation time T. The following example program c4lculates and

displays this 95Va confidence value of f,)6 for the inital Hanford, WA and Livingston, LA LIGO detectors, for

approximately 4 months (? : 1.0 x 107 seconds) of observation time. (The answer is Oe : 2.87 x t0-6.)

Again, we are assuming in this example program that the stochastic background has a constant frequency

spectrum: 0*(/) : C)o for 5 Hz < f < 5000 Hz. By modifying the parameters in the #define

statements listed at the beginning of the progrzrm, one can calculate and display the minimum required Q6's

for different detector pairs, for different signal-to-noise ratios, and for different observation times ?.

Note: As shown in Sec. 7.18, the squared signal-to-noise ratio can be written in the following form:

(sNR)2 :
r aro

A + B f t o * C O 3 ' �

where ,4., .8, and C are complicated expressions involving integrals of the
and the noise power spectra of the detectors, but are independent of ? and
Eq. (7.2I.I) becomes a quadratic for O6:

a t l f i + b O o + c : 0 ,

which we can easily solve. It is this procedure ttrat we implement in the following program.

/r, main program to calculate the minimum detectable omega-0 */

* inc lude 'g rasp .h"

#def j-ne DETECTORS-FILE " detectors . dat "
/* f,le containing detector info */

#def ine SITEI--cHOICE 1 /*. l=LIGO-Hanford site x/

#def ine SITE2-CHoICE 2 /,r 2=L[GO-Livingston site */

#define SNR 1. 65 /*, 1.65=SNR forg1Vo confidence */

#def ine F-LoW O - O /* minimum frequency (inHz) xl

#def ine F-HIGH (1.0e+4 I /* maximum frequency (inHz) * l

#def ine T (L - 0e+7) /x total observation time (in sec) 't /
#define N 4O0OO /*, number offrequency points x/

#def ine DELTA-F 0.25 /* frequency spacing (inHz) */

i n F m l i n / i n r : r n n c h a r * * a r a r r l

1
i n t i ;
f l o a t f ;

d o u b l e f a c t o r , f 3 , f 6 , t 9 , f 1 ' 2 , p 1 ' , p 2 , 9 2 ;
doub le in t l - , in t2 , in t3 , in t .4 ;
A a r r l - r l o r l - r n n m o c a O .

f loa t s i te l -parameters [9] , s i te2-parameters [9] ;
c h a r s i t e l - - n a m e t 1 0 0 1 , n o i s e l - f i l e [1 0 0] , w h i t e n l - f i l e [1 0 0] ;

c h a r s i t e 2 - n a m e t 1 0 0 l , n o i s e 2 - f i l - e [1 0 0] , w h i t e n 2 - f i 1 e [1 0 0] ;

(7.2r.r)

the overlap reduction function
Os. Thus, given SNR and 7,

(7.21,.2)

256

f*

i

double *powerL, xpower2 ;
double *gamma12,'

/x ALLOCATEMEMORY x/
power l -= (doub le x)mal loc (Nxs izeof (doub le)) ;
power2= (doub le x)mal foc (Nxs izeof (doub le)) ;
gammal2= (doub le *)ma l Ioc (N*s izeof (doub le)) ;

/ x CALLDETECTOR-SITEQ TO GET SITE PARAMETER INFORMAIION x/

detector.si te (DETEcloRs-FrLE. sITEI--cHorcE, sitel-parameters , si tel-name '
no ise l - f i1e , wh i ten l - f i l e) ;

detector-sice (DETECToRS-FrLE, srTE2-cHoIcE, sice2-parameters, si te2-Jlame,

no ise2- f i1e , wh i ten2- f i le) ;

/," CALL NOISE-POWERQ AND OVER LAPQ */
noise-power (noisel-f i le, N, DELTA-F, powerl) ;
noise-power (noise2 -f i1e, N, DELTA-F, power?) ;
overlap (siteL-parameLers , site2-parameters, N, DELTAJ, gammal2) ;

/x CAI.CULATE INTEGRALS FOR VARIANCE X/
i - L l - i - r t - : - r 2 - i * F / - n n .
l l l u I - a l r u a - I r r L J - A r r s = - v . v t

1s3 (i=1; i<N; i++) { /,t start sum at i=l to avoid possible division */

/,r by 0 (e.g., if f-low=0) x/

f=i*DE!TA-F;
i f (F-LOW<=f && f<=F-HIGH) {

f3= f * f , * f ;
f 6 = f 3 , t f 3 ;
f 9 = f 5 * f 3 ;
t L Z = T Y) r t J ,

92=g:ammal2 [i] *garnmal-2 [i] ;
pl-=powerl- [i] ;
pf,=power2 [i] ;

int l-+=DELTA-F*92 / (f 5xp1*p2) ;
int2 +=DELT A.-F*92 / (f 9xp1"*p1-xp2) ;
int3 +=p91,1' 3.-1. xg2 / (f 9xp1r.p2 xp2) ;

. int4+=DELTA-Fxg2,r. (1. 0+92) / (fL2*pt*pL*p2*p2) ;

) i

/* CALCULATE COEFFICIENTS OF QUADRATIC EQUAIION *./
fACIOr=1O. O*M-PI"M-PI/ (3 . O' ' ITUBBLE*HUBBLE) ;

a= (int4/intL-2 " 0,rT*int1-/ (SNR*SNR)) / (f actor*f actor)
b= (in t2+int3) / (in t1* factor) ;

/x SOLVE THE QUADRATIC */
omega-0=O .5* (-b-sqr t (bxb-4 '*axcl) f a ;

/x DISPLAY RESULIS */
n r i n F f / " \ r n \ .y ! * r : L r

n r . i n t f f , ' I t F 1 - e . i 6 r s i f e 1 = * s \ n " . s i t e l - n a m e) , '
v - 4 . . e r

p r i n E f (" D e t e c t o r s i t e 2 = ? s \ n " , s i t e 2 - n a m e) ;
n r i n i f { " S / N r a t i o - ? e \ n " , S N R) ;y r : r . E r

printf (" f ,- Iow = ?e Hz\n" , F-LOW) ;
n r i n f f (' f h i o h = % e H z \ n " , F - H f G H) ;
p r i n t f (" O b s e r v a t i o n t i m e T = % e s e c \ n " , T) ;

257

pri-ntf ("Minumum omega-O
n r i n f f i r " \ h " 1 .
y ! 4 . r u !

return 0;

= *e \n" , omega-0) ;

258

f--
i
i
i

7.22 Function: analyze o

vo id ana lyze(in t averag ie , f loa t * in1 , f loa t * i r t2 , in t n , f loa t de l ta - t , f loa t
€ ' lnr.r r]nrf r high, double *gammal-2, double *whitenl- , double *whiten2, i -nt
real- t ime-noisel , int real- t ime-noise2, double *powerl , double *power2, double
*signal, double *var iance)

This high-level function performs the optimal data processing for the detection of an isotropic and unpolar-
ized stochastic background of gravitational radiation having a constant frequency spectrum: Os-(./) : Oo
for fio- < / S fi,igl,. It calculates the cross-correlation signal value S and theoretical variance o2, taking
as input the continuous-in-time whitened data streams o1(t) and o2(t) produced by two detectors.

The arguments of analyze O are:

averagie : Input. An integer variable that should be set equal to 1 if the values of the real-time cross-
correlation and/or noise power spectra corresponding to two overlapped data sets are to be averaged.

in1 : Input. in1 [0 . - n-]- I is an array of floating point variables containing the values of the continuous-
in-time whitened data stream o1(t) produced by the first detector. o1(t) is the convolution of detector
whitening filter W1(t) with the data stream s1(t) :: b1(t) + n1(t), where hi(t) is the gravitational
strain and n1(t) is the noise intrinsic to the detector. These variables have units of rHz (or sec- 1/2;,

which follows from the definition of s1(t) as a strain nd W{f) as the "inverse" of the square rodt of
the noise power spectrum P1(/). inl- t i I contains the value of o1(t) evaluated at the discrete time
h : i L t , w h e r e i : 0 , l , - . . , N - 1 .

in2 : Input. in2 [0 . . n-1] is an array of floating point variables containing the values of the continuous-
in-time rvhitened data stream o2(t) produced by the second detector, in exactly the same format as the
previous argument.

n: Input. The number lf of data points corresponding to an observation time T :: N At, where At is the
sampling period of the detectors, defined below. l/ should equal an integer power of 2.

delta-t: Input. The sampling period At 1in sec) of the detectors.

f -low: Input. The frequency "fro- (in Hz) below which the spectrum Ae*(/) of the stochastic background
is assumed to be zero. fio* should lie in the range 0 (.fro* _("fNyqutst, where .fNyquist is the Nyquist
critical frequency. (The Nyquist critical frequency is defined by.fNyquirt :: 1/(2At), where Af is
the sampling period of the detectore.) ,fro* should also be less than or equal to "fi,ier,.

fJ:igrh: Input. The frequency "fi,isl, (in Hz) above which the spectrum Os*(/) of the stochastic back-
ground is assumed to be zero. .fi,igi, should lie in the range 0 ("fhier, (.filyq,rt"t. It should also be
greater than or equal to fio*.

gammal2 : Input. gammal2 t0 - -n/ 2-Ll is an array of double precision variables containing the values
of the overlap reduction function f (/) for the two detector sites. These variables are dimensionless.
gammal-2 [i] contains the value of f(/) evaluated at the discrete frequency fi : i/(N Lf), where
i : 0 , 1 , . . . , N 1 2 - 1 .

whiten1 : Input. whitenl [0 . - n-]- I is an array of double precision variables containing the values of
the real and imaginary parts of the spectrum W{f) of the whitening filter of the first detector. These
variables have units rHz/strain (or sec-1/2;, which are inverse to the units of the square root of the
noise power spectrum hU) whitenl t2"il and whitenl [2*i+]-l contain, respectively, the
values bf the real and imaginary pafis of Wr(f) evaluated at the discrete frequency f i : i / (N Lt),
where i : 0 , I , - . . . N12 - 1 .

259

whiten2: Input. whiten2 [0. .n-1] is an array_of double precision variables containing the values

of the real and imaginary parts of the spectrum WzU) of the whitening filter of the second detector,

in exactly the same format as the previous argument.

real-time-noisel-: Input. Anintegervariablethatshouldbesetequalto l if thereal-timenoisepower

spectrum P1(/) of the first detector should be calculated and used when performing the data analysis.

real-time-noise2 : lnput. An integer variable that should be set equal to 1 if the real-time noise

power spectrum Pzff) for the second detector should be calculated and used when performing the

data analysis.

powerl: Input/Output. powerl lO - -n/2-tl is an array of double precision variables containing

the values of the noise power spectrum &(f) of the first detector. These variables have units of

strain2flFrz (or seconds). powerl[i] contains the value of P1(/) evaluated at the discrete fre-

quency f i : i / (NLt), where i : 0,1,.-- , N/2 - L. I f real- t ine-noisel : 1, the values of

powerl lA . .n/ 2-!l are changed to

P1(f) :: I eygsrfn , (7.22.r)

where .;1(/) is the Fourier transform of the unwhitened data stream s1(t) at the first detector site. If

real-tine-noisel I 1, the values of powerl t0 . .n/ 2- 1l are unchanged.

power2: Input/Output. power2 10. .n/2-11 is an ullray of double precision variables containing the

values of the noise power spectrum PzU) of the second detector, in exactly the same format as the

previous argument.

sigrnal: Ouput. A pointer to a double precision variable containing the value of the cross-correlation

sisnal

c . - (7.22.2)

where sp(f) is the real-time cross-correlation spectrum and 8(/) it the spectrum of the optimal filter

function. ^9 has units of seconds.

variance: Output. A pointer to a double precision variable containing the value of the theoretical

variance o2 of thecross-correlation signal ,9. o2 has units of sec2.

analyze () is very simple function, consisting primarily of calls to other more basic functions. If

real-time-noisel or real-tine--noise2 : 1, analyze () calls extract-noise () to obtain the

desired real-time noise power sp_ectra. It then calls extractr-signal () and opEimal-f ilcerO to

obtain the values of .irz(/) and 0(/), which are needed to calculate the cross-correlation signal ,5, accord-

ing to Eq. (7.22.2). Finally, analyze () calls calculate-var () to obtain the theoretical variance o2

associated with ^9.
Note: One should call analyze () with average f 1, when one suspects that the current input data

inl t l and in2 [] are nor continuous with the data from the previous call to analyze O . This is because

a discontinuity between the "old" and "new" data sets has a tendency to introduce spurious large frequency

components into the real-time cross-correlation and/or noise power spectra, which should not be present.

(See the discussion at the end of Secs. 7.14 and 7.15 for more details.)

Authors: Bruce Allen, ballen@dirac.phys.uwm.edu, and Joseph Romano, romano@csd.uwm.edu

Comments: None.

r-fitr.r,

J,,"*.-
of sn(f) QU) '

260

7.23 Function: prelim-stats o

prel im-slats (f loat omega-O, f loat t , double signal, double var iance)

This function calculates and displays the theoretical and experimental mean value, standard deviation, and

signal-to-noise ratio for a set of stochastic background cross-correlation signal measurements, weighting

each measurement by the inverse of the theoretical variance associated with that measurement.

The arguments of prelim-stats O are:

omega-0: Input. The constant value O6 (dimensionless) of the frequency spectrum CIg.(/) for the

stochastic background:

. f io* (" fS , f i ' i e r '
otherwise.

f loat t : Input. The observation time 7 (in sec) of an individual measurement.

double sigmal : Input. The value ,S of the current cross-correlation signal measurement. This variable

has units of seconds.

6ouble variance : Input. The value o2 of the theoretical variance associated with the culrent cross-

correlation signal measurement. This variable has units of sec2.

prelim-stats () calculates the theoretical and experimental mean value, standard deviation, and

signal-to-noise ratjo, weighting each measurement ̂9i by the inverse of the theoretical variance ou2 associated

with:that measurement. This choice of weighting maximizes the theoretical signal-to-noise, allowing for

possible drifts in the detector noise power spectra over the course of time. More precisely, if we let Sl

(l : t, 2,. . . ,n) denote a set of n statistically independent random variables, each having the same mean

value

I ctoos_(/) : i ot
Qs should be greater than or equal to zero.

but different variances

then one can show that the weighted-average

p:= (^9r) ,

ol :: g?) - (sr)2 ,

(7.23.r)

(7.23.2)

(7.23.3)

has maximum signal-to-noise ratio when); - o;2. Roughly speaking, the above averaging scheme assigns

more weight to signal values that are measured when the detectors are "quiet," than to signal values that are

measured when the detectors are "noisy."

The values calculated and displayed by prelim-sLats () are determined as follows:

(i) The total observation time is
!ro1 :: nT , (7.23.4)

where n is the total number of measurements, and ? is the observation time of an individual measure-

ment.

(ii) The theoretical mean is given by the product

F theory :Oo? ' (7 '23 '5)

This follows from our choice of normalization constant for the optimal filter function. (See Sec' 7.16

for more details.)

261

(iii) The theoretical variance is given by

Note that when the detector noise power spectra are constant, o7 =t o2 for i = L,2,"',n and
oi,*o : o2. This case arises, for example, if we do not calculate real-time noise power spectr4 but
use noise power information contained in data files instead.

(iv) The theoretical signal-to-noise ratio (for n measurements) is given by

SN&n** : \fr,
Ftheory

_ atheory

The factor of \fr.comes from our assumption that the n individual measurements are statistically
independent.

(v) The experimental mean is the weighted-average

Fexpt,. : (7.23.8)

^2v theory \ - rn ^ -2 '
Z-i : I v i

(vi) The experimental variance is given by

^2 . -D?: ro . i zS? - , , ,"expt '-
Di=to12

r"expt '

When the weights ou2 areconstant, the above formula reduces to the usual expression

1 n / . n \ 2

o " 1 p t : * l r ; - (: f r ,)' n 7 - r ' \ " f i ")

for the variance of n measurements .91.

(vii) The experimental signal-to-noise ratio is given by

SNR.*ot : Ji
l'oP! .'
de><pt

(viii) The relative error in the signal-to-noise ratios is

_^,^r:__^ lSNRr6"oo
- SN&*ptrelatlveerror::

lffi

(7.23.6)

(7.23.7)

(7.23.e)

(7.23.10)

(7.23.rr)

. r00% . (7.23.12)

The value of this quantity should be on the order of (1-/SNR16"orr) . tO0%.

Note: prelim-stats O has internally-defined static variables which keep track of the number of

times that it has been called, the sum of the weights, the sum of weights times the signal values, and the sum
of the weights times the signal values squared.

Authors: Bruce Allen, ballen@dirac.phys.uwm.edu, and Joseph Romano, romano@csd.uwm.edu

Comments: None.

262

7.U Function: statistics o

vo id s ta t i s t , i cs (f loa t * input , in t n , inE num-b ins)
This function calculates and displays the mean value, standard deviation, signal-to-noise ratio, and con-
fidence intervals for an input array of (assumed) statistically independent measurements z1 of a random
variable z. This function also write output data to two files: histogrram.dat and gaussian.dat.
The first file contains a histogram of the input data ri; the second file contains the Gaussian probability
distribution that best matches this histogram. (See Sec- 7 .22 for more details.)

The argum"nts of statistics () are:

input: Input. input[0..n-1] isanarrayof f loat ingpointvar iablescontainingthevaluesof asetof
(assumed) statistically independent measurements z; of a random variable r.

n: Input. The length N of the input data array. If N < 2, statistics () prints out an error message
and aborts execution.

numJcins : Input. The number of bins to be used when constructing a histogram of the input data x;.

statistics () calculates and displays the mean value and standard deviation of the input data r;.
It also calculates and displays the signal-to-noise ratio and 68Vo,90Vo, and 95Vo confidence intervals for
the input data, assuming that the ri are statistically independent measurements of a random variable r.
statistics () also writes output data to two files:

histogram . dat is a two-column file of floating point numbers containing a histogram of the input
data ri. The length of each column of data is equal to numJcins, and the histogram is normalized
so that it has unit area.

gaussian.dat is a two-column file of floating point numbers containing the Gaussian proba-
bility distribution function that best matches the histogram of the input data ri. Each column of
gaussian. dat has a length equal to 8192. There are also three markers included in the Gaussian
probability distribution data: One marker for the mean, and two for the * one standard deviation
values of r.

Authors: Bruce Allen, ballen@dirac.phys.uwm.edu, and Joseph Romano, romano@csd.uwm.edu

Comments: In the context of the stochastic background routines, statistics O is used to perform a
statistical analysis of the cross-correlation signal values S; calculated by the function analyze () .

(i)

(ii)

263

7.25 Example: simulation program

By combining all of the functions defined in the previous sections, one can write a program to simulate the

generation and detection of a stochastic background of gravitational radiation having a constant frequency

spectmm: As*(/) - Oe for fio* < .f < "fideh. The following example progr:rm is a simulation for

the initial Hanford, WA and Livingston, LA LIGO detectors. The parameters chosen for this particular

simulation are contained in the #def ine statements listed at the beginning of the program. By changing

these parameters, one can simulate the generation and detection of a stochastic background for different

stochastic backgrounds (i.e., for different values of f,)s, io*, and "fr,igr,) and for different detector pairs'

The number of data points, the sampling period of the detectors, and the total observation time for the

simulation, etc. can also be modified. Preliminary statistics are displayed during the simulation. In addition,

a histogram and the best-fit Gaussian probability distribution for the output data are stored in two files:

histogram.d.at and gaussian.datr. Sample output produced by the simulation and a plot of the

histogram and best-fit Gaussian dataare given in Sec.7.26.

f * main program for stochastic background simulation x/

inc lude "grasp.h"

*de I] -ne UEI ' l :U1U}(s - r . ,L . IJE

#define sITEl-cHoIcE 1
*derLne 5! r ' lJz-ct1(Jl-eE z

#define FAKE-SB 1-

#define FAKE-NOISgI 1

*define FAKE-NoISE2 1

d e l l - n e N b) f , J o

d e f i n e D E L T A - T (5 . 0 e - 5)

d e f i n e O M E G A - 0 (1 . 0 e - 3)

* d e f i n e F - L O W (0 . 0)

* d e f i n e F - H I G H (1 . 0 e 4)

#def ine REAL-TIME-NOISEl

#def ine REAT,-TIME-NOISE2

*define NuM-RIJNS 25OO
#define NUM-BINS 200

'detecEors . dat "
/x file containing detector info *'/

/*. identification number for site I */

/x identification number for site2 *f

/* l: simulate stochastic background 't/

/r. 0: stochastic background from real data */

/x 1: simulate detector noise at site I x/

/* 0: detector noise from real data at site I */

/* 1 : simulate detector noise at site 2 * /

/r, 0: detector noise from real data at site 2 '" f
/x number ofdata points +/

/* sampling period (in sec) */

f x omega-1 */

/'r minimum frequency (inHz) */

/* maximum frequency (inHz) *l

/x l: use real-time noise at site I */

/x 0: use noise information from data file x/

/x I : use real-time noise at site 2 * f
/,r 0: use noise information from data file */

/+ number of runs (for simulation) */

/x number of bins (for statistics) x/

in t ma in(in t a rgc ,char x*argv)
t

i n t i , p a s s - t e s t = 0 , p r e v i o u s - t e s t , r u n s - c o m p l e t e d = 0 , s e e d = - 1 ? ;

f l n r t . d a l l - - f -

n n r r h l a c i a n a l r r a r i a n c a '

f ' l na l - s i r e1 na ramF l -F rs t 9 l . s i t F2 na rame te rs [9] ;v ^ e v - - y * - * .

c h a r s i t e l - n a m e t l 0 0 l , n o i s e l - - f i l e [1 0 0] , w h i t e n 1 - f i 1 e [1 0 0] ;

c h a r s i t e 2 - n a m e t L 0 0 l , n o i s e 2 - f i l - e [1 0 0] . w h i t e n 2 - f i l e [1 0 0] ;

double xg,enerat j-on-powerl , *gieneration-power2 ;

double *analysis-powerl , *analysis-power2 ;

doubfe *whitenl, *whiten2 ;
double xgiammal2;

f]oa t , rou t1 , *ouL2 ;
f f oa t *s t .aLs i

264

/x ALLOCATE MEMORY x/
generation-powerl= (double x) malloc ((N/2) r.sizeof (double))
generat. ion-power2= (double *) ma11oc ((N/2) *sizeof (double))
ana lys is -power l= (doub le *)ma11oc ((N/2) xs izeof (doub le)) ;
analysis-power2= (double *)malloc ((N/2) xsizeof (double)) ;
wh i ten l= (doub le *)ma11oc (Nxs izeof (doub le)) ;
wh i ten2= (doub le *)ma l loc (N*s izeof (doub le)) ;
gammal2= (doub le x)mal loc ((N/2) xs izeof (doub le)) ;
ou t i -= (f loa t . x)maI loc (Nxs izeof 1 f Ioa t)) ;
ou t2= (f loa t * .)ma1Ioc (N*s izeof (f loa t)) ;
s ta ts= (f loa t *)ma1Ioc (NUM-RUNS*s izeof (fLoat)) ;

/* INITIALIZE OUTPUT ARRAYS TO ZERO x/
f o r (i = 0 ; i (N ; i + +) o u t l I i] = o u t 2 [i] = 0 . 0 ;

/x CALL DETECTOR-SITE0 TO GET SITE PARAMETER INFORMAIION */
detector-site (DETECTORS-FILE, SrTEI-*CHOTCE, sitel-paramerers, si tel-name,

no ise l - f i 1e , wh i ten l - - f i l e) ;
detect,or-site (DEfECTORS-FrLE, srTE2-cHorCE, site2-parameters, si te2-name,

no ise2- f i1e , wh i ten2- f i le) ;

/* DISPLAY STOCHASTIC BACKGROUND SIMULATION PARAMETERS */
n r i n i - f l " \ r " I .

printf (. STOCIIASTf C GRAVITATIONAL WAVE BACKGRoIIND S IMULATION\n') ;
n r i n F € / " \ h " l -

printf (. PARAMETERS: \n") ;
printf ('Simulated stochastic background (0=no, 1=yes) : *d\n" , FAKE-SB) ;
p r i .n t f ("S imu la ted deeector no ise a t s i te 1 (0=no.1=yes) : 8d \n" ,FAKE-NoISE1)
p r i n t f (" S l m u l a t e d d e t e c t o r n o i s e a c s i t e 2 (0 = n o , 1 = y e s) : * d \ n " , F A K B - N O I S E 2)
pr in t f ('Rea l - t ime no ise a t s i te 1 - (0=no, t=yes) : td \n" , REAL-TIME-NoISEI) ;
p r in t f ("Rea l - t ime no ise a t s j . te 2 (0=no, l=yes) : *d \n" , REAL-TI I4E-NOISE2) ;
p r i n t f (" D e t e c e o r s i t e L = * s \ n " , s i t e L - n a m e) ;
p r i n t . f (" D e t e c t o r s i t e 2 = * s \ n " , s i t e 2 - n a m e) ;
p r in t f ("Sampl ing per iod = 8e seconds\n" ,DELTA-T) ;
p r i n E f (" N u m b e r o f d a E a p o i n t s = ? d \ n " , N) ;
p r in t r f ("Omegra 0 = 8e \n" ,OMEGA-0) ;
p r i n t f (" f - 1 o w = * e H z \ n " , F - L O W) ;
printf (" f-higrh = *e Hz\n" , F-HrGH) ;
p r in t f ("Number o f runs (fo r s imu la t ion) = Bd\n" ,NUM-Ri , INS) ;
p r in t f ("Number o f b ins (fo r s t .a t i s t i cs) = 8d \n" ,NUI"LBINS) ;
n v i n f f l h \ n ' \ .y r 4 . . e -

/x CONSTRUCT NOISE POWER (FOR SIGNAL GENERATION), WHITENING FIIJIER */

/* AND THE OVERLAP REDUCTION FUNCTION x/
de lLa- f= (f loa t) (1 .0 / (N*DELTA-T)) ;
no ise-power (no ise l - f i1e , N/2 , de1 ta - f , qenera t ion-power l) ;
noi s e-power (noi s e2 -f i 1 e, N/2 . de1 ta-f , generati on-power2) ;
whiten (whitenl-f i1e, u/2, de1 ua-f , whi tenl) ;
whi ten (whi ten2-f i 1 e, N/2, de1 ta-f , whi. een2) ;
overlap (si lel-parameters, si te2-pararneters, l i /2, del ta-f , gammal 2) ;

/* CONSTRUCT NOISE-POWER (FOR SIGNAL ANALYSIS) IF REAL-TIME NOISE */

/x IS NOT DESIRED x/

i f (REAL-TIME-NorSE]- I=1) {
fe r (i=0 ; t<N/2 ; i++) ana lys is -power l - [i] =genera t ion-power l I i] ;

)
i f (REAL-TIME-NOISE2 t=1) {

fo r (i=0 ; t<Nl2 ; i++) ana lys is -power2 [i] =genera t ion-power2 [i] ;

265

,

/* PERFORM THE SIMULATION x/
for (i=1; i (=NUM-RUNS; i++1 {

/x SIMULAIE STOCHASTIC BACKGROUND AND/OR DETECTOR NOISE, IF DESIRED x/
if (FAKE-SB==I l l rarr-NOrSEl==1 ll FAKE-NOrSE2==1) {

monTe-carlo (FAKE-SB, FAKE-NOISE1, FAKE-NOISE2 , N, DELTA-T, OMEGA-O,
F-LOW, F-HIGH, gammaL2,
greneraEion-powerL. generation-power2,
w h i t e n l , w h i t e n 2 , o u t 1 , o u t 2 , & s e e d) ;

))

/x TEST DATA TO sEE IF GAUSSIAN */
previ ous-tes t,=pass-tes t ;
pass- tes t= tes t -da ta12 (N, ou t1 , ou t .2) ;

i f (pass- tes t==1) {

/x ANALYZE Pern */
analyze (previous-test, out1, out2, N, DELTA-T, OMEGA-o, F-LOW, F-HIGH,

gammal2 . whitenL, whi-t.en2 ,
REAL-TII4E-NO I SE]-, REAL-TIME-NOI SE2,
analysis-powerl-, analys is-power2, &s i gnal, &variance) ;

/* DISPLAY PRELIMINARY STATISTICS */
prel irn-stats (OMEGA-o , N*,DELTA-T, signal , variance) ;

/* UPDATE RUNS COMPLETED AND STATS ARRAY FOR FINAL STATISTICS X/

runs-completed++;
stats I runs-completed-]- I =sigmal ;

)

) /* end for (i=l;i<+NUM-RUNS;i++) *,/

/* FINAL STAIISTICS *,/
n r i n f f / n \ n n l .
v ! : r r s !

stat ist i cs (s tats, runs-compl eted. NUM-BINS) ;

re tu rn 0 ;

266

:

7.26 Some output from the simulat.ion program

Below is a sample of the output that is produced during the execution of the stochastic background simulation

program described in Sec. 7.25. Also shown, in Fig. 54, is a plot of the histogram and best-fit Gaussian

probability distribution that were stored in data files by the function statistics (). For this particular

simulation, the total number of runs was equal to l27l and the number of bins for the histogram was equal

to 200.

totsaI nunber of runs completed=815

to ta l observa t ion t ime =2-6?0592e+03 seconds

s i g n a l v a l u e = 2 . 5 5 9 5 2 9 e - 0 3
experimental mean=3 . 3 50998e-03

experimenEal sEddev=l .214569 e-42

experimentsal sNR=7 . 899951e+00
theore t ica l mean=3 . 275800e-03
theore t ica l s tddev=1 . t t29 t6e-02

cheoree ica l SNR=8 . 405551e+00
relat ive error in SNR=5 percent

exper imenta l omegra-O=1. 025595e-03

theore t ica l omegra-0=L . 000000e-03
gheore t ica l omega-O fo r de tec t ion w i th 95 percent conf idence=t .962989e-04

toLal nunber of runs completed=816
to ta l observa t ion E ime =2.673869e+03 seconds

s igna l va lue=-3 .592409e-O3
experimental mean=3 . 352475e-03
experimental stddev=L.2t40 58e- 02

experimental SNR=7 . 888017e+00
theore t ica l mean=3 . 275800e-03
theore t ica l s tddev= l - . LL29L6e-02

theore t ica l SNR=8 . 4L0?05e+00

relat ive error in SNR=6 percent

e>cperimental omega-0=1 - 023 095e-03

theore t ica l omega-O=1- . 000000e-03
theorecical omega-0 for detection wj-th 95 percent

totral nunrlcer of runs completed=8L7

Eota l observa t ion t ime =2.677L46e+03 seconds

s i g n a l v a l u e = - 7 . 9 5 7 9 5 4 e - 0 3

exper imenLa l mean=3 . 338620e-03
experimental stddev=L - 2L3 97 0e-02

exper imenta l SNR=7. 850850e+00

theore t ica l mean=3 - 275800e-03

theore t ica l s tddev=1 . lL29t6e-02

theore t . i ca l sNR=8. 415858e+00

relat ive error in SNR=6 percent

exper imenta l omega-0=1. 018865e-03

t h e o r e t i c a l o m e g a - 0 = 1 . 0 0 0 0 0 0 e - 0 3

theoret. ical omega-O for detection wieh 95 percent

Data seg'ment l- fai led Gaussj-an tesL!

total nunber of runs completed=818

to ta l observa t ion t ime =2.580422e+03 seconds

s igna l va lue= l . 4477 4 '7 e -02

exper imenLa l mean=3 . 35223 8e-03

experimental stddev=I - 23-3 852e- 02

conf i .dence=L . 9 6l-7 8 5e- 04

conf idence=1- . 9505 85e- 04

267

exper imenta l SNR=7 . 898519e+00
tsheore t ica l mean=3 . 276800e-03
theore t ica l s tddev=1 . LL29t6e- 02
theore t ica l SNR=8. 421007e+00
relat. ive error in SNR=6 percent
experimental omega-O -- l . 023 022e- 03
theoreCica l omega-O=L. 000000e-03
theoretical omega-o for detecti ,on lr i th 95 percent

Lotal number of runs completed=819
Cota l observa t ion t , ime =2.683699e+03 seconds
signal value=3 . 647 21,1,e- 03
experimental mean=3 . 352598e-03
experimental stdd.ev=t . 2l3Lt1-e- 02
experimental SNR=7 . 909022e+00
cheore t ica l mean=3 . 276800e-03
theore t i "ca l s tddev=1 . tL29a6e-02
theore t ica l SNR=8. 4251-53e+00
relat.ive error i.n SNR=5 percen!
experimental omega-O=1- - 023 132e-03
theore t ica l omega-0=1. 000000e-03
theoretical omega-o for detection with 95 percent

total number of runs completed=82O
to ta l observa t ion t ime =2.686976e+03 seconds
s igna l va lue=-S . 9 58459e-03
experimental mean=3 . 3 412 43 e- 03
experimental s tddev=L . 2'J,28 07 e- 02
experimental SNR=? - 889026e+00
cheore t ica l mean=3 . 2?5800e-03
theore t ica l s tddev=1 - L l2916e- 02
theore t ica l SNR=8 . 431295e+00
relat ive error in SNR=5 percent
experimental omega-O=1- . 019556e-03
theore t ica l omega-O=1. 000000e-03
theoreLical omega-0 for detection with 95 percent

total number of runs completed=821
to ta l observa t ion t ime =2-690253e+03 seconds
s i q n a l v a l u e = l - . 0 5 7 5 6 1 e - 0 2
exf,erimencal mean=3 . 350056e-03
experimenEal stddev=L . 21233 J-e- 02
experimental SNR=? . 9t71 6 4e+ 00
theore t ica l mean=3 - 2?6800e-03
theore t ica l s tddev=1 . L l29L5e-02
theore t ica l SNR=8. 43 6435e+00
relat ive error in SNR=6 percent

experimental omega-O=l-. 0223 55e-03
theore t j -ca1 omega-O=1. 000000e-03
theore t ica l omega-0 fo r de tec t ion w i th 95 percent

Data secrmenE 2 fa i led Gauss ian tes t !

total number of runs completed=822
to ta l observa t ion t ime =2-693530e+03 seconds
s i g n a l v a l u e = 6 . 5 8 3 3 0 5 e - 0 3
exper imenta l mean=3 . 354111e-03
F y n c r r m o n f A t e l - d d a v = 1 - 2 1 - 1 5 4 9 e - 0 2

experimental- SNR=7 . 93 563 9e+00

conf idence=1 . 95 93 8 6e-04

conf idence=1 . 95 8 L 8 9e-04

conf idence=1 . 95 5 9 9 5e-04

conf idence=1 . 9 5 5 8 03e-04

268

Eheore t ica l mean=3 . 275800e-03
theore t , i ca l s tddev=L . L129L6e- 02
theoretical SNR=8 . 441,571-e+00
relat ive error in SNR=5 percent
exper imenta l omega-O=l - . 023 593e-03
theore t ica l omega-O=1. 0000 00e-03
theore t ica l omega-o fo r de tec t ion w i th 95 percent conf idence= l -954513e-04

HiStogram and Gaussian Probability Distribution

-0.06 -0.04 -o.o2 0.00 0.02

Figure 54: Histogram of the measured cross-correlation signal vaues,
sian probability distribution for the stochastic background simulation.

0.04 0.06

and the corresponding best-fit Gaus-

(for the initial LIGO detectors simulation)

269

8 GRASP Routines: Supernovae and other transient sources

270

GRASP Routines: Periodic and quasi-periodic sources

10 GRASP Routines: General purpose utilities

This section includes general purpose utility functions for a variety of purposes. For example, these include
functions for error handling, to calculate time-averaged power spectra, and functions to graph data, listen to

data, etc.

272

t-'

10.1 GRASP Error Handling

GR-error is the GRASP error reporting module. It has two abstract interfaces which insulate the GRASp
library and the progmms which use it from the details of how GRASP will report errors and how the program
will handle them. The intemal interface provides GRASP itself with a standard method to report errors. The
external interface allows programs which use GRASP to specify exactly how error reports are to be handled.
In addition, a default set of handling routines is provided for printing error messages in a standard format to
stderr or a log file.

10:1.1 Reporting Errors In GRASP Code

Reporting errors from within GRASP code is simple: every legal GRASP error report consists of exactly
one call to GR-start-error () , zero or more calls to GR-report-error () , and exactly one call to
GR-end.-error () . Failing to call the functions in exactly this order will cause an assert to fail and the
pro$am to abort; this allows the code in the handler routines to safely assume that they will be called in the
correct order.

GR-start-error () takes four arguments specifying the name of the function in which the error
occured, the RCS ID of the GRASP file which contains the function's source, the name of that file, and
the line number on which the error report began. In practice providing this data is easy. Every GRASp
file should declare a static string 'rcsid' containing the ID, and ANSI C defines the macros --FILE- and
JINE- which expand to the file name and line number, respectively. Within a given file only the function
name paftrmeter will change from call to call.

The arguments to GRreport-error () are exactly the same as those toprint(): a familiar printf-style
format string followed by a variable number of arguments. There is no file pointer a' la fprintfQ because the
elrors may not be printed to a file or the screen but handled in some completely different way determined
by the calling program. Repeated calls are a convenient way to build up the complete message just as with
printing to the screen with print(). Finatly, a call to GR-end.-error () ends the report. It requires no
arguments.

The GRASP source code provides many examples of the use of these functions, and they are docu-
mented by example in Section i0.1. Because of the stereofyped calling sequence and arguments involved,
an efficient technique for GRASP library progr:rmmers is to paste in the calls from another location in the
source file or from a handy template kept in a scratch file so that only the function name and actual message
needs editing for each case.

10.L.2 How GRASP Brror Reports Are Handled

Programs vary widely in how they notify the user of errors. A simple command-line program will probably
print the messages to the screen or a file, while a program with a graphical interface will likely send them to
an elror log window or to a dialog window. GRASP allows arbitrary error handlers to be specified, but the
default provided will probably suffice for most GRASP application programmers.

Calling GR-set-errors-enabled0 with an argument of false (zero) will suppress all GRASP error mes-
sages regardless of the actual handlers used, while a tme argument will enable them again. GR-errors-enabledQ
retums true if elTors are currently enabled and false otherwise. Errors always start out enabled unless the
environment variable 'GRASPIIODEBUG'

exists (its value is irrelevant), in which case they are disabled
by default. Enors may be disabled within a handler, but the change will not take place unfil the next
GR-start-error 1 1 cal l .

By default, the default enor handlers print errors to stderr. The function, file, and line number are re-
ported in a stdndard header format, followed by the message itself printed as though each call to GR-report-error(format,

273

args) was a call to fprintf(stden, format, args), and ending with the RCS ID of the file containing the func-
tion source. If the environment variable 'GRASP-ERRORFILE' exists and its value is the pathname of
a file which can be opened for appending that filename is used instead of stden Finally, if in addition
'GRASP-ERRORFILE-OVERWRITE' exists (its value is irrelevant) the file is overwritten rather than ap-
pended to.

10.1.3 Customizing The Default Handlers

GRASP error reports may be customized by modifying the behavior of the default handler functions or by

replacingthementirely. Bydefault,whenGR-start-errorO iscalleditcheckstoseeifthereisadefault

file name set; if so, that file is opened for appending. If not (that is, if the filename has been set to NIILL),

or if the file cannot be opened, it then checks to see if an error FILE* has been set. If so, that file is used. If

not, then the handler fails since it has no way to report the error. The default GR-report-error () prints

to whatever file GR-start-error () chose to use, and eR-end-error () prints the RCS ID. If the file

was opened by name in GR-start-error O then GR-end-error O also closes it.

The default FILE* can be set and examined with GR-set-enor-fi1e0 and GR-get-error-fi1e0, and the

default filename can be set and examined with GR-set-error-file-name0 and GR-get-error-file-name0. The

default behavior can be restored with GR-set-enor-file(stderr) and/or GR-set-error-file-name(N[Jll). These

functions may be called at any time except during an error report (between the calls to cR-sEart-errot' ()
and cR-end.-error ()), when an assert would fail. (This is anon-issue in practice because the file/filename

could only be changed during a report if the file or filename is set in GRASP code itself, if the error reporting

functions are called in user code as well as in GRASP, or if a custom handler changes the file/filename and

then calls the default handler. The first possibility is strictly for-bidden, and the others are discouraged

because they can lead to confusion and subtle bugs.)
The reason for this somewhat complex system is safety. If a specified file name cannot be opened errors

can still be reported to the FILE*, probably stderr. If an error file name has been set, the file is opened and

closed for each report so that if the program crashes as much of the error log as possible is preserved on

disk.
When using GR-set-error-fi1e0, the calling program is responsible for opening the file for writing before

the cail and closing it (if necessary); GRASP will simply assume that the file is always available for output.

A NULL file pointer is allowed, in which case calls to the default error handler will cause an assert to fail

unless an eror file name has been set.
When a file name is set with GR-set-error-file-name0, GRASP immediately attempts to open the file.

If the erasefile parameter is TRUE (nonzero) the file will be opened for writing, if it is faise (zero) it will

be opened for appending. If the open succeeds, the name is copied and stored for future use (this means

that the function can be safely called with locally allocated storage), an identifying start-up message and the

time is written to the log file (even if error reporting is disabled), the file is closed, and the function returns

true. When appending to a non-empty file it also writes a separator line so that reports from different runs

are more easily distinguished. If the open fails, the filename is left unchanged (if a previous one existed),

an eror is reported in the usual way (unless error messages are suppressed), and the function returns false.

Setting a NULL filename means that the FILE* should be used instead; the erasefile parameter is ignored in

this case and the call always succeeds. As with GR-set-error-fi1e0, the filename may not be changed during

a report.
It is easy to see how the default behavior is obtained using these handlers. The default FILE* is stderr;

conceptually a call to GR-set-error-file(stden) occurs before the program begins. Similarly, a conceptual

call to GR-set-error-file-name(filename, erase) occurs before program execution, with filename having the

value of the environment variable GRASP-ERROMILE if it exists and NULL otherwise, and erase true if

the environment variable GRASP-ERRORFILE-OVERWRITE exists and false otherwise.

a 1 A

10.1.4 Writing Custom Error Handlers

Internally, GR-error keeps three pointers of type GR-start-enor-type, GR:eport-error-type, and GR-end-error-type
(defined in grasp.h) which point to the current start-error, report-error, and end-error handlers, respectively.
When the three error handlers GR-start-error () , GR-report-error (), and GR-end.-error ()
are called, they in turn check to see that they are called in the proper order and then call the function
pointed to by the corresponding function pointei if (and only if) the function pointer is non-NULL (so
thal for gonvertience if a particul4r handler is not neccessary a dummy-routine is not required) and if er-
rors are currently enabled (so disabling errors works regardless of the handler). By default the handler
pointers simply reference GR-default-start-error0, GR-default-report-error0r and GR-default-urd-errorg,
which actually implement the default behavior described above. For convenience they may be restored with
GR-restore-default-handlers0 as well as GR_set_error_handlers0.

The functions GR-set-errorJrandlers$ and GR-get-error-handlers0 set and examine the handler's cur-
rent values, so that by writing the proper functions GRASP's error reports can be customized in any way
desired. The GR-..-error-type typedef's in grasp.h illustrate the proper function protorypes. Note that
GRreport-error-fype functions take a valist as their second argument rather than'...'; for convenience
GR-report-error () creates the list and calls va-start0 beforehand and calls va-end0 afterwards so the
handler need only deal with the list itself. In the common case where the message will simply be printed
to a file, the valist may be passed directly to one of the v...printf functions. The only restriction is that.the
handlers may not be changed between calls to GR-start-error () and GR-end.-error () , but just as
when changing the default error files this should not be a problem in practice.

The default handlers in src/utility/GR-error. c and their supporting routines are good exam-
ples of how GRASP error handlers are written. They are special only in that they are initialized and set
automatically; otherwise, they use only features available to any handler. Most of their code provides the
ability to switch files easily and safely; writing a custom handler that does not need this generality is quite
straightforward. GRjs-reporting0 returns true if a report is in progress and is sometimes useful when writ-
ing custom handlers.

275

10.1.5 Functions: GR-start-error (), GR-report-error O, eR-end-error ()

These three functions are the GRASP enor handlers. Their use is best illustrated by example. A typical

usage is shown below - a fragment taken from a fictitous routine called "trouble ()
".

GR_start_error (" t rouble () " , rcsid,-F]LE-,-LINE-) ;
GR-report-error ("The GR-report-error O funct ion is t ike pr int f () . \n") ;
GR-report_error(" IL can have no arguments. \n") ;
l l p r a n n r l - a r r n r / i l T F ^ - - 1 ^ - - - ^ -- - - - - - - \ r L uc r r . r . r r d . vc d f l - oaL a rgumenL %f \ n " , x1) ;
G R r e n n r f e r r o r (" O r a n y m i x t u r e o f v a l i d t) p e s % d % d % s \ n " , i L , L z , s t r i n g r p t r) ;

l l .""u_"rrorO;
The use of these three routines as shown will print out, for example:

GRASP: Messagre from funct ion troubleo
The GR_report-errorO function is l-ike
f t can have no argruments.
I t can have a f loat argument 5.432L0
or any mixture of valid tlpes -2 L7 the

$ I d : m a n - u t i l i t y . t e x , v I . 2 0 1 , 9 9 7 / 0 8 / 2 5
$Name: RELEASE_1--5-2 S

a t l i ne number 123 o f f i l e " so l l r ce . c "

n r i n l - f / l
! / ! 5 ^ r u - \ / !

str ing poinEed to bY the Pointer
1 , 9 : t 6 : 0 5 b a l l e n E l c p $

In particular, the line number, release number, and file name are all filled in automatically. The environment

variables that govern the behavior of the default error handler are shown in Table 10 below.

Environment variable. How to set, and effect obtained.

GRASP-I{ODEBUG

GRASP-ERRORFILE

setenv GRASPITODEBUG

turns off error messages.

setenv GRASP-ERRORFfLE th is f i le

sends errors to fi le "thisf i1e".

GRASPIRRORFILE-OVERWRITE setenv GRASPJRRORFILE-OVERWRITE
errors don't accumulate in file.

Table i0: The behavior of the error handler is determined by three environment variables, which can be

set and un-set using the shell commands setrenv and unsetenv. These permit the error messages to be

turned off, saved in a file, and control the file name and its over-write properties.

276

10.2 Function: grasp-open o

FILE* qrasp-open (const char *environment-variable, char *shortpath)

This routine provides a simple mechanism for obtaining the pointer to a data or parameter file. It

is called with two character strings. One of these is the name of an environment variable, for example

GRASP-DATAPATH or GRASPJARAI.{ETERS. The second argument is the "tail end" of a path name. The

routine then constructs a path name whose leading component is determined by the environment variable

and whose tail end is determined by the short path name. grasp-open () opens the file (printing useful

error messages if thii is problematiC) and ietums a pointer to the file.
The arguments are:

environment-variable : Input. Pointer to a character string containing the name of the environment

variable.

shortpath: Input. Pointer to a character string containing the remainder of the path to the file.

As a simple example, if the environment variable GRASP-PARAMETERS is set to

/usr/ locaL / daEa / L4nov9 4 . 2 and one calls
grasp-open("GRASP-PARAMETERS", "channel.0"),then the routine opens the file

/wsr /IocaL/ data/1-4nov94 .2/channel. 0 and returns apointer to it.

277

10.3 Function: avg-spec o

r z n i r l a r z a q n a n l f I n : l - * d a i - a f ' l n a t - * a \ r a r a . r F i n F n n n i n l - i n l - * r e s e t - f I o a t s r a t F f I n a .v v - r ! / s u \ ! 4 v q L , l r v u L e v s l q : r E l r r r u r r ! / v 4 r r e , f r r e , l f v s r

decaytime, int windowtlpe)
This routine calculates the power spectrum of the (time-domain) input stream daEa [] , averaged over

time with a user-set exponential decay, and several possible choices of windowing.
The arguments are:

i
data : Input. The time domain input samples are contained in data [0 . . N- 1-] , with the data sample at

time t : nLt contained in data [n].

averagre: Output. The one sided power spectrum is retumed in average [0, . .N-i-] . Note that only
after the second caII to avg-spec () will averagie [] be non-zero. The value of average [m]
is the average power spectrum at frequency

. m x srate
f : - ." 2 x N

(10.3.1)

Thisistwicethenumberofdist inctfrequencyvaIueswhichappearintheFF�Toftr tsamples;this is
because of the overlapping technique described below. We do not output the value of the average at

the Nyquist frequency, which would be the (non-existent) anay element average tNl . The units
of average [] are data[27Hr. Not.: the elements of averagre [] must not be changed in
between successive calls to avg-spec () .

npoint : Input. The number of points apoint : N input. This must be an integer power of two.

reset: Input. If set to zero, then any past contribution to the average power spectrum is initialized to

zero, and anew average is begun with the current input data.
j

sraEe : Input. The sample rate If Lt of the input data, in Hz.

decaytime : Input. The characteristic (positive) decay time r in seconds, to use for the moving (exponentially- .
decaying) average described below. If no averaging over time is wanted, simply set decaytime to

be small compared to NAt.

windowtlpe: Input. Sets the type of window used in power spectrum estimation. Rectangular win-

dowing (i.e., no windowing) is wind.owtype=0,Hann windowing is windowElpe=1,Welch win-

dowing is windowt)lpe=2 and Bartlett windowing is windowtLpe=3. See [1] for a discussion of

windowing and the definitions of these window types.

The methods used in this routine are quite similar to those used in the overlap=l version of the

Numerical Recipes [1] routine spcLrmO, and the reader interested in the details of this routine should

first read the corresponding section of [1]. A continuous sample of the input data of twice the length of the

array data t I is maintained by avg-spec O . Thus, each element of the array data [] utilized twice;

once with the first point data t 0I right in the middle of the time-domain window function, and once more

with that same point right at the beginning of the window function. Note that to reproduce (exactly) the

procedure described in Numerical Recipes [] one must have npoint=M where M is the variable used in

the procedure spctrm () , and the decay time must be very large (so that the two successive spectra are

equally weighted). For example, if you are doing analysis with 2048 samples, using that as the number of

samples which you FFT and correlate, then you should make two calls to avgr-spec () , in each of which

npoint=1024; this will give you one spectral bin per FFT bin.

278

One frequently wants to do a moving-time average of power spectr4 for example to see how the noise
spectral properties of an interferometer are changing with time. This is accomplished in avg-spec ()
by averaging the spectrum with an exponentially-decaying average. Let A1(f) denote the average power

spectnrm as a function of frequency /, at time t. Then the exponentially-decaying average (A(f))t at time

t is defined by

(10.3.2)

where r is the characteristic decay time over which an impulse in the power spectrum would decay. In our

case, we wish to average the power spectra obtained in the nth pass through the averaging routine. The

discrete analog of the previous equation (10.3.2) is

st rl At,(f)e-(t-t')/r
(A (/)) , : #\ - - \ r / / "

I : *47t " - (t - t ') / r
)

(a(/))rr : "-"til;' (A(/)ho-, . #
forN :

Here,

N

D e"(f)"-a(N-n)
(A(/))rr : Elru -

I e-a(N-n)
n=O

npoint
(l: ---------------

srate x decaytine

is determined by the averaging time desired. The average defined by (10.3.3) can be easily determined by a

recursion relation. We denote the the normalization factor bv

N
Af,. - | ^-a(N-n)r v t u -

L v
n:o

It obeys the (stable) recursion relation rV.nr : L * e-a,A6r-t together with the initial condition "A/-1 - Q.

The exponentially-decaying average then satisfies the (stable) recursion relation

(10.3.3)

(10.3.4)

(10.3.5)

(10.3.6)

(no initial condition is needed). The routine avg-spec () computes the exponentially decaying average by

implementing these recursion relations for (,a(/))r and "A[,'.
Theunitsoftheoutputarrayaverage[] arethesquareoftheunitsoftheinputarraydataI J per

Hz. i.e.
units (average[]) - (uni ts (data[]D' Fr. (10.3.7)

The example program calibrate described earlier makes use of the routine avg-spec () .

Authors : Bruce Allen, ballen @ dirac.phys.uwm.edu

Comments: See comments for calibrate. Warning: Because avgi-spec () uses an internal buffer to

store a set of points twice as long as the input array datat0. .N-l-1, if you pass it sets of points

that are not continuous, you will introduce discontinous jumps between the data sets, and add lots of

peculiar high-frequency garbage to the spectrum. You must feed this routine from a continuous data

stream, and reset it in between breaks or gaps.

279

10.4 Function: binshort o

void. binshort (short * input, int ninput, dou-ir le *bins, int of f set)
This function performs the "binning" which is needed to study the statistics of an array of short integers,

such as the output of a 12 or 16 bit analog+o-digitial converter. Its output is a histogram showing the

number of times that a particular value occurred in an input array. Note that this routine increments the

output histogram, so that you can use it for accumulating statistics of a particular variable.

The arguments are:

input: Input. Thisrout inemakesahistogramof thevalues input[0..ninput-1].

ninput : Input. The number of elements in the previous iuray.

bins: Output. Upon retum from the function, this anay contains a histogram showing the probabil-

ity distribution of the values input[0..ninput-1]. The anay element binsloffseE] is

incremented by the number of elements r of input t I that had value r : 0. The array ele-

ment bins I of f set+i] is incremented by the number of elements r of input [] that had value

r : i. If the output of your 16 bit ADC ranges from -32,768 to +32,767 and nbins has value

276 :65,536 then you would want offset : 32,768. For a12-bit ADC you would probably

want nbins :)r2 : 4096, and depending upon the sign conventions either offset : 2047 or

offset :2048.

of f set : Input. The offset defined above.

Note that in the interests of speed and efficiency this routine does not check that your values lie within

range. Soif you try tobin avalue thatlies outside of therange -offset,-offset * 1, "',offset - 1

you may end up over-writing another array! You'll then spend unhappy hours trying to locate the source

of bizzare unpredictable behavior in your code, when you could be doing better things, like seeing if your

ADC has dynamic range problem (reaches the end-point values too often) or has a mean value of zero (even

with AC-coupled inputs the ADC may have substantial DC offset).

Authors : B ruce Allen, ballen @ dirac.phys.uwm.edu

Comments: None.

280

10.5 Function: is-gaussian ()

int is-gaussian(short *array, int n, int min, int max, int pr int)

This is a quick and robust tesr to see if a collection of values has a probability distribution that is consis-

tent with a Gaussian normal distribution ("normal IFO operation"), or if the collection of values contains
"outlief' points, indicating that the set of values contains "pulses", "blips" and other "obvious" exceptional

events that "stick out above the noise" (caused by bad cabling, alignment problems, or other short-lived

transient events).
The arsuments are:

array: Input. The values whose probability distribution is examined are array [0 . - n- 1-] -

n: Input. The length of the previous array.

min: Input. The minimum value that the input values might assume. For example, if array [] contains

the output of a 12-bit analog-to-digital converter, one might setmin=-2 048. Of course the minimum

valueintheinputarraymightbeconsiderablylargerthanthis(i.e.,closertozero!) asitshouldbeifthe

ADC is being operated well within its dynamic range limits. If you're not sure of the smallest value

produced in array [] , set min smaller (i.e., more negative) than needed; the only cost is storage,

not computing time.

max: Input. The maximum value that the input values might xsume. For example, if array [] contains

the output of a 12-bit analog-to-digital converter, one might set max=2047. The previous comments

apply here as well: set max larger than needed, if you are not sure about the largest value contained

in array[] .

print: Input. If this is non-zero, then the routine will print some statistical information about the

distribution of the points.

The value retumed by is-gaussian () is I if the distribution of points is consistent with a Gaussian

normal distribution with no outliers, and 0 if the distribution contains outliers-

The way this is determined is as follows (we use ti to denote the array element array I i]):

o First. the mean value r of the distribution is determined using the standard estimator:

t 2 - I
- f \ -
4 - _ \ + .

, / . * z -
n -

(10.s.1)

Next, rhe points are binned into a histogram l/[u]. Here l{[u] is the number of points in the array that

have value u. The sum over the entire histogram is the total number of points: D; N[21 : tt.

Then the standard deviation s is estimated in the following robust way. It is the smallest integer s for

which
(10.s.2)

This value of s is a robust estimator of the standard deviation; the range of *s about the mean includes

68Vo of the samples. (Note that since the values of ri are integers, we replace i by the closest integer

to it, in the previous equation).

i tfo + tl > nertQlJ\: n4 [' .-"'r'a,-
z:-s

t / Ltr J - ' -

281

Next, the number of values in the range from one standard deviation to three standard deviations is
found, and the number of values in the range from three to five standard deviations is found. This is
compared to the expected number:

n(erfc!/rt) - eficglrt\. (10.s.3)

o If there are points more than five standard deviations away from the mean, or significantly more points
in the 3 to 5 standard deviation range than would be expected for a Gaussian normal distribution, then
is-gaussian () returns 0. If the numbers of points in each range is consistent with a Gaussian
normal distribution, then is-gaussian () returns 1.

Authors: Bruce Allen, ballen @ dirac.phys. uwm.edu

Comments: This function should be generalized in the obvious way, to look at one sigma wide bins in a
more systematic way. It can eventually be replaced by a more rigorously characterized test to see if
the distribution of sample values is consistent with the normal IFO operation.

282

10.6 Function: clear ()

vo id c lear (f loa t *a r ray , inE n , in t spac ing)
This routine clears (sets to zero) entries in an a:ray.
The arguments are:

array: Ouput. Thisrout ineclearselementsarray[0],arrayIspacing], " ' , array[(n:]-) *spacingl.

n: Input- The number of array elements that are set to zero.

spacing: Input. The spacing in the array between succesive elements thatare set to zero.

Authors: Bruce Allen, ballen @dirac.phys.uwm.edu

Comments: None.

283

I0.7 Function: product ()

void producE (f loat *c, f l-oat *a, f loat *b, int ncomplex) This routine takes as input

a pair of :urays o and b containing complex numbers. It multiplies a with b, placing the result in c, so that

c -- o, x b. The arguments are:

a : Input . Anar rayo f Ncomplexnumbers a [0 . -2N-1] w i tha t2 j l anda[2 j+1] respec t ive lycon-

taining the real and imaginary parts.

b: Input. Anarrayof . l f complexnumbersbt0..2N-11 withbt2j l andbl2j+I l respect ivelycon-

taining the real and imaginary parts.

c: Ouput. The array of N complex numbers c [0. .2N-1] with c t2jl and cl2j+Ll respectively

containing the real and imaginary parts of a x b.

ncomplex: Input. The number.ly' of complex numben in the anays.

Notethatthetwoinputarraysa[] andb[] canbethesamearray;ortheoutputarrayc[] canbethe

same as either or both of the inputs. For example, the following are all valid:
prod.uct (c, a,a, n), which performs the operation a2 -, c.
prod.uct (a, a, b, n) , which performs the operation a x b -+ a.
product (a, b, d, r),which performs the operatiofi a X b -'+ a-
product (a, a, d, D) , which performs the operation a2 '-- a.

Note also that this routine does not allocate any memory itself - your input and output arrays must be

allocated before calling product O.

Author: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: None.

284

10.8 Function: product.c o

void productc (f loat *c, f loat *a, f loat *b, int ncomplex) This routine takes as in-
put a pair of arrays a and b containing complex numbers. It multiplies o with the complex-conjugate of b,
placing the result in c, so that c = a x b*. The arguments are:

a: Input. Ananay of Ncomplexnumbers a[0..2N-]_l with at2j l and a[2j+Ll respect ivelycon-
taining the real and imaginary parts.

b: Input. Anarrayof Ncomplexnumbersbt0-.2N-1-l withbt2j l andbl2l+Ll respect ivelycon-
taining the real and imaginary parts.

c: Output. The array of N complex numbers c[0..2N-1-] with cl2jl and c[Zj+t] respectively
containing the real and imaginary parts of a x b*.

ncomplex: Input. The number N of complex numbers in the arrays.

Notethatthetwoinputarraysa[] andb[]canbethesameiuray;ortheoutputarrayc[] canbethe
same as either or both of the inputs. For example, the following are all valid:

productc (c, a, a, n) , which performs the operation lol, - ".
productc (a, a, b, n) , which performs the operation a X b* -+ a.
productc (a, b, a., rl) , which performs the operation o* x b + a.
productc (a, a, d,rr), which performs the operation lal2 -, a.

Note also that this routine does not allocate any memory itself - your input and output arrays must be
allocated before calling prod.uctc () .

Author: Bruce Allen, ballen @dirac.phys.uwm.edu

Comments: None.

285

10.9 Function: ratio o

vo id ra t io (f loa t *c , f loa t *a , f loa t *b , in t ncomplex) Th is rou t ine takesas inputa

pzrrr of anays a and b containing complex numbers. It divides aby b, placing the result in c, so thx c : a/b.

The arguments are:

a: Inpur. Anarrayof Ncomplexnumbers a[0..2N-1-] with at2j l and aL2j+Ll respect ivelycon-

taining the real and imaginary parts.

b : Input . Anar rayo f l / complexnumbersb l0 . .2N- l - l w i thb t2 j l andb[2 j+1] respec t ive lycon-

taining the real and imaginary parts.

c: Output. The array of N complex numbers c[0..zN-]- l wi th ctzj l and cl2j+Ll respect ively

containing the real and imaginary parts of af b.

ncomplex: Input. The number lf of complex numbers in the arrays.

Note that the two input arrays a [] and b [] can be the same array; or the output array

same as either or both of the inputs. For example, the following are all valid:

ratio (c, a, ?, rr), which (very inefficiently) sets every element of c to 1 + 0i-

ratio (a, a, b, n) , which performs the operation af b "+ a.
ratio (a, b, d, h),which performs the operationbf a'--+ q,.

raLio (a, a, d, n) , which (very inefficiently) sets every element of a to 1 + 0i.

This routine is particularly useful when you want to reconstruct the raw interferometer output Co(/) that

would have produced a particular interferometer displacement Ar(/) (see for example normal ize-w ()

in Section 3.12). This occurs for example if you are "injecting" chirps into the raw interferometer output;

they first need to be deconvolved with the response functiol of the instrument. One can invert this equation

using rario O since Alff l : R(f)do(11 * doti l : n(i l lAU).

Author: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: None.

c [] canbethe

286

I

10.10 Function: graph ()

vo id g raph(f loa t *a r ray , in t n , inE spac ingr)
This is a useful function for debugging. It pops up a graph on the computer screen (using the graphing

program :angr) showing a graph of some array which you happen to want to look at'

The arguments are:

array: Input. The array that you want a graph of.

n: Input. The number of array elements that you want to graph.

spacing: Input. The spacing of the array elements that you want to graph. The elements graphed are

array [0] , array I spacing] , array [2 *spacing] ,...,array [(n-1-) * spacing] .

This function is a handy way to get a quick look at the contents of some anay. It writes the output to

a temporary file and then starts up)sngr, reading the input from the file. The z values are evenly spaced

integers from 0 to n-l-. The gr values are the (subset of) points in array t I . If your array contains real

data, you might want to use spacing=l. If your aJTay contains complex data (with real and imaginary

parts interleaved) you will use spacing=f,, and make separate calls to see the real and imaginary parts.

For example if complex t0 . .2047I contains 1024 complex numbers, then:
graph (complex, L024,2) (view 1024real values)
graph (complex+ L , 1-024, 2) (view 1024 imaginary values)

Note that in order not to produce too much garbage on the screen, any output or elTor messages trom

lqngr are tossed into /dev/null!

Authors: Bruce Allen, ballen @dirac.phys.uwm.edu

Comments: None.

287

10.11 Function: graph-double o

void graph-double (double *array, int n, int spacing)

This is a useful function for debugging, and exactly like the function graph () , except that it's intended

for double precision floating point numbers. It pops up a graph on the computer screen (using the graphing

program xmgr) showing a graph of some anay which you happen to want to look at.

The arguments are:

array: Input. The array that you want a graph of.

n: Input. The number of array elements that you want to graph.

spacing: Input. The spacing of the array elements that you want to graph. The elements graphed are

array [0] , array I spacing], array [2 * spacing], . . . ,array [(n- 1) * spac ing] '

This function is a handy way to get a quick look at the contents of some anay. It writes the output to

a temporary file and then starts up)sngrr, reading the input from the file. The r values are evenly spaced

integers from 0 to n-1. The g values are the (subset o0 points in array t I . If your uuray contains real

data, you might want to use spacingr=1. If your arrzly contains complex data (with real and imaginary

parts interleaved) you will use spacing=2,andmake separate calls to see the real and imaginary parts-

Forexample if complex lO. .20471 contains 1024 complex numbers, then:

graph (complex, t024,2) (view I024real values)
graph (complex+1-, !024, 2) (view 1024 imaginary values)

Note that in order not to produce too much garbage on the screen, any output or elror messages ftom

)sngr are tossed into /dev/null!

Authors: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: None.

288

10.12 Function: graph-short o

void graph-short(short *array, int n)
This is a useful function for debugging, and exactly like the function graph () , except that it's intended

for short integer values. It pops up a graph on the computer screen (using the graphing program)snsr)
showing a graph of some array which you happen to want to look at.

The arguments are:

array: InpuL The array that you want a graph of.

n: Input. Thenumberofarrayelementsthatyouwanttograph. Theelementsgraphedarearray[0. .n-1].

This function is a handy way to get a quick look at the contents of some array. It writes the output to
a temporary file and then starts up)sngr, reading the input from the file. The r values are evenly spaced
integers from 0 to n-1. The 3r values are the points in array [] .

Note that in order not to produce too much garbage on the screen, any output or error messages from
)sngr are tossed into /dev/nuIl!

Authors: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: None.

289

10.13 Function: sgraph ()

sgrraph (short *array, int n, char *name, int f i lenumber)
This routine writes the elements of a short array into a file so that they may be viewed later with a

graphing program like :<rngr.
The arguments are:

array: Input. The array that you want to graph.

n: Input. The number of array elements that you want to graph. The elements used are array t 0 . . n-11 .

name: Input. Used to construct the output file name.

f ilenumber: Input. The value of y used to construct the output file name.

This function produces an output file with two columns, containing:

0 a r r a y [0]
1 a r r a y [1]

"-r- array tn-1- i
The name of this file is: name . g where g is the integer specified by f ilenumber. Note that if g < 1000

then y is "expanded" or "padded" to three digits. For example, calling
sgraph (array, 1-02 4, " cur ious ", 9)
will produce the file
c u r i o u s . 0 0 9
containing 1024 lines.

Authors: Bruce Allen, ballen @dirac.phys.uwm.edu

Comments: None.

290

10.1.4 Function: audio ()

vo id aud io (shor t *a r ray , in t n)
Makes a Sun workstation play music!
The arguments are:

array: Input. The array that you want to hear.

n : Input. lre nqmber of array elemerts tha! you want !o hea1r. lhe elements used 4rE array [0 ., . n j-] .

It doesn't take much experience before you find out that an interferometer can do funny things that you
can't see in the data stream, if you just graph the numbers: However in many cases you can hear thep""uii-
events. This function works only on Sun workstations with a CD-sound quality chipset, that can handle 16
bit linear PCM audio. It creates a tempomry file, then pipes it though the Sun utility audioplay. The
sample rate is assumed to be 9600 Hz.

Note that audio O adjusts the volume so that the loudest event (largest absolute value) in the data
stream has a (previously fixed, by us!) maximum amplitude. So the "background level', of the sound will
depend upon the amplitude of the most obnoxious pings, blips, bumps, scrapes or howlers in the data set.

On a machine not equiped with the correct sound chip (for example a SparcStation 2) you can listen
to the file, if you first convert it to a format that the chipset can handle. This can be done by taking.the
output of audio () , which is a file called temp. au and converting it to "voice" format. To do this, use
the command:
audioconvert - f voice -o temp2.au temp.au
You can then listen to the sound using the command:
audioplay temp2.au

Warning: If you share your office with others, they will find the first few events that you listen to highly
entertaining- After the flrst day however they will stop asking what you're listening to. After a few more
days, their suggestions that you buy headphones will become more pointed. Respecithis requesr.

Authors: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: This routine could be modified to permit a bit more freedom in setting the volume and/or the
sample rate.

291

10.15 Function: sound ()

sound.(short *array, int n, char *name, inE f i lenumber)
This is just like the function audio () except that it writes the sound data into a file of the form * . au.

The arguments are:

array: Input. The array that you want to hear.

n: Input. The number of array elements that you want to hear. The elements used are array [0 . . n-1-] .

nane: Input. Used to construct the output file name.

f ilenumber: Input. The value of y used to construct the output file name.

This function produces an output file with 16-bit PCM linear coding, containing sound data. The name

of the file is: name . g . au where g is the integer specified by f ilenumber. Note that if 3r < 1000 then y

is "expanded" or "padded" to three digits. For example, calling
sound (a r ray , 4800, n g rowl " , 9)
will produce the file
g r o w l . 0 0 9 - a u
containing 1/2 second ofsound.

Note: see the Warning that goes with audio () .

Authors: Bruce Allen, ballen @dirac.phys.uwm-edu

Comments: This routine could be modified to permit a bit more freedom in setting the volume and/or the

samole rate.

292

10.16 Example: translate

This example may be found in the src/examples/examples-utility directory of GRASP, and
contains an example program which translates data from the "old 1994" Caltech 4O-meter format described
earlier, to the new LIGOA/IRGO frame format. Because this code provides an example of how the data is
encoded in this new format, we have included the text of the translation code here. The frames produced by
this translation contain about 5 seconds of data each, and are about half a megabyte in length. The number
of frames in each data file is set by the
define FRAMESJERJILE
at the top of the code. To run the utilify, use the command
t,rans late direc torv-name
where directory-name is the name of the directory in which the files channel . 0 to channel - 15
may be found. The FRAME format files produced by translate are labelled uniquely by the time at
which the fint data point in the first frame was taken (in Coordinated Universal Time). An example of such
a file (produced by translate) is:
cr_ -9 4_r_ 0_r5_0 5_l_ 8_02
where Cl- denotes the Caltech 4O-meter prototype. Suggested names for the other sites are H2 and H4 for
the two Hanford LIGO detectors, LL for the Livingston LIGO detector Vl- for the Virgo detector, G1 for
the GEO detector, TL for the Tama detector, 51 for the Glasgow detector, M1 for the Max-Plank deteotor,
and al- for the AIGO detector. In the file niune, 9 4 denotes the year (we will use 01 for 2001, etc.) and 1 0
denotes the month (labelled from I to 12). The hour ranges from 0 to23 and in this examples is 05. The
minutes (18) ranges from 0 to 59 and the seconds (02) ranges from 0 to 61 to include leap seconds but is
normally in the range from 0 to 59. This naming convention will be used for any data files containing one
second or more of data.

*include <math-h>
inc lude (s td io .h)

inc lude <s td l ib .h)
inc lude (s t r ing .h)

#include "Framel,.h"

inc1ud.e "g rasp-h"

*define OLDNAMES 0
*define LOCKLO 1
#define LOCKHI 10
#define CORRECTTIMESTAMPS 1-

/,r set to zero to use new channel names, I for old names x/

/* set to 1 to correct loss of timestamp resolution x/

per 2048 counts . Range -2048 to +2Q47" ;

I ' m n d a a l a a n a r n ? i n

r r i < i h i 1 i t r r " " ^ n) r r i < i h i I i t r r "

f *Each block of old-format data contains 5.07 secs of data. This
parameter determines how many of these old-format blocks (now a frame)
end up in each FRAME file. */
#define FRAMES-PER-FILE 32

/* earth's equatorial radius, in meters x/

#def ine EQUATORTAI (6 -37814e+06)

/* earth's ellipticity or flattening due to rotation */
#def j -ne FLAT (3 .35281-e-3)

/r. the conversion from ADC counts to volts is: */
s t a t i c c h a r u n i t s [] = " U n i t s a r e L 0 v o l t s

#if (OLDNAMES)

/* channel assignments before Nov 15,1994 'rl

stat ic char r.prenovl5 [] ={
" f F O o u L p u t " , " m i c r o p h o n e " , " d c s t r a i n "
" s e i s m o m e t e r " , " T T L 1 o c k e d " , " a r m 1

293

" m o d e c l e a n e r v i s i b i l i t y " , " s l o w p z t " , " a r m 1 c o i l d r i v e r " | ;

/,r channel assignments after Nov 15, 1994 ,,1

strat ic char *Postnovi.s [] ={
" I F O o u t p u t " , " m a g i n e t o m e t e r . , " m i c r o p h o n e " , ' d c s E . r a i n "
" s e i s m o m e t e r ' , ' s 1 o w p z t " , " p o w e r s t a b i l i z e r " ,
" f f l , l o c k e d " , ' a r m l - v i s i b i l i c y " , " a r m 2 v i s i b i l i t y " , " m o d e

"arm 1 co i l d r i ver ") ;
4 ^ 1 - ^

/* channel assignments before Nov 15,1994 '"1
stat ic char xprenovlS [] ={

' I F O - D M R O " , " ' . " I F O - M i k e " , " I F o - D C D M " . ' P S L - M C - V ' ,

' T F ' O S a i s 1 x . . T F ' O T . o c k ' ' T F O E A T ' . " T F O S A T "

' r FO-MCR' , " IFO-SPZT ' , 'Sus -EE-co i f - v ") ;

/x channel assignments after Nov 15, 1994 ," I
static cllar xpostnovi.5 [] ={

' I FO-DMRO' , " IFO-Mag -x " , " IFO-M ike " , " " , " I FO-DCDM" 'PSL -MC-V"

' I F O - S e i s - l " , ' I F O - S P Z T ' , ' P S L - P S S ' ,

' I F O L o C K . ' , " I F O _ E A T ' , ' I F O _ S A T " , " I F O _ M C R ' ,

" sus-EE-coil-v");
4 ^ - l : €

/*. Program's only argument is the name of the directory containing old-format data '*/

i n t m a i n (i n u a r g c , c h a r * a r g v []) {
char f i lename [2 5 6] . name [2 5 6], hist [102 4], *histnew, xbuf f , **chan-name ;
i n t i , c o d e = 1 , n u m , l a r g e = S 0 0 0 0 . s m a l l = 5 0 0 0 , n . f i r s t = 1 , f i r s t t i n e , n l i n e s ;
' l

^ - ^ ! . " € € c i a a .f v r r v v s r - v r ! v ,

f l o a t f a s t r a t e = 9 8 6 8 . 4 2 0 8 9 8 4 3 ? 5 , t b l o c k , s I o w r a t e = 9 8 6 . 8 4 2 0 8 9 8 4 3 7 5 . * r e a 1 , * i m a g , * f r e q , t h e t a ;
double f i rstmsec, f i rst-est. imate, second-estimate, dj. f f , dt, dts1ow ;
f loa t s ta r t t ime=-L00. 0 , guess t ime ;
double currentt ime=-200 ;
int blockcount=0, channelsopen=0, expected;
s t ruc t FrF i le xoutpu t f i le ;

struct FrameH xframe;

struct FrAdcData *ad.c []-61 ;
s t ruc t FrDetec tor x f rde tec t ;

strucL Frvect xframeveci

struce Frvect xframevecS;

struce FrstatData xstat, icdata;

s t ruc ts FrSEaLData * ,s ta t i cda taS;

struct 1d-binheader bin-header;
strucL ld-mainheader main-header;
s t ruc t tm t imetm,xg t ime, g ts ;
f . i n 6 | n r l I i m a t s r : n c l e F a t - i h o -

F I L E * f p [L 6] , * f p s w e p t s i n e ;

void unhappyexit (int i) ;
i n f d a t s r r r n n r r m l . r a r l i n t f i r e t - l - i m e I :f r l e v u e - -

/x initialize the frame system x/

Frl,iblni (NULL, NUIL, 2) ;
b u f f S i z e = 1 0 0 0 0 0 0 ;
bu f f=mal loc (bu f f S ize) ;

f * create aframe rrf

frame=FrameHNew("Cl,") ;

/x assign detector structure: site location and orientation information */

frarne-)detectRec=FrDetectorNew (" real ") ;

t ' m n A o a l 6 : h a r n z i "

c leaner w is ib i l i t y "

f rame=FrameliNew (" C1')

294

I

f rde t ec t= f rame->de t e c tRec ;
f rde tec t -) la t i tude=3 4 -1667 i
frdetect.-) longritude=1-L8 . L3 3 ;
f rdetect-)armlAngle=1 8 0 - 0 ;
f rdetect-)arm2Angle= 27 0 . 0 ;
frdetece-)armlLength=3 8 . 5 ;
f rdetect-)arm2LengEh=3 8 . L ;

/* Correct for oblateness ofearth, use reference spheriod with
flattening FLAT; EQUATORIAL is earth equatorial radius in merers:
Reference: eqns (4.I3-14) in "Spacecraft attitude determination and
control", Ed. James R. Wortz, D. Reidel Publishing Co., Boston, 1985.
Note: this SHOULD be corrected to add in the heisht of Caltech above
sea level. */

/x angle measured down from the North pole */
the la= (M-PI /L80. 0) * (90 . 0 - f rde lec t -) la r , i rude) ;
frdetect-)alt iEude=EQUATORIAL* (1. 0-FLATr.cos (E.heLa) {.cos (theta)) ;

/r. now open files containing 40 meter data */
i f (! a r g r v t l l I l a r g c ! = 2) u n h a p p y e x i t (1) ;

/* step through all possible channels, seeing which channels have data x/
f o r (i = 0 ; i < 1 5 ; i + + 1 {

s p r i n t f (n a m e , ' * s l c h a n n e l . g d ' , a r q v l L l , i) , .
fP I i] =f sPsn (name, 'r ") ;
i € / € - r : 1 - - r r t f r \f ! \ t P L r J - - r ! u ! ! /

f p r i n t f (s t d e r r , " F i l e t s s u n a v a i l a b l e . S k i p p i n g i t . . . \ n " , n a m e) ;
e l s e

a h > n n o l c n n a n + + -

I

/x if there are no open files, then please exit with a warning message x/
i f (channelsopen==0) unhappyexit (1) ;

/x the sample times for the fast/slow channels x/
dt=l- . 0/fastrate;
dtslow=l- . 0/slowrate ;

f * Define 4 fast, 12 slow ADC channels (long strings of blanks needed - see below) x/
f o r (i = Q ; i (1 6 ; i + +)

i f (f p l i l l = N U L L)
i f (i < 4)

/*. sample rates differ from fastrate, slowrate - see GRASP manual for details ,r./

adc I i] =FrAdcDataNew (frame, "

e l s e
adc I i] =FrAdcDataNew (f rame, "

/* now loop over the input data, creating blocks of output data * f
wh i le (code>O) {

f*readablock ofdata"f
f o r (i = 0 ; i (1 5 ; i + +) {

/* set size of data block x/

n = (i < 4) ? l a r g e : s m a l I ;

f "' read data into frame short anay ,, f
i f (i < 4 & & f p l i l l = N U L L)

" , 5 0 0 0 0 . 0 x 1 - 5 . 0 / ' 7 6 - 0 , l a r s e . l - 5)

' , 5 0 0 0 . 0 x i . 5 . 0 / 7 6 . 0 . s m a l l , 1 5) ;

c o d e = r e a d - b l o c k (f p l i l , & (a d c l i l -) d a t a - > d a t a s) , & n u m . & t b 1 o c k , & f a s t r a t e , 0 , & n , 0 ,
&bin-header. &main-header) ;

^ 1 ^ ^ i F l € ^ l i l r - n n r
\ ! p L r J . - ' " - L L)

c o d e = r e a d - b l o c k (f p i i l , & (a d c I i] - > d a t a - > d a t a S) , & n u m . & t b l o c k , & s 1 o w r a t e . 0 , & n , 0 ,

295

)

/x if no data remains, we have found
r _ t (c o o e = = u) t

f n r i n t f (c f d c r r . " E f I . o I .

abort () ;

)

&bin-header, &main-header) ;

an error */

in t ranslat ion: unexpected end of data! \n") ;

/x check the various sample times x/

i f (d t ! = 1 . o / f a s t r a t e) f p r i n t f (s E d e r r , ' F a s c s a m p l e r a t e s d o n ' t m a L c h ! \ n ') ,

i f (d t s l o w l = 1 . o / s l o w r a t e) f p r i n t f (s e d e r r , ' S 1 o w s a m p l e r a t e s d o n ' t . m a t c h ! \ n ')

/x set time stamps for this btock of data *f

f * create structure to store localtime of tape x/

time Lm - brn*sec=main-header . tod-second,-

timetm. tsm-rnin=main-header . tod-:ninute ;
timetm- trn-hour=main-header. tod-hour ;
timetm. tnumday=main-header . date-day,'

t ime tm. tm-rnon=main-header . datesonth ;
timetm, Em-year=main-header . date-year ;
timetm- trn-wday=6ain-header. datse-dow;

timecm. trn-yday=-1; /x info not available, but filled in by mktime r'/

eimetm. trn-isdsL=-1; /r, info not available, but filled in by mktime */

ca1 Eime=mkEime {&timeEm) ;
gt ime=grmtime (&calt ime) ;
gts=xgt. ime;

i f (ca f t ime!=main-header .epoch- t ime-sec) {
f n r i n l . f { s t d e r r . " I a m c o n f u s e d a b o u t t h e c o r r e c t t i m e : * d o r t d \ n '

(inE) calt ime, main-header . epoch-Eime-sec) ;
f n r i n l - f t s t d c r r . . T f n ^ r r r r n r i n a n n a P S T t i m e - z o n e m a c h i n e , i g n O r e e r r o r ! \ n ") ;
l y t r r r s ! \ p u s e t r { q . r r r l a r Y v . r

1

/* set the time stamp for the first data sample (more precise than header time) x/
r f l f l r c f I I

f i rs t t ime=main-header . epoch-t ime-s ec i
f i rs tmsec= 0 . 0 0 1*main-header . epoch-t5.melnsec i
n r i n t - f 1 " T . n . a l s f a r l . F i m c - * s \ n " . n t i r n e (& c a l - t i m e)
P 4 r r l ! ! \ ! v u s 4

n r i n f f l , , T T T C q l . a i f F i m F - * c " . a s c t i m e (& g t s)) ;
P 4 f r l e r \ v r v r u s -

/* assign the run number from 1,..,11 to the frame. */
f rame -)run=get-run-nunber (f irs ttime) ;
if (frame-)run(1 | | frame->run)11) unhappyexit

/* assign proper name to adc channel (to overwrite lon-e blank space above) */

i f (f rame-) run<=2) {
chan_name=prenovL5 ;
c v n a n F o d = 1 1 :

)
- - * - t

chan-name=pos tnov15 ;
^ - - - ^ ^ ! ^ l - 1 2 ,g ^ l J c u u g u - r J ,

)

i f / a h : n n o l < n n a n | = e m e c f e d) {
\ v r r q r $ t s r e v y e l r . t

. fp r in t f (s tder r , "on1y found tsd chamels .

e x i t (1) ;

296

Expected ?d \n" , channe lsopen, expec ted) ;

t

f o r (i - 0 ; i (1 5 ; i + +)

i f (f P t i l ! = N U L L) {
f* veify that name is correct */
i f { s l - r c m n / c h e n n a m c f i l . " t = = n t 1\ v . . s r r J r q r r E t 4 J . / _ _ v , I

fp r in t f (s tder r , ' ,Channe l *d i s no t
e x i t (L) ;

)

recognized and has no \ n " , i) ;

/r. point to the correct channel name for this particular date, channel ,r/
strcpy (adc Ii] -)name, chan-nane Ii]) ;

/x put in the physical volts/counts conversion */
a d c l i l - > d a t a * > u n i c t 0 l = (c h a r *) m a l 1 o c ((s t r l e n (u n i u s) + 1) * , s i z e o f (c h a r)) ;
s t rcpy (adc I i] ->data->un i t [0] , un i ts) ;

/* which ADC "crate" was this x/
adc I i] -)c ra te= i ;

)

(CoRRECTTTT,IESIAMPS) {
guess t ime=cur ren t t ime+1 6 .0 /LS .0 i
i f (f a b s (g u e s s t i m e - t b l o c k) > 1 . 0) {

startt ime=tblock;
b lockcount=0;

)
cur ren t t ime= (b lockcount++) * ((doub le) 76 -0 /] -5 .0) +s tar tc ime;

/* put the time stamp into the frame structure */
currentt ime+= f irs tmsec ;
f rame->UTimeS= f irs ttime+ (int) currentLime ;
frame->UTimeN= (int) (1 - e9* (currenttime- (int) currenetime)) ;
f r a m e - > d t = l A . O / t S . O ;

J
e lse {

/* put the time stamp into the frame structure */
tb lock+=f i rs tmsec;
f rame-)UTimeS=f irstt ime+ (int) tb] ock,-
f rame-)UTimeN= (in t) (1 .e9* (tb lock- (in t) tb lock)) , -

,

frame->dt=num/slowrate;

/* Localtime - UTC time in seconds x/
frame-)localTime=- 9x3 5 0 0 ;

/,* frame->type[0]=0;,k/

/x put in the history information (only once per translation) t /
r i I i r ? c t I f

f i r s t . = 0 ;
h is tnew=h is t ;
t ime (& t rans la te - t ime) , -
hi-stnew+=sprintf (histnew, ' , \nTranslat ion carr ied out by: \n.) ;

I I

h is tnew+=spr in t f (h i s tnew, "

h i s t n e w + = s p r i n t f (h i s t n e w , '

h is tnew+=spr in t f (h is tnew, "

h is t ,new+=spr in t f (h is tnew, "

h is tnew+=spr in t f (h is tnew, "

log in : *s \n" , g 'e tenv("LOGNAME,)) ;
u s e r : ? s \ n " , g e t e n v (" U S E R ")) ;
d i r e c t o r y : * s \ n " , g e t e n v (" p W D .)) ;
d a t a p a t h : * s \ n " , a r g v [1 .]) ;
t r a n s l a t i o n p r o g r a n n a n n e : 8 s \ n . , a r w [0]) ;

297

h is tnew+=spr in t f (h is tnew, "

hi s tnew+=sprint f (histnew, "

FrHistoryAdd (f rame, hist) ;

f 'r read the swept sine calibration files (only once per run) x/

spr in t f (name, " *s lswept -s ine .asc i i " , a rgv [1]) ;
fpswepts ine=fopen(name, " r ") ;
read-swepts ine (fpswepts ine , &nl ines , &freq , &rea1 , &imag) ;

f* copy swept sine calibration data into vector; see below for packing style */

framevec=FrvectNew (FR-VECT-F, 1 , 3 *nl ines , L - 0 , 'Vifo/Vcoi l ') ;
f o r (i = 0 ; i (n l i n e s ; i + + ; 1

framevec-)dataF I i] =freq I i] ;
framevec-)dataF I i+n]-ines I =rea1 [i] ;
f ramevec-)daLaF I i+2*nl ines] =imag I i] ;

)

/x then link the calibration data into the history structure x/

statsicdatsa=FrsEatDaCaNew (" sweptsine' ,
" s w e p t s i n e c a l i b r a t i o n : \ n p a c k i n g : f r e e I i] , r e a l I i] , i m a g i n a r y I i] " ,

frame-)UTimeS, MAXINT, 1, framevec) ;
FrStatDataAdd (&f rame-)detec tRec-)sDaca, stat i cdata) ;

/x put in lock range (INCLUSIVE low->high) Rolf: if 0--unlock and l=lock

then you need LOCKLO=LOCKHI=1

framevecS=FrvectNew (FR-VECT-S, t , 2, L. 0, " adcCounts') ;
f ramevecS-)dataS [0] =LoCKLo; /* smallest value at which we are still in lock */

framevecs-)datas [1] =LOCKHI; /r, largest value at which we are still in lock */

/* then link the lockrange data into the history structure */

s tat i cdataS=FrStatDataNew (" 1ocklo / l ockhi ",

" l o c k r a n g e : \ n p a c k i n g : a r r a y [0] = I o c k 1 o a r r a y [1] = l o c k h i " ,

frame->UTimeS, MAXINT, 1, f ramevecS) ;
FrStacDataAdd (&frame->detectRec->sData, stat icdaEaS),-

)

/* is the time stamp for this data block consistent with start time+offset? *,/

f irs t_es tima te = f rame ->UTime S+ 1 . e- 9 x f rame -)UT imeN ;
second-estimate=main-header . epoch-t ime-sec+L . e-3*main-header. epoch-Eimelnsec;

di f f = f i rs t-es t imate- second-es t imate ;
i f (f a b s (d i f f) > 0 . 0 0 2)

fp r in t f (s tder r , "T ime s tamps have dr i f ted by ? f msec I \n " 'd i f f) ;

/'t Increment frame counter (set to I for first frame of each run) ,r/

frame->frame++;

/* Open Frame file (one file per FRAMES-PER-FILE frames) *./

i f ((frame->frameZFRAtr{ES-PER-FILE) ==1) {

/* set file name. Note than month=l to 12 not 0 to I 1! x/

sprintf (f i lename, , cL -402d_t 02d_t02d_t02d_? 02d_t 02d " , gts - tm-year, gts . em$on+ L ,
g ts . tnLmday, g ts . tm-hour , g ts . EmJin , g ts . tm-sec) ;

^ - i - F € / " r i ' l 6 n = m 6 . * c \ n " € i l o n a m o l -

,

o u t n u t f i l e = F r F i l e o N e w (f i l e n a m e , N O , b u f f , b u f f S i z e) ;

un-comment to print a short snippet of each Frame onto the screen x/

FrameDump(frame, stdout, 2); x/

source code name: *s \n"
t rans la t ion da te : ?s \n"

t r t s r i n c l r l - a . n \ .

, ct irne (&transla te-t ime)) ;

298

/* Write frame to file, */
E ' r : m a t a l r i l - a / f r a n o n r r t - n r r i - f i I c) :

/* Close file if finished with FRAMES-PER-FILE or no remaining data *f

if ((frame->frane*FRA[4ES-PER-FILE) ==0 I I code==-1)
FrFileOEnd (outpuE.f i 1e) ;

I

/x Free frame memory and return x/
FiameFree(frame) t
r e t u r n (0) ;

l

/* this routine is called if something is wrong x/

void unhappyexit(int. i) {
s w i t c h (i) {

c a s e l - :
f n r . i r t - f I < f d a r r
5 g r - . . b -

"Slmtax: \ntranslate directory\nwhere channel * f i les may be found in directory\n") ;

ex i r . (1) t
c a s e 2 :

f n r i n f € l e t - d a r r

. r r r " u tc does no t appear to l ie in Ehe range o f any da ta se t ! \n ') ;

e x i t (1) ;
de fau l t :

abort () ;

)
return;
l

/* number of secs after Jan I 1970 UTC at which Nov 1994 runs began */

scar ic inc s r imes i I = {784880277 , '784894763 , '7852175-1 4 ,785233t19 ,785250938, -1852 '7L063 ,

? 8 5 2 8 8 0 7 3 , 7 8 5 3 ! 5 7 4 7 , 7 8 5 3 3 3 8 I 0 , ? I 5 3 5 1 9 6 9 . 7 8 5 3 6 8 4 2 8 , 7 8 5 3 8 8 2 4 8 j i

/'r This routine looks at the epoch time (sec) and retums the run number (1-11) */
i h t s f r a F r r r n n r r m l r a r / i n t - f i r < l - l - i m e l {
r r r u Y e e - r (

i n t . i ;

f o r (i = 0 ; i (1 2 ; i + +)

i f (f i r s t t i m e (s t i m e s l i l) b r e a k ;

re tu rn i ;

Author: Bruce Allen, ballen @ dirac.phys.uwm.edu

Comments: The technique used to time-stamp this data is an attempt to correct the poor resolution of

the original data - please see the remarks in 4.1 for additional detail. Also notice that because the

sample rates of the slodfast channels differ by a ratio of 10, we can not easily reformat the frames

with sample sizes of length 2n. We expect that the FRAME format will continue to evolve, so that

this translator (and the FRAME format data) may reqire periodic updates. Should the year have four

digits (eg, 1994) for easier sorting?

299

10.17 Multi-taper methods for spectral analysis

Since the early 1980's there has been a revolution in the spectral analysis, due largely to a seminal paper by
Thomson [24]. There is now a standard textbook on the subject, by Percival and Walden [25], to which we
will frequently refer.

Among the most useful of these techniques are the so-called "multitaper" methods. These make use
of a special set of windowing functions, called Slepian tapers. For discretely-sampled data sets, these are
discrete prolate spheroidal sequences, and are related to prolate spheroidal functions. The GRASP package
contains (a modified version of) a public domain package by Lees and Park, which is described in [26].
Further details of this package may be found at
http : / / love - geologry. yale . ed.u/mtm/. Note however that we have already included this package
in GRASP; there is no need to hunt it down yourself.

For those who are unfamilar with these techniques, we suggest reading Chapter 7 of 1251. The sets of
tapered windows are defined by three parameters. These are, in the notation of Percival and Walden:

The length of the discretely-sampled data-set, typically denoted by the integer npoints in the GRASP
routines.

NW Lt: The product of total observation time NAt and the resolution bandwidth I4l. This dimensionless
(non-integer) quantity is denoted nwdt in the GRASP routines. Note ttrat for a conventional FFTj the
frequency resolution would be W : Af : L/N Lt. This corresponds to having NW At : 1. The
multitaper techniques are typically used with values of trV'which are several times larger, for example
W : 3Lf , which corresponds to NW At : 3.

The number of Slepian tapers (or window functions) used, typically denoted nwin in the GRASP
routines. Note that it is highly recommended (see page 334 of [25] and the final two figures on page
339) thatthenumberof tapers K <zNWLt.

In addition to providing better spectral estimation tools, the multi-taper methods also provide nice tech-
niques for spectral line parameter estimation and removal. When the sets of harmonic coefficients are gen-
erated for different choices of windows, one can perform a regression test to determine if the signal contains
a sinusoid of fixed amplitude and phase, consistent across the complete set of tapers. The GRASP package
uses this technique (the F-test described on page 499, and the worked-out example starting on page 504 of

[25]) to estimate and remove spectral lines from a data-set. This can be used both for diagnostic purposes
(i.e., track contamination of the data set by the 5th line harmonic at 300H2) or to "clean up" the data (i.e.,
remove the pendulum resonance at 590 Hz).

As an aid in understanding these techniques, we have included with GRASP a section of the data-set
from the Willamette River appearing on pg 505 of Percival and Walden [25], and an exarnple program which
repeats and reproduces the results in Section 10. 1 3 of that textbook. This demonstrates the use of multi-taper
rnethods in removins "soectral lines" from a data set.

300

10.18 Function: slepian-tapers o
. : * F ^ 1 ^ - . i - h t s ^ * ^ + a / . i - + * , , - * ^ i - F ^ ' i - r - r ^ r i n A n r r h ' l a * ' l a m f ' l n e l . n r ^ l r l l - r l n r r l . r l ^l - n t s l e p l _ a n _ E . a p e r s (l - n L I I I I n _ p O J _ I I L S / r r r L - L i w r r r , s v u v r s ! (A r r , ' g v u l l e

*Eapers , doub le * tapsum)

This function computes and returns properly-normalized Slepian tapers. These tapers are normalized so

that
N

f - ' t
) n l : 1 \ 1
+ - 1

which is the Numerical Re:cipe.s convention for tapers (rather than thJ Percival and Walden Con"eniion for

which the rhs is 1). It uses the method described in Percival and Walden [25] pages 386-387, finding the

eigenvectors and eigenvalues of a tri-diagonal matrix. The arguments are:

num-points: Input. The number of points N in the taper.

nwin: Input. The number of tapers computed.

lam: Output. Upon retum, fam[0- -nwin-]-l contains the eigenvalues .\ of the tapers. Note that

0 < l < 1 .

nwdt: Input. The (total sample time) x (frequency resolution bandwidth) product.

tapers : Output. Upon return: tapers [0 . . numpoints-1] contains the first taper,

Lapers [numpoints . . 2 *numpoints-1] contains the second taper, and so on.

tapsum: Output. On retum tapsum [0] contains the sum of the num-points values of the first taper,

tapsum[1] contains the sum of the values of the second taper, and so on. Note that because the

odd-index Slepian taper functions zre odd, tapsum lL ,3 ,5 , . . . I would vanish if it were not for

round-off and other numerical eror.

This function will print a warning message if the condition K < zNW Lt is not satisfied (see Sec-

t$ttlft+Thdapted from the original code (Lees and Park) by Bruce Allen (ballen@dirac.phys.uwm.edu)
and Adrian Ottewill (ottewill @relativity.ucd.ie).

Comments: There are a number of techniques for calculating the Slepian tapers. We have not extensively

tested these routines, but they appear to work well. They make use of the standard EISPACK routines,

translated from FORTRAN into C using f2c.

(10 .18 . i)

J U I

Slepian Taper Functions
lrl=nooints=39s NWAt=nwdt4 K=nwin=5

0.0 100.0 200.0 300.0 400.0

Figure 55: [Iere are five Slepian tapers computed with slepian-tapers O. The parameters are
npoint.s=3 9 5, nwdt=4 . 0 and nwin=S.

302

10.19 Function: multit.aper-spect.rum ()

mult i taper-specErum(f1oat *data, int npoints, int k ind, int nwin, f loat nwdt,
in t inorm, f loa t d t , f loa t *ospec , f loa t *do f , f l -oaL * fva lues , in t k len ,
f

' l
n : l - * n a c i i n l - r l n c n a n I

v e e e , - ^ - v * v e r v v
/

This function computes the multi-taper spectrum, as defined for example by Percival and Walden [25]
equation (333). For the sake of efficiency, it computes then stores internally the Slepian taper functions, so
that if it is called a second time (and needs the same tapers) they do not need to be re-computed. If called
with different parameters it recomputes the Slepian tapers for the new parameters.

The arguments are:

data : Input. Pointer to the time-domain data array, data [0 . . npoint.s-l] .

npoints : Input. Number of data points in the data array.

kind: Input. If set to 1, compute the normal multi-taper spectrum. If set to 2, compute the "adaptive"

spectrum defined by defined by Percival and Walden equation (370a).

nwin: Input. The number of tapers to use.

nwdt: Input. The (total sample time) x (frequency resolution bandwidth) product.

inorm: Input. Determines choice of normalization. Possible values are

1: Divide spectrum by N2.

2: Divide spectrum by At2.

3: Divide spectrum by lf.

4: Divide spectrum by L.

dt : Input. Sample interval (only used for normalization).

ospec: Output. The output spectmm, including both DC and Nyquist frequency bins. The array range is
ospec [0. -k1en/2]. Warning -this is an odd number of entries. The usermust provide apointer
to sufficient storage space.

dof : Output. The effective number of degrees of freedom of the spectral estimator at a given frequency,
defined by Percival and Walden eqn (370b). The number of degrees of freedom is the constant
nwin-l- for kind=l- above, and only useful in the adaptive case where kind=2. The array range is
'r^€ r ̂ '-' ^^./ 21 . Waming - this is an odd number of entries. The user must provide a pointer tou u r L v . . n r g r l

suffi cient storage space.

fvalues : Output. The value of the F-statistic in each frequency bin spectrum, including both DC and
Nyquist. This is defined by Percival and Walden equation (499c), and roughly speaking is the ratio of
the energy explained by the hypothesis that one has a fixed-amplitude spectral line at that frequency to
the energy not explained by this hypothesis. The array range is fvalues [0 . - klen/2] . Warning
-this is an odd number of entries. The user must provide a pointer to sufficient storage space.

klen: Input. Anintegerpowerof 2,greater than(orequalto)npoints. The(tapered)dataiszero-
padded out to this length. You generally want klen to be around four to eight times larger than the
length of your data set, to get decent frequency resolution. The number of frequency bins (including
DC and Nyquist) in the output spectrum is .A/y : I -t klenl2.

303

cest: Output. The estimated Fourier coefficients of any spectral lines in the data. The real and imag-
inary parts at DC are contained in cest[0],cestt1l. The next higher frequency bin has its
reaVimaginary parts contained in cest [2] , cest [3] , and so on. This pattern continues up to and
including the Nyquist frequency. The length of the anay is cest [0 . . k]-en+l- I . The normaliza-
tion/sign conventions are identical to Percival and Walden eqns (499a) and the example on line 20
of page 513, except that the sign of the imaginary part is reversed, because the Percival and Waiden
FFT conventions eqn (65ab) are opposite to Numerical Recipes. The user must provide a pointer to
sufficient storage space.

dospec : Input. If set non-zero, then the power spectrum (pointed to by ospec) is calculated. If set to
zero, then to save time in situations where all that is needed is cest, the power spectrum ospec is
not calculated.

Author: Adapted from the original code (Lees and Park) by Bruce Allen (ballen@dirac.phys.uwm.edu)

and Adrian Ottewill (ottewill @relativity.ucd.ie).

Comments: None.

304

10.20 Function: mulLitaper-cross-spectrum ()

void. mult i taper-cross-spectrum(f1oat *o1, f loat *o2, int npoints, int npadded,

f loa t de lEa- t , in t nw in , f loa t nwdt , doub le *Re lmSpec l2)

This function calculates the high resolution multitaper spectral estimate of the (complex-valued) cross-

correlation spectrum aiff) azU) of the two input time-series o1 (i) and o2(t).

The arguments are:

ot : Input. o1- [0 . . npoints-1] is an array of floating point variables containing the values of the input

time-series o1(t). o1 [i] contains the value of o1(t) evaluated at the discrete time ti :: 'i\t, where

i : 0 , 1 , . . . , N - 1 .

o2: Input. o2 [0. .npoints-1] isanarrayof floatingpointvariables containingthevalues of theinput

time-series o2(t),inexactly the same format as the previous argument.

npoints : Input. The total number l/ of data points contained in the two input time-series.

npadded: Input. The padded length -ly'o is an integer power of 2, greater than (or equal to) the total

number of data points. The tapered data sets are zero-padded out to this length. The total number of

frequency bins (including DC and Nyquist) in the output cross-correlation spectrum is /!i : I+Ne./2.

delta-t: Input. The sampling period At (in sec).

nwin: Input. The total number K of datztapers used when forming the multitaper spectral estimate.

nwdt : Input. The (total sample time) x (frequency resolution bandwidth) product N At 'W.

RelmSpecl-2: Output. Relmspecl2 [0. . .npadded.+1] is an array of double precision variables

containing the values of the high resolution multitaper spectral estimate of the (complex-valued)

cross-correlation spectrum aif)azU)- RelmspecL2[2*L] andRelmspecl-2 [2*i+1J contain,

respectively, the values of the real and imaginary parts of

(10.20.1)

where wp, is the nth element of the kth order NW Lt discrete prolate spheroidal sequence data

taper, and .\t is its associated eigenvalue. (Here i : 0, 1, . . ' , Nf - 1 - Np/2.) The data tapers are

normalized so that tf; wT,n : lrl. This differs from the normalization convention of Percival and

Walden [25], where f#:.t uT, = 1. Also, Equation (333) in [25] does not include the factors of

1/,\s. But for K < zNW Lt, it follows that 1/.\6 = 1.

If you want to obtain the same normalization as that used in the avg-spec O routine described by

equation (10.3.7) for the case where 01(r) : 02(i) then the output array ReImSpecJ-2 must be multiplied

by a factor of fr7.

Author:

Adapted from the original code (Lees and Park) by Bruce Allen (ballen@dirac.phys.uwm.edu), Adrian

Ouewill (ottewill@relativity.ucd.ie), and Joseph Romano (romano@csd.uwm.edu).

Comments: None.

L"E* (", Y o,r,^r*k,^e-i2n^i/*) (^r Y o,rr,r,t ,n e+i2oni/No)

305

10.2I Structure: struct removed-Iines

This is a structure used to keep track of spectral lines as they are removed. Its primary use is in the function
remove-spectral-lj-nes O . The structure contains the following:

struct removed_l ines{
int index;
f loa t fva lue ;
f

' l
n a i r o .

F ' 1 ^ ^ t s . i * .
! f v q L r r r r ,

j ;

The different quantities are:

ind.ex: The subscript (frequency bin) occupied by the spectral line in an array of length Ny (defined
in the previous section). Note that in typical use index runs over a range of 2n * L possible values,
including DC and Nyquist.

fvalue The value of the F-statistic, defined by Percival and Walden eqn. (499c).

re: The real part of the line's complex amplitude. The normalization/sign conventions are identical to
Percival and Walden eqns (499a) and the example on line 20 of page 513.

im: The imaginary part of the line's complex amplitude. The normalization conventions are identical to
Percival and Walden eqns (499a) and the example on line 20 of page 513, but the sign is reversed,
because the Percival and Walden FFT conventions eqn (65ab) are opposite to Numerical Recipes.

306

10.22 Function: fvalue-cmp o

i n t f va lue-cmp(cons t vo id * f l , cons t vo id * f2)

This is a function which may be used to compare the fvalues of two different objects of type struct
removed-Iines. It is used for example as an argument to the standard-C library routine qsort for
sorting lists of removed lines into decreasing order of fvalue.

This function is supplied with pointers to two stuctures. It returns -1 if the first structure has the larger
fvalue, +1 if the first structure has the smaller fvalue, and 0 if the fvalues are equal.

The arguments are:

f1: Input. Pointertothefirststructureof typestruct removedlines(casttovoid * sothatyour
compiler does not complain).

f2 : Input. Pointer to the second stnrcture of type struct removed-Iines (cast to void * so that
your compiler does not complain).

Asanexample, i f l ine- l ist [0. .n-1] isanarrayof sEruct removedJines,thenthefunct ion
call:
gsort (l ine-t i st , n, s izeof (strucL signi f icant-values) , fvalue-cmp)
will sort that array into decreasing fvalue order. (Note: you may have to cast the arguments to preyent
your compiler from complaining.)

Author: Bruce Allen (ballen@dirac.phys.uwm.edu) and Adrian Ottewill (ottewill@relativity.ucd.ie).

Comments: None.

30'7

L0.23 Function: index-cmp ()

i nL index-cmp(consE vo id * f l - , cons t vo id * f2)

This is a function which may be used to compare the iidexes of two different objects of type struct

removed.-l-ines. It is used for example as an argument to the standard-C library routine qsort for

sorting lists of removed lines into increasing order in frequency.
This function is supplied with pointers to two sfuctures. It returns -1 if the first structure has the smaller

ind.ex, +1 if the first structure has the larger index, and 0 if the indexes are equal.

The arguments are:

f 1- : Input. Pointer to the first structure of type struct removedlines (cast to void * so that your

compiler does not comPlain).

f 2 : Input. Pointer to the second structure of type struc! removed-lines (cast to woid * so that

your compiler does not complain).

Asanexample, i f l ine- l ist [0. .n-]- l isanarrayof struct, removed-l ines,thenthefunct ion

call:
gsort (l ine- l isg.; n, s izeof (struct s igni f icant-values) , ind'ex-cmp)

will sort that array into increasing index (frequency!) order. (Note: you may have to cast the arguments to

prevent your compiler from complaining.)

Author: Bruce Allen (ballen@dirac.phys.uwm.edu) and Adrian Ottewill (ottewill@relativity.ucd.ie).

Comments: None.

308

t0.u remove-spectral-1ines ()

void remove-spectral- l ines(f1oat *data, int npoints, int padded-length, fLoat

nwdtr, int nwin, int max-lines, int maxpass, int *num-removed, struct removed-lines
* I i n e - l i s t ,
f loat *mtap-spec-ini t , f loat *mEap-spec-f ina1, int dospecs, inE f imin, int

f imax)
This routine automatically identifies and removes "spectral lines" from a time series. The procedure

followed iS deSdribed in Percival and Walden Chapter 10. A worked example may be found in Secdon 10.13

of that book, and the next subsection of the GRASP manual includes two example programs which use

remove-spectral-lines () . Upon return, remove-spectral-lines () provides both an "initial"

multi-taper spectrum, of the original data, and a "final" multi-taper spectrum, after line removal. Upon

refurn, the data set has the spectral lines subtracted. This routine also returns a list of the lines removed. For

each line it provides the frequency bin (for the padded data set) in which the line falls, the value of the F-test

for that line, and the complex coefficient C; defined by Percival and Walden eqn (499a) which defines the

line.
The arguments are:

Input. A pointer to the time-series array data [0 . . npoints-1] .

npoints : Input. The number of points in the previous array.

pad.ded.-length: Input. The number of points of zero-padded data that will be analyzed. Note that this

must be an integer power of two greater than or equal to npoints. We recommend that you use at

least a factor of four greater, to obtain sufficient frequency resolution to accurately identify/remove

spectral lines.

Input. The (total sample time) x (frequency resolution bandwidth) product.

nwin: Input. Number of Slepian tapers. See previous sections.

max-l ines : Input. The maximum number of spectral lines that you want removed. The array l ine-l i s t [0 - - maxl

must have at least this length.

mat<pass : Input. The maximum number of iterations or passes through the line-removal loop described

below. Set to a large number to make as many passes as needed to remove all the spectral lines.

num-removed: Output. The actual number of spectral lines subtracted from the data.

line-1ist: Ouput. Alistof structures line-Iist[0-.num-removed-1] containingthefrequency

bin, real and imaginary parts of the removed line, and the F-test significance value associated with the

Ttrsr removal of the line. Upon retum from this function, the elements of line-1ist [] are sorted

into increasing frequency-bin order.

mtap-spec-init : Output. The multitaper power spectrum of the initial data [] anay, including both

DC and Nyquist frequency bins. The array range is mtap-spec-iniE [0 . .paddedl-ength/2] .

Warning -this is an odd number of entries. The user must provide a pointer to sufficient storage space.

mtap-spec-f inal : Output. The multi-taper power spectrum of the final data [] anay, with the spec-

tral lines subtracted, including both DC and Nyquist frequency bins. The array range is mtap-spec-f inal [0 . .p

Warning -this is an oddnumber of entries. The user must provide a pointer to sufficient storage space.

309

dospecs: Input. If set non-zero, then the initiaVfinal power spectra (pointed to by mEap-spec-init
and mtap-spec-f inal are calculated. If set to zero, then to save time in sin:ations where all that
is needed a list of spectral lines and their amplitudes and phases, then neither of these power spectra
are calculated.

f imin: Input. In situations where all that is needed is a list of spectral lines and their amplitudes, and it
is desired to limit the search to a restricted range of frequencies, then f imin defines the lower bound
ofthe range of(padded) frequency bins which are searched for spectral lines. The range of fiminis
0..klen/2. Also, finin (finax.

f imax: Input. In situations where all that is needed is a list of spectral lines and their amplitudes, and it
is desired to limit the search to a restricted range of frequencies, then f imax defines the upper bound
of the range of (padded) frequency bins which are searched for spectral lines. The range of f imin is
O..kLen/2. Also, firain (finax.

The algorithm used by remove-specEral-lines () is an automated version of the procedure illus-
trated in Percival and Walden Section 10.13. The steps followed are:

1. The mean value is subtracted from the data-set, and it is zero padded to the specified length.

2. Theset of Fourier coefficients for the tapered data sets are determined.

3. From these coefficients the F-statistic is determined for each frequency bin (Percival and Walden eqn
(a99c)). If the confidence level (that the frequency bin contains a spectral line) exceeds i - 1/npo ints
(Percival and Walden pg 513), an estimator of the spectral line coefficients is constructed, and the line
is placed onto a working list. If no frequency bins exceed this level of confidence, we are finished.

4. The working list is now sorted into order of decreasing F-values.

5. To ensure that we do not remove the same line twice, the spectral line associated with each spectral
line on the working list is subtracted from the data-set, provided that it does not lie within a frequency
width of *W of a stronger (larger F-value) line.

6. We return to step 1 above, iterating this procedure, provided that the number of times that we have
passed by step 1 is less than or equal to maxpass.

Author: Bruce Allen (ballen@dirac.phys.uwm.edu) and Adrian Ottewill (ottewill@relativity.ucd.ie).

Comments: If max-Iines is not large enough, then the line-l-i-st [] aray may not contain all of

the possible spectral lines, which exceed the confidence level above. This may even be the case if

num-removed is less than max-lines. We suggest that you make max-lines somewhat larger

than numremoved. One ought to be able to improve on this routine, by using the array of F-values
generated internally and interpolating to find the frequency of the lines more precisely. One might
also be able to fit to a model of two closely separated lines to better remove certain "split" features, or

to fit to an exponentially-decaying model to remove other broadened features.

310

10.25 Example: river

This is an example program which uses the function remove-spectralJines () to repeat the analysis
of data from the Willamette River given by Percival and Walden in section 10.13 of their textbook.

It displays graphs of the river flow data (which is distributed with GRASP) and spectrum before and
after automatic removal of the two significant spectral lines (whose frequencies are llyear and 2/year).
These graphs are also shown here. Before running this program, be sure to set the envionment variable
giving the path to the river data, for example:
setenv GRASPJARAMETERS / usr / Iocal /GRASP,/parameters
The text output of the program is as follows:

Total number of l ines removed: 2
Removed l ine o f ampl i tude -0 .29LL75 + t 0 .3L2209 a t f req 1 .005848 cyc les /year
(F- tes t va lue 48 .455242)
R e m o v e d l i n e o f a m p l i t u d e 0 . 0 2 3 2 2 0 + i 0 . 0 9 8 3 5 7 a t f r e q 2 . 0 0 0 0 0 0 c y c l e s / y e a r
(F - t e s t v a l u e 1 5 . 2 2 4 3 L L)

* inc lude "grasp-h"

#includ.e (unistd. h) /* need the header for the sleep$ function */

in t ma in0 {
int i ,nurn-points,nurn-win,nurn-freq,padded-length.max-l ines,nurn-removed;
f loat nwdt., *data, *mtap-spec-init , { .mtap-spec-f inal, f req, f nyguis E ;
s t ruc t removed- l ines x l ine- l i s t ;
! J -L I I * Ip rL \Zer ;

f * data length, padded length, num frequencies including DC, Nyquist 'i./

nurn-points=3 95 ;
padded-length=I124 i
nurn-f reg=1 +padded-l enq Eh / 2 ;

,/* number of taper windows to use, and time-freq bandwidth */
r r r n r r i n - t r .

n w d t = 4 . 0 ;

/x maximum number of lines to remove ,r./

max- l ines=8;

/x allocate anays *f

da ta= (f Ioa t *)ma1 loc (s izeo f (f loa t) xnunupo incs) ;
mtap-spec- in i t= (f1oat x)mal Ioc (s izeo f (f1oat) *nurn* f req) ;
mtap-spec- f ina l= (f1oat x)ma1Ioc (s izeo f (f loa t) xnurn- f req) ;
l ine- l i s t r= (s t rucL removed- l ines *)ma l loc (s lzeo f (s t rucE removed-1 ines) *max- l ines) ;

/x Read Willamette River data from Percival & Walden example, pg 505 x/

f priver= grasp-open (" GRASP-PARAMETERS' . " wi- l lamette-river . dat ") ;
f o r (i = 0 ; i (3 9 5 ; i + +) f s c a n f (f p r i v e r , " Z f ' , d a t a + i) ;
f n - 1 n c o 1 f n r i r r o r I .

/* Since the data is sampled once per month, fnyquist=6cyleslyear */

r l r y \ 4 u a > u - v

f* popup a graph ofthe original data*f
g raph (da ta .nurn-po in ts . 1) ; s leep (5) ;

31r

/* now remove the spectral lines from the data set */

remove-spec tral-L ines (data, nurn-po ints, padded-l ength, nwdt, nurn-win,

max-l ines , 5 0 0 . &nurn-removed, f ine-I ist, mtap-spec-init , mtap-spec-f inal , 1- , 0 , nun-freq) ;

/x pop up a graph of the original multitapered spectrum */
graph (mtap-spec-init , nurn-f reg, 1) ; sleep (5) ;

/r. pop up a graph of the line-removed data and multitapered spectrum */

g r a p h (d a t a , n u m - p o i n t s , 1) ; s l e e p (5) ;
g raph(mtap-spec- f ina l ,nurn- f req , 1) ; s leep (5) ;

/* print out a list of lines removed *./
prinLf ("Tota1 number of l ines removed: td\n',nurn-removed) ;
fo r (i=0 ; i<nurn- removed; i++) {

f req=1 lng-I i s t I i] . indexxf nyqui s t/nurn-f req ;
p r in t f ("Removed. l ine o f ampl i tude 8 f + i B f a t f req t f cyc les /year \ t "

l i n e - l i s t I i] - r e , l i n e - I i s t t i l . i n , f r e q) ;
n r i n f f (" (F - f p s f w a l u e * f) \ n " . l i n e - l i s t I i] . f w a l u e) ;

l)
return 0;

312

E o.o

Willarnette Fliver Flow
(from Percval & Walden pg 505)

Green: original data (DC removed)
Red: after soectral line removal

200.0
months

Willamette River
multi-taper power spectrum

line removed
1 cycle/year

t
;
I

Ir
I

(

b

I
b
j

I
F

i

I
I

L
I
d

I

t
I
I

_--- line removed-
2 cycles/year

s'flil\

cycles/year

Figure 56: Output of the example program river, making use of remove-spectral-lines () to

automatically find and remove two "spectral line" features from a data set. This is the same example teated
by Fercival and Walden in Section 10.13 of their textbook.

3t3

10.26 Example: ifo-clean

This example program uses remove-spectral-1ines () to automatically identify and remove "spectral

lines" from the output of the 4O-meter IFO. To run this program, be sure to set the data path environment

variable, for example:
setenv GRASP-DATAPATH / usr / Iocal/GRASP/data/19nov94 - 3

The program outputs graphs in a two files called if o-cl-ean-data. out and if o-cIean-spec . out,

containing the before/after time series and spectra. These may be viewed with :<rngr by typing:

)angr -nxy ifo-clean-data. out
and
. * ^ r - n v . r i f a a ' l 6 a n < n o - n r r l -rJrr : , ! r l^ j t

to start up the rsngr graphing program.
The output of this progmm is a list of lines removed:

Total nurnber of l ines removed: 39 i . ,

Removed. l ine f requency 30 .7L7 Hz ampl i tude 0 .78 phase] -5 -54 (F-Les t 68-5)

R e m o v e d . l i n e f r e q u e n c y 7 9 - 2 0 3 H z a m p l i t u d e 0 . 5 5 p h a s e - I 5 7 - 4 I (r - t e s t 5 2 - 5) l
Removed l ine f requency 80-257 Hz ampl iEude 0 .12 phase - l -01- -84 (F- tes t 39-3)

R e m o v e d l i n e f r e g u e n c y 1 0 9 . 3 L 8 H z a m p l i t r u d e 4 . 5 2 p h a s e L 0 . 2 1 - (F - t e s t 7 5 . 5)

R e m o v e d l i n e f r e g u e n c y L 2 O . O O g H z a m p l i t u d e 0 - 4 5 p h a s e 5 . 0 1 - (F - t e s t 5 3 1 - 9) i
R e m o v e d . l i n e f r e q u e n c y l - 3 9 . 5 8 4 H z a m p l i t u d e 0 - 2 9 p h a s e - L 6 3 - 5 ' 7 (F - t e s t 3 0 4 . 5) -
R e m o v e d . l i n e f r e q u e n c y t 7 9 . 9 3 8 H z a m p l i t u d e 2 L . 9 L p h a s e - 4 3 . 2 2 (F - t e s E 3 5 3 5 - 0)

Removed. l ine f requency 239.86 '7 Hz ampr i tude 0 .45 phase L30 '25 (F- tes t 42 '2) i
R e m o v e d . 1 i n e f r e q u e n c y 2 4 5 . 4 3 8 H z a m p l i t u d . e 0 . 2 1 p h a s e _ 1 1 . 5 . 9 4 (F - t e s t 5 1 . 9) � �
R e m o v e d l i n e f r e q u e n c y 2 7 9 . L 6 ' 7 H z a m p l i t r u d e 0 . 3 1 - p h a s e 0 . 5 2 (F - t e s t 4 7 - 2)

R e m o v e d - l i n e f r e q u e n c y 2 9 9 . 9 4 7 H z a m p t i t u d e l - 5 . 3 7 p h a s e - 1 3 5 . 8 2 (F - L e s t 9 7 1 - 2 - 5) i '

R e m o v e d l i n e f r e q u e n c y 3 5 9 . 8 7 6 H z a m p l i E u d e 1 . 1 - 7 p h a s e 5 1 ' . 6 4 (F - t e s t 1 - 3 4 . 8) . -
R e m o v e d l i n e f r e q u e n c y 4 1 9 , 9 5 5 H z a m p i i t u d e 4 . 4 8 p h a s e - 3 9 . 5 8 (F - t e s t 3 5 5 . 1)

R e m o v e d . l i n e f r e q u e n c y 4 8 8 . 7 6 8 H z a m p l i t u d e 0 . 1 9 p h a s e 1 5 5 - 5 5 (F - t e s t 5 0 - 5)

R e m o v e d l i n e f r e q u e n c y 5 O O . 2 L 2 H z a m p l i t u d e 0 . 6 4 p h a s e L 2 9 . 3 8 (F - t e s t 3 4 - 5) i - -

R e m o v e d l i n e f r e q u e n c y 5 3 9 . 9 5 4 H z a m p l i t u d e 5 . 0 9 p h a s e 1 1 9 . 3 8 (F - t e s t 4 2 5 - 2)

R e m o v e d l i n e f r e q u e n c y 5 7 1 . 5 8 5 H z a m p l i t u d e 4 . 0 1 p h a s e i - 2 0 - 0 3 (F - E e s t 5 0 . 6) :
Removed. l ine f requency 5 ' : -8 .662 Hz ampl i tude 34 .97 phase - t49 .L2 (F-Les t 429 -B) t . ,

R e m o v e d . l i n e f r e q u e n c y 5 8 2 . 4 2 5 H z a m p l i t u d e 1 0 7 . 3 5 p h a s e 1 - 5 . 6 4 (F - L e s t L L 2 9 - 7)

R e m o v e d l i n e f r e q u e n c y 5 g ' 7 . 9 3 6 H z a m p l i t u d e 5 8 - 1 2 p h a s e 6 3 . 2 7 (F - t e s t 5 5 8 . 5)

R e m o v e d . l i n e f r e q u e n c y 5 0 5 . 3 1 � 4 H z a m p l i t u d e 1 ? . 2 1 p h a s e - L 4 0 . 5 7 (F - t e s t 4 8 9 - 7) t .

R e m o v e d . l i n e f r e q u e n c y 6 5 9 - 8 2 2 H z a m p l i t u d e 2 . 2 0 p h a s e - 1 - 5 2 . 5 3 (F - t e s t L z L . A)

R e m o v e d . l i n e f r e q u e n c y 1 1 9 . 8 3 1 - H z a m p l i t u d e 3 . 9 5 p h a s e - 3 9 - 1 8 (F - E e s t 5 4 2 - 4) :

R e m o v e d l i n e f r e q u e n c y 8 3 9 . 7 6 0 H z a m p l i t u d e 2 - ' 7 5 p h a s e - 1 - 7 2 . L 5 (F - t e s t 4 6 8 - 2) ' . - .

R e m o v e d l i n e f r e q u e n c y B g g - 8 4 0 H z a m p t i t u d e 3 . 4 0 p h a s e 1 1 3 - 0 5 (F - t e s t 5 2 9 - 6)

R e m o v e d l i n e f r e q u e n c y 9 5 9 . 9 I 9 H z a m p l i t u d e 0 . 8 0 p h a s e L 7 8 - 7 0 (F - t e s t 4 3 - 2)

R e m o v e d l i n e f r e q u e n c y 9 9 9 . 8 2 2 H z a m p l i t u d e 1 . 0 1 p h a s e 6 7 - ' 7 4 (F - t e s t 1 1 4 . 8) , -

R e m o v e d . l i n e f r e q u e n c y 1 0 1 9 . 6 9 8 H z a m p l i L u d e 1 . 4 6 p h a s e - L 5 6 . 7 2 (F - t e s t L 4 5 - 6)

R e m o v e d . l i n e f r e q u e n c y I O ' / g - 7 7 ' 7 H z a m p l i t u d e 3 . 0 0 p h a s e 5 L - 8 2 (F - t e s t 7 2 8 - 9) '

Removed l ine f requency I I51 .023 Hz ampl i tude 2-99 phase - '76 .L4 (F-LesE L29 -4) ' . - -

R e m o v e d l i n e f r e q u e n c y l 2 L O - 1 7 8 H z a m p l i t u d e 2 . L 2 p h a s e L 2 8 . 3 9 (F - t e s t 6 9 - 5)

R e m o v e d . f i n e f r e q u e n c y 1 3 1 9 . 6 4 4 H z a m p l i t u d e 3 . 0 2 p h a s e - 7 0 5 . 2 9 (F - t e s t L 4 6 - 2) '

R e m o v e d l i n e f r e q u e n c y L | g g - 5 8 2 H z a m p l i t u d e l - . 3 1 p h a s e L A L . 9 4 (F - L e s E 5 0 - 5)

5 I +

R e m o v e d l i n e f r e q u e n c y 1 5 5 9 . 6 6 2 H z a m p l i t u d e 2 . 7 9 p h a s e L O 1 . L 2 (F - t e s t 6 0 . 0)
Removed l ine f requency L746.978 Hz ampl i tude 1-81- phase 50 .38 (F- tes t t t2 -0)
Removed l ine f requency 2039-697 Hz ampl i tud .e 1 - .65 phase L55.82 (F- tes t 62-3)
R e m o v e d l i n e f r e q u e n c y 2 2 7 9 . 4 L 3 H z a m p l i t u d . e 2 . L 2 p h a s e - 2 5 . 0 5 (F - t e s t 1 5 3 - 0)
Removed l ine f requency 3509.465 Hz ampl iEude 0 .1-1 phase 43 .89 (F- tes t 50 .1-)
Removed l ine f requency 4609.720 Hz ampl i tude 0 .03 phase 24 .6L (F- tes t 39 .4)

Virtually all of these lines can be identified as either 60 Hz line harmonics, or as specific suspension and
pendulum modes. The rernoval of these lines makes a dramatic difference to the appearance (and sound of)
the signal, as shown in Figure 57. Note that the amplitudes of the lines above are properly normalized (in

ADC units). For exarnple the 180 Hz line harmonic is well described by A(t) : 2L.9Lsin(360n't/sec). By
far the largest amplitude lines are the three violin modes at 578.662, 582.426, and 597.936 Hz, and the 180
and 300 Hz line harmonics. Most of the structure visible in Fieure 57 is the result of these five harmonics.

inc lude "grasp.h"

i n t - m a i n l l I
I

short *datas;
int i ,nurn-points,nun-win,nurn-freq.padded-lengCh.max-l ines,nurLremoved,remain;
f loa t nwdt , *da ta , * rn tap-spec- in ic , , *mtap-spec- f ina l . f req , ts ta r t ,s ra te , * in i t ia l -da ta ,annp,ph i ;
struct removed-l ines *,1ine-l ist ;
F ILE * fp i fo , * fp lock , * fpout1 , * fpout2 ;

/* open the IFO output file and lock file */
fpifo =grasp-open("GRASP_DATAPATH", "channel 0') ;
fplock=grasp-open ("GRASP_DATAPATH' , " channel . 1 0 ") ;

/x data length, padded length, num frequencies including DC, Nyquist r,/

nurn-points=8L92 i
padded-len gxtt= 655 3 6 ;
nurn-f req= I +pacided.-L en gth / 2 ;

/x number of taper windows to use, and time-freq bandwidth x/
nurn-win=5;
nwdt=3 . 0;

/* maximum number of lines to remove *./

max-1 ines=100;

/* allocate arrays *f

da tas= (shor t *)ma- l1oc (s izeo f (shor t) *nurn-po in ts) ;
da ta= (f loa t , r .)ma l 1oc (s izeo f (f loa t) *nurn-po in ts) ;
mEap-spec- in i t= (fLoat +)mal1oc (s izeo f (f loac) *nurn- f reg) ;
mtap-spec- f ina l= (f loa t *) ma11oc (s izeo f (f loa t) xnurn- f req) ;
l ine- l i s t= (sErucL removed- l ines r ,) rna l loc (s izeo f (s t ruc t removed- l ines) xmax- l ines)

in i t ia l -da ta= (f loa t , t)ma l loc (s izeo f (f loaL) *num-po in is) ;

f * get a section of data. . . x/
get-daea (fpif o , fp lock, &tstart, nurn-po j-nts , datas, &remain, &srate, 0) ;

f* copy sho(data to floatdata,and save initial data set +/

f 6v (i=0 ; i (nurn-po in ts ; i++) in i t . ia l -da ta I i] =data I i] =datas I i] ;

/x remove the spectral lines from the data set x/

remove-spectra 1-l ines (data, nun-points , padded-1 ength, nwdt , nurn-win,

max-f ines, 5 0O, &nurn-removed, I ine-I is t , mt.ap-spec-ini t , mtap-spec-f ina1 ' 1 , 0 , num-freq)

3 1 5

/* print out a list oflines removed */
printf ("Tocal number of l ines removed: *d\n'
€ a v / i - n - i l h r l m r a m n \ r o A - i + + l I

\ r - v , ! \ r r s r L r e r r r v v e q r ' , , L

f req=g.5 ' r .1 ine- I i s t I i] . index xsra te /nurn- f req ;

a m p = f , . 0 * , s q r t (I i n e - l i s t l i l . r e * l i n e - I i s t t i l . r e + l i n e - l i s t t i l . i m * l i n e - l i s t l i l . i m) ;
ph i=L8O*.a tan2 (l ine- l i s t t i l . im, l ine- I i s t I i] . re) /v t -v t ;
p r i n t f (" R e m o v e d l i n e f r e q u e n c y * . 3 f H z a m p l i t u d e 8 . 2 f p h a s e * . 2 f (F - t e s t 8 . 1 f) \ n "

req , anrp , ph i . l i ne- l i s t I i] . f va lue) ;

I

/x now output a file containing the initial and final data... *f

fpout l= fopen(" i fo -c lean-data .ou t " , "w") ;
rn r in l - f l fnnr r l -? "$ Three co lumns are : \n# T ime (sec) tn i t ia l da ta F ina l Data \n") ;
r y r f r r e ! \ l y v s u f r I

for (i .=0 ; i (nurn-points r i++)
f p r i n t f (f p o u e l , ' t f \ t ? f \ t & f \ n " , i / s r a t e , i n i t i a l - d a t a t i l , d a t a I i]) ;

f c l o s e (f p o u t l) ;

f* ... and the initial and final spectra, for graphing by xmgr x/

fpout2=f open (" i f o-clean-spec-. out " . "w") ;
fp r in t f (fpout2 , , ' * Three co lumns are : \n# Freq (Hz) In i t ia l spec t rum F ina l - spec t rum\n") ;

for (i=0 ; i (nurn-fre9; i++;
fp r in t f (fpouc2, ' t f \ t? f \ t * f \n " ,0 .5* i , r , s ra te /nurn- f req ,mtap-spec- in i t t i l ,meap-spec- f iha l I i]) ;

f c l o s e (f p o u e 2) ;

return

316

o
o 0.0
LL

3(s

40 meter IFO output
19 Nov 1994 run 3

0.4
time (sec)

40 meter IFO output
19 Nov 1994 run 3

- original data
- lines removed

-100.0

-200.0

$ rooo
oq)
o.to
o
=
g 1oo

I

2000.0 3000.0
frequency (Hz)

0.0 1000.0

Figure 57: Output of the example program if o-clean, making use of remove-spect.ral-lines ()

to automaticalty identify and remove "spectral line" feahrres from the (whitened) output of the Caltech

40-meter interferometer. The black curve and the red cuwe show the before/after tirne series and specfra.

We have deliberately choosen a stetch of data immg$ptely after the trFO locks, so that the suspension and
pendulum modes are excited.

3 L t

10.27 Example: Lracker

This program produces an animated display which tracks the amplitude and phase of selected line features
in the spectrum. It has a number of user-settable options which determine how the line is tracked. To run
this program, type
tracker I *gr -pipe

and an animated display will start up. In normal use, the parameters should be set as follows:

num-points: a power of two. A single phase/amplitude point is printed for each set of num-points
samples.

padd.ing-f actor: a power of two. This determines the amount of padding done on the data set, and
thus the ultimate frequency resolution of the line discrimination.

fpreset: your best guess for the frequency that you want to track. If the actual frequency of the spectral
line differs from this value, then the phase will slowly drift as a linear function of time. (The tracker
progam does a robust best linear fit to this slope, and uses it to report a best frequency estimate.)

est,imate: if set to zero, then the phase of the line found is always compared with the frequency preset
above. If set non-zero, then tfacker will make a "best estimate" of the true frequency, and compare
the phase of the line found with the phase appropriate to that sinusoid.

nbins: the number of (padded) frequency bins adjacent to the one of interest in which the line will be
searched for. The frequency range covered is thus given by

nbi.nsn f - +
At(nun-points x paddingJa ctor * 2)

(10.27.r)

num-display: the number of points displayed by tracker. The total amount of time covered by the
output is num-display x num-points xAt where At is the sample interval.

nrrm-win, nwdt: these parameters are described in the section on multi-taper methods.

maxpass: the number of passes to make within remove-spectral-lines (). This number should
be set as small as possible, provided that you still "catch" the line of interest.

Authors: Bruce Allen (ballen@dirac.phys.uwm.edu) and Adrian Ottewill (ottewill@relativity.ucd.ie).

Comments: None.

3 1 8

L
t
t
t
t
L

L
L
L
L
I
L

L
L
L
l
L

t

L
I
;

582.4 Hz violin mode
19 November 1994 run 3

time (sec)

Line Tracker
best estimate f=179.973053 Hz

-1 80
0.0 15.0 90.0

time (sec)

Figure 58: Output of the example progano Lracker, making use of remove-spectralJines () to
Eack the amplitude and phase of a selected "spectral line" features from the (whitened) output of the Caltech
40-meter interferometer. The upper two graphs show the approximately exponential decay of the 582.396

120
o

l s o
(J

o

o
9 4 0
:
E

0

300

U'

E eoo
g)
oro

o
E too

IL

0

O r ^o t o
o

0
T

=
6

n

180

100806020

1008020

o
c)
d) n
o v

;
a

i- -vu

\. '..-;1,...,
Q=11g,230

\1:.tr-

'.\:.e,."

Truef = 582'394Hz
. . . . r - .F-" . . ' '

' " - ; " t '

' ' : ' t ' t : : ! " " r : : ' : ' : " : t

" '

-" " ' ! ' r ""1 '{ ' r -

i

FIz violin modo; the lower two g&phs show the "*p4i$d" and phase of the third harmonic of the 60IIz line
noise (note the remarkable arnplitude stability).

10.28 trackerF

This example program is identical to the tracker program just described, which tracks spectral lines, but

with one crucial difference: it reads its data from FRAME files rather than from the old format data stream.

To run this program, type
seEenv GRASPJRAMEPATH / usr / tocal/GRASP/18nov94 - l f rame
i r a n l z a r l J I m n r, ' * "= j -Prpe

and an animated display will start up.
To run this exampie in real-time on datacoming out at the 40-meter lab, type setenv GRASPGEALTTME

trackerF I *St -pipe

and an animated display will start up.

inc lude "grasp.h"

/r. macros to define the standard mathematical forms of mod x/

#def ine MOD (x) ({X) >=O? ((x) Snun-display) : (nurn-display-1+ ((X+l-)?nurn-display)))

d e f i n e F M O D 2 P I (X) ((x) > = 0 . 0 ? (f m o d ((X) , 2 . o + M - P I)) : (2 - 0 * M - P I + f m o d ((x) , 2 . o * M - P I)))

/x numerical recipes routine for robust linear fit +,/
. . ^ ; I H ^ i r i F / 3 1 ^ - F v f l f 1 a : i r r f

' l
i n t s n n n i n ' - q f l o a l - * av 9 l q l t r e u ! I L \ r f v a u ^ t I r r r v q L J l I / { r 1 u r r v v + r l e r

v o i d g r a p h o u t (f l o a L . f L o a t , f l o a t , f l o a t) ;

f l oa t *b , f l oa t xdev) ;

main O {
shor t *da tas ;
: - ts * - -^ - -1 - " ' :upo in ts ,nurn-w in ,nunr - f req ,padoed- lengt i r ,max- l ines ,n i rn - removeC, remain ,code, f i rs tpr r t L r l P 4 s - - r , l r u l

. i n l - i . t - o n . e s 1 - i r - r ^ - k i - - n - , r ^ . i * - . f a c t o r , n u r n - O i s p l a y , n p r i n t , i n d e x , n e w = 0 , m i l < p a s s = l , m i n b i n , m a X b i
, u v y , e € u r r r l 4 L C , l U f I r > , P q u u r l l v - l a L L v ! t r l q L l s 4 r y f 4 J t t t Y L ' L L e I

f loa t nwc l t . , , kda ta ,+mtap-spec- in ie , *mtap-spec- f ina l , s ra te ,c rea l - ,c imag;
f l o a t * p h a s e , p h a s e l = 0 . 0 , a m p l , p h a s e 2 , x t i r n e s , x l i n f i t x , x l i n f i t y , o f f s e t . b i n p r e s e C ;
f l o a t d i s p l a y t i m e , t l - . x a m p , d b i n , f f i t , i n t e r c e p t , s l o p e , d e v i a t i o n , m a x a m p , d i s p l a y a m p = 1 - Q ;
d o u b l e u i m e , f p r e s e t , s d o u b , t s d o u b , t i n i t i a l , c s E a r t , i n i t i m e = 0 . 0 ;

strucC removed.-1ines *1ine-I ist ;
s t ruc t fge t input fge t input ;
sc ruc t fge tou tpu t fge tou tpu t ;

USER DEFINABLE
Iength (powers of 2!)f* data length, padded

nurn-points =2048 ;
padding-factor=8 ;

/x your best guess for the line frequency you want. to track */

f p r e s e t = 5 8 2 - 3 9 5 ;

/* set non-zero ifyou want us to estimate the best-fit frequency */

e s t i m a t e = 0 ;

/x number of (padded) frequency bins (either side) to search near fpreset 'i'/
- L : - ^ - (-

/x the number of phase/amplitudes to display *./

nurn-di spIaY= 15 0 ;

/x number of taper windows to use, and time-freq bandwidth *'/

num-win=5;
nwdt .=3 .0 ;

/* the number of passes to make within the iine removal algorithm */

)LV

maxpass=1;

/* num-points=2048; padding-factor=8;fpreset=S82.395; */
num-poines=4096 ; padding-factor=

; fpreset=5I2 -395 ;
nuLpoi.nts=4096; padding-facEor=4 ; fpreset=180 - 0 ;

END OF USER DEFINABLE

/* number of channels */

fgetinput. nchan=1 i
fge t input . in l -ock=0;
€ a a F i n w r F n h ^ i n j - = n r r h n a i n l - s :. ^ r v v - . ' !

/x source offiles x/

f ge t input . f i l es= f ramef i les ;

fgetinpuL - chnames= (char '**)malloc (fgetj-nput.nchanxsizeof (char x)) , '

f g e t i n p u E . l o c a t i o n s = (s h o r t x *) m a 1 1 o c (f g e t i n p u t . n c h a n * s i z e o f (s h o r t *)) ;

fgetouEput. npoine= (int *) mal1oc (f getinpuu. nchan*sizeof (int)) ;

/,r. channel name *f

f getinput - chnames [0] = " IFO-DMRO " ;

/* number of points to get x/

fge t input . seek=0;
f getinput. ca1 ibrate=0 ;

padded-Iength=padding-f actor*num-poincs ;

/x num frequencies including DC, Nyquist x/

nurn-f req= 1+padded-1 eng th / 2 ;

f ,r max number of lines to report on */

max- l ines=64;

/* allocate storage */

daLas= (short *)malloc (sizeof (short) *,nurn-points) , '

da ta= (f1oat *)ma1 loc (s izeo f (f loa t) *nurn-po in ts) ;

mtap-spec- in i t= (f1oat x)mal loc (s izeo f (f loa t) xnurn- f req) ;

mtap-spec- f ina l= (f loa t *) ma l1oc (s izeo f (f1oat) *nurn- f req)

l ine- I i s t= (s t ruc t remowed-L ines *)ma l loc (s izeo f (s t ruc t

amp- (f1oat * ,)ma l Ioc (s izeo f (f loa t) *nurn-d isp lay) ;
phase= (f loat x) ma11oc (s izeof (f loat) xnurn-display) ;

t imes= (f1oat r ,)ma11oc (s izeo f (f1oat) +nurn-d isp lay) ;

l inf i tx= (f loat *) rnal loc (si zeof (f loat) *nurn-display)

l in f i t y= (f loa t *)ma11oc (s izeo f (f loa t) *nurn-d isp lay)

fgetinput,. Iocatj-ons [0] =daLas ;

wh i le (npass)O) {

f * get a section of data. . . */

cod.e=fget-ch (&fgetoutput, &fgetinput) ;

t ime=fgetou tpuE. d t ;

i f (code==0) reLurn

new+=code;

s ra te=fge tou tpu t - s ra te i(
I t (n e w = = 1 1 t

€ ^ r i r f f l < f d c r r " \ ^ l l a r ^ a k e r :
! P ! ! r 1 u - New Locked Segrment a t t ime ? f \n " , t ime) ;

i

removed-l ines) xmax-1 ines)

321

t € l L - 5 r - ^ ^ ^ | -
! ! ! u - r P ! E > g u ,

npass=1;
r ^ ' ^ - n -

ci -me=0 - 0;

J

binpreset=fpreset*2 . 0xnurn-freq f sraLe;
rninbin=binpreset-nbins ;
i f (minbln(0) mi.nbin=O;
maxbi-n=binpre s et+nbins ;
if (maxbin>nurn-freq) maxbin=nurn-freq;

/* copy short data to float data ,r./

fo r (i=0 ; i<nurn-po in ts ; j .++) da ta I i]=datas I i] ;

/'r remove the spectral lines from the data set */
remove-spectrral-Iines (data, nun-points , padded-length, nwdt, nurn-win, max-1ines,

maxpass , &nurn-remowed, line-Iisc, mtap-spec-ini t, mtap-spec-final , 0 , minbin, maxbin) ;

f 'r if we fail to remove a line, amplitude set to zero, phase RETAINS PRIOR VALUE x/

ampl=0 - 0 ;

/x look in the list of removed lines for the right one x/

fo r (i=0 ; i (nurn- removed; i++) t
/* the closest bin to our estimated frequency */
d.bin=binpreset.- l ine_l ist I i l . index,-
i f (f a b s (d b i n) < = n b i n s) {

c rea l= l ine- l i s t I i I . re+db inx l ine-L is t I i] . dcdbr+
0. 5*dbi-ni.dbinxl ine-l ist I i] . d.2cdb2r;

cimag=1 lr ig-t is t I i] . im+dbinxl ine-l ist I i] - dcdbi+
0 - 5i.dbin*dbinxl ine-1ist I i] . d2cdb2 i t

ampl =2 - 0*sqrt (creal *creal + c imag'rc imag) ;
phase l=a tan2 (c imag, c rea l) +2 . O*M-PI* fmod (fp rese tx t ime, 1 . 0) ;
break;

l

I

/'r. save data in a circular buffers *[0..num-display-i]
amP I toP] =amp1;
phase I top1=P149P2PI (phase] -) ;
t imes I toP1 =91*" '

/x how many values are we going to output to the graph? */

nprint= (npas s <nurn-di spl ay) ?npas s : nurn-di sp 1 ay ;

/*. cut out a piece for the linear fit */

i f (n p a s s > = 2) {

/x adjust the phases to avoid boundaryjumps */

o f f s e t = 0 . 0 ;
index=MOD (top-nprint+ 1) ;
l i n f i t x [0] = t i m e s I i n d e x] ;
l i n f i t y [0] -phase I index] ;
f o r (i = 1 ; i (n p r i n t ; i + + 1 1

j h / l ^ - - M A h / F ^ h r i - r n r i n t r l \ .l r r u E ^ - r a v u \ u u P T r - r r P r r r r L T r , t
' I

i n f . i r v f i l - f i m o c I i n d o v l .
L r l - L f r l r s - l f r l u g ^ l ,

i f (phase l index l -phase IMOD (index-1)] >M-PI)
o f f s e t - = 2 - 0 * M - P I ;

'
e lse i f (phase I index] -phase [MoD(index-1)] < -M-PI)

o f f s e t + = 2 . O * M - P I ;

322

l inf i ty I i] -phase I index] +of fset ;

)

/* do a robust linear fit */
medf i t (l i n f i t x - 1 - , l i n f i cy - 1 , npr in t , & in te rcept , &s1ope , &dev ia t ion) ;

/*. now see what frequency the best fit corresponds to *./

f f i t= fp rese t -s lope/ (2 . 0*M_PI) ;

/r. if we are assumi-ng a fixed frequency (not adapting) x/

i f (l e s t i m a t e) {
s l o p e = i n t e r c e p t = 0 . 0 ;

/* print out amplitude if non-zero */
maxanp=o - 0;
f o r (i = 0 ; i (n p r i n t ; i + + 1 {

index=MOD (top+i-nprint+1) ;
i f (amp I indexJ >0 - 0)

p r in t f ("8e \ t te \n" , l i n f i t x I i] , amp l index]) ;
e l s e

/x won't appear on the graph - out of bounds x/
p r i n t . f (" t s e \ t & f \ n " , l i n f i t x I i] , - L . 0) ;

if (amp Iindex])maxamp) maxamp=amp IindexJ ;
t

/* separate data sets ,t/
n r i n r € t ' R \ n . t .

/* print out phase ifnon-zero amplitude */
f o r (i = 0 , . i (n p r i n t ; i + + 1 {

p h a s e 2 = l i n f i t y l i l ;
phase2 =FMOD2 PI ((phase2 -slope*.1inf i tx I i] - intercept)) ;
i f (phase2>M-PI)

phase2-=2 - O'rM-PI;
phase2= (180. 0 /M-PI) *phase2 ;
i n r i a v = M O T " I / t - a n + i - n n r i n l - + 1 I :

\ e v ! r r

i f (a m p l i n d e x l > 0 . 0)
p r i n t f (" 8 . 8 e \ c 8 . 8 f \ n ' , l i n f i t x l i l , p h a s e 2) ;

e l s e

. /* won't appear on the graph - out ofbounds */
p r i n t f (" t . 8 e \ t * f \ n " . l i n f i t x l i J , - 5 0 0 . 0) ;

l

/* set up scale of the x-axis x/

t l = l - i n f i t x [0] ;
di spl ayt irne=nurn-di sp 1 ayx (nurn-p o i nts /srat e) ;

/* set up scale of the amplitude graph y-axis 'r/

i f (maxamp)0 .9xd isp Iayarnp) {
disPlaYamP=i. . 3xmaxamP ;
f n r i n i f / c f A a r r " \ a T r a ^ L a r . T . i n a
r P i r r l s !

else i f (maxamp<0 -4*displayamp &&
displayamp- 1 . 3 xmaxamp ;

g raphout (t] - , t1+d isp lay t ime, f f i t , d isp layamp) ;
c J 1 . . - L / ^ r l ^ . . t s \ .
L ! I q > I T \ > L U U U L "

l)

/i. now display set, then kill set x/
h h : c c + + .

a t ? f H z , a m p l i t u d e j u s t i n c r e a s e d \ n " , f p r e s e t) ;

m a x a m p) O . 0)

)L5

top=116P (top+1) ;
]
J

r o h r r r n O .

1
l

v o i d g r a p h o u t (f l o a t t 1 , f l o a t t 2 , f l o a t
s L a t i c i n t c o u n t = O ;
i n J - m a ' i m i n -

f l o a t y m a j , y m i n = L . 0 ;
i n f a m n r a a .

> s n i n = (t 2 - t 1) / L 0 . 0 ;
:<rnaj =5*:<nin;

i f (ymin(=displayamp/r0. 0)
while (trmin(=displayamp/10 - 0) {

Yminx=2 ' 0 -

)rmaj=4 - O*ymin;
])

e L s e
whi le (ymin)d isp layamp/ i -0 .0) {

)rmin/=10 - 0 t
y m a j = 5 . o * Y m i n ;

))
amprec= (int) 1o9L0 (ymaj) ;
i f l a m n r a n \ 1 , |

a m n r c n = O :

e l s e
amprec=3. -amprec;

/* end ofset marker */
h r i h F € t . . g r - " t .
t s . r ^ 4 9 ! l g \ r . , '

; € r ^ ^ , , - f - - n \ t
\ e v s] . u - - v l L

/* first time we draw the plot x/
n r i n t f f " A d ^ r r h l o l - r r r f f o r l - r r r o \ n " I -
F r t r r L r

p r i n t f (' @ f o c u s o f f \ n ") ;
]

freg, f loat displayamp) {

p r ine f ("@wi th g0 \n") ;
p r i n t f (" @ m o v e g 0 . s L t o 9 L . s 0 \ n ") ;
p r i n t f (" @ t i c 1 e \ " \ \ - L i n e T r a c k e r \ " \ n ') ;
p r i n t f (" @ s u b t i t l e \ " b e s t e s t i m a t e f = ? f H z \ " \ n " , f r e q) ;
p r in t f (' ' @s0 l ines ty le 0 \n ") ;
p r in t f (" @s0 symbol co lo r 4 \n") ;
p r ine f ("@s0 symbol 2 \n") ;
p r i n t f (" @ s 0 s y m b o l s i z e 0 . 2 8 \ n ") ;
p r i n c f (' @ s 0 s 1 ' m b o 1 f i 1 I 1 \ n ') ;
p r i n t f (" @ v i e w 0 . 1 5 , 0 . 5 3 , 0 . 9 5 . 0 - 9 0 \ n ") ;

/*. set up x-axis for amplitude *,/
printf (" Gwor1d :<rnin 3e\n" , t1) ;
printf ("Gworld :snax 8e\n" , tr2l- ;
p r in t f (" @xax j -s t i ck ma j o r td \n" ,ma j) ;
p r in t f ("Gxax is t i ck minor %d\n" , ;<min) ;
n r i n f - f ! t ' S v a v i c i - i a l - 1 r] . r a l n r c n 1 \ n " \

pr in t f ("@xax is t i ck labe l o f f \n ") ;
n r i n t f l ' ' f ? r r : v i q l a h o l \ n \ \ - : m n l i f r r ^ o l A T l a - ^ r l r l - c \ \ " \ n ' t

p r i n c f (" ' @ w o r 1 d y r m i n t e \ n " , 0 . O) ;
p r inc f ("@wor1d

)nnax %e\n" , d isp layamp) ;

)z+

pr in t f ('@yax is t i ck ma jor te \n" ,) rma j) ;
p r in t f ('Gyax is t i ck minor te \n ' ,ymin) , '
i f (amprec<4)

nr i n r f I " (avax i s t i ck labe l
e l s e {

printf ("@yaxis t icklabel
printf ("@yaxis t icklabel

)
/x now do phase plot x/
p r ine f ('@wiEh 9r1 \n ') ;
p r in t f (-@s0 l ines ty le 0 \n") ;
p r in t f ('@s0 l inewid th 0 \n") ;
p r in t f ("GsO syrnbo l co lo r 2 \n") ;
p r in t f ('GsO s f rmbo l 2 \n") ;
p r i n t f (' B s O s y m b o l s i z e 0 . 2 8 \ n ") ;
p r in t f ("@s0 s1mbol f i l l l - \n ") ;

n r o n 9 d \ n t : m n r o n l .
\ f f , s r r y ! v v , ,

format general\n") ;
n r o a 9 A \ n " 1 \ .

0 . 4 7 \ n ") t

,)cnaj) ,'
. >anin) ;

p r i n t f (' @ v i e w 0 . 1 5 , 0 . 1 , 0 . 9 5 ,

/x set up x-axis for phase x/
p r in t f ('@wor1d :cn in 8e \n ' , t1) ;
p r in t f ("@wor1d :cnax 8e \n" , t2) ;
p r in t f ('@xax is t i ck rna jo r 8d \n"
pr in t f ('@xax is t i ck minor *d \n"
pr in t f ("Gxax is t i ck labe l p rec 1 \n") ;
p r i n t f (" @ x a x i s l a b e 1 \ " \ \ - t i m e (s e c) \ " \ n ") ;

/x set up y-axis for phase */
p r i n t f (" @ w o r l d y m i n * e \ n ' , - 1 8 0 . 0) , '
p r i .nc f ("Gwor ld ymax %e\n ' , L80. 0) ;
p r in t f ("@yax is t i ck ma jor 90 \n") ;
p r in t f ("@yax is t i ck minor 45 \n") ;
p r in t f ("@yax is t i ck labe l p rec 0 \n") ;
p r i n t f (" G y a x i s l a b e 1 \ " \ \ - p h a s e (d e g r e e s) \ ' \ n ") ;
p r i n t f (" G x a x i s l a b e l \ ' \ \ - t i m e (s e c) \ " \ n ") ;

f* draw plot *f
p r i n t f (" @ r e d r a w \ n ") ;
p r i n t f (" e k i l 1 s 0 \ n ") ;
p r in t f ("@wich g0 \n ') ;
p r i -n t f ("ek i11 s0 \n") ;

^ n l l n l + + .

f a F r l r n .

Authors: Bruce Allen (ballen@dirac.phys.uwm.edu) and Adrian Ottewill (ottewill@relativity.ucd.ie).

None.

325

L1 References

[1] W.H. Press, B.P. Flannery S.A. Teukolsky and W.T. Vettering, Numerical recipes in C: the art of

scientific computing, 2nd edition, Cambridge University Press.

[2] Message Passing Interface Forum, MPI: a message passing interface standard,International Journal

of Supercomputer Applications 8 314 1994.

t3l W. Gropp and E. Lusk, Usert Guide for mpich, a portable implementation of MPI, Technical Report

ANLA4CS-TM-ANL-96/6, Argonne National Laboratory.

t4] R. Balasubramanian, B.S. Sathyaprakash, and S.V. Dhurandhar, Gravitational waves from coalescing

binaries: detection strategies andmonte carlo estimation of parameters, Phys. Rev. D53 (1996) 3033-

3055; Erranrm in Phys. Rev. D54 (1996) 1860. Originally posted as gr-qc/9508011.

15] B.J. Owen, Search templates for gravitational waves from inspiraling binaries: choice of template

spacing, Phys. Rev. D53 (1996) 6749-6761. Originally posted as gr-qc/9511032.

t6l L. Blanchet, B.R. Iyer, C.M. Will, and A.G. Wiseman, Gravitational waveforms from inspiralling

compact binnries to second-post-Newtonian order, Class. Quantum Grav. 13,575-584 (1996).

[7] C.M. Will and A.G. Wseman, Gravitational radiation from compact binary systems: Gravitational
waveforms and energy loss to second post-Newtonian order, Phys. Rev. D54 (1996) 4813-4848.

t8] C. Cutler et al., The Last Three Minutes: Issues in Gravitational-Wave Measurements of Coalescing

Binaries, Phys. Rev. Lett.70 (1993) 2984-2987.

19] C.W. Lincoln and C.M. Wlll, Coalescing binary systems of compact objects to (post)s/2-Newtonian

order: Inte-time evolution and gravitationnl-radiation emission, Phys. Rev. D42 (1990) ll23-II43.

l10l L. Blanchet, T. Damour, B.R.Iyer, C.M. Will, and A.G. Wiseman, Gravitational-Radiation Darnping

of Compact Binary Systems to Second Post-Newtonian Order, Phys. Rev. Lett.74 (1995) 3515-3518.

111] C. Cutler anO 6.p. Flanagan Gravitational waves from merging compact binaries: How accurately can

one extract the binary's parameters from the inspiral waveform? Phys. Rev. D49 2658-2697 (1994).

Il2) E. Poisson and C. M. Will, Phys. Rev. D52,848 (1995).

113] F. Echeverria Gravitational-wave measurements of the mass and angular momentum of a black hole,

Phys. Rev. D40 3194-3203 (1989).

[14] J.N. Goldberg, A.J. Macfarlane, E.T. Newman, F. Rohrlich, and E.C.G. Sudarshan Spin-s spherical

h.armonics and 6, J. Math. Phys. I 2155-2161 (1967).

[5] E.W. Leaver An analytic representation for the quasi-normal modes of Kerr black holes, Proc. Roy.

Soc. Lond. 4.402 (1985).

tl6l H. Onozawa Detailed study of quasinormal frequencies of the Kerr black hole, Phys. Rev. D55 3593-

3602 (1997).

[7] W.H. Press and S.A. Teukolsky (Oct 1973) Perturbarions of a rotating black hole. il. Dynamical sra-
btliry of the Kerr metric, Astrophys. J. 185 649-673 (1973).

5 / O

tlel

t20l

tzr)

ln1

tlg] S.A. Teukolsky perntrbations of a rotating btack hote. I- Fundamental equations for gravitational,

electromagnetic, and neutrino-field perturbations, Astrophys. J. 185 635447 (1973)-

A.D. Gillespie,Thermnl Noise in the Initial LIGO Interferometers, Caltech PhD thesis, 1995-

T.T. Lyons, An optically recombined laser interferometer for grivitationnl wave detection, Caltech

PhD thesis, 1997.

B. Allen, The stochastic gravity-wave backg'round: sources and detection, in Proceedings of the Les

Houches School on Astrophysical Sources of Gravitational Radiation, eds. J.A. Marck and J.P. Lasota,

(Cambridge Univeniry Press, Cambridge, England, to be published)

See equations (4.13) and (4.14) in Spacecraft attitude determination and control, Ed. James R. Wortz'

(D. Reidel Publishing Co., Boston, 1985).

A. Abramovici et al., Science 256,325 (1992).

D.J. Thomson, Spectrum estimntion and hqrmonic. analysis,-Proceedings of the IEEE, 70, 1055-96,

(1982).

t25l D.B. Percival and A.T. Walden, Spectral analysis for plrysical applications, first edition, Cambridge

University Press, (1993).

126l J.M. Lees and J. Park, Multiple+aper spectyal analysis: A stand-nlone C subroutin€, Computers and

Geology 2L,199-236.

327

BATCH
START

STAPLE
OR

DIVIDER

Sarn, thank you very much for going to the trouble of writing this up
for me. I thought that the easiest way to reply would be to type my
rernarks directly on your document, but in boldface, so that you can
print it out and read rny rernarks immediately after your ovr'n.

Bruce:
I believe that the algorithms used in GRASP to produce "calibrated" detector

output are conceptually incorrect. As documented (see GRASP manual vers. 1.5.2

$4.7-$4.10) and coded, these routines do not correctly produce calibrated detector
output. The affected routines include GRcalibrate, GRnormalize, and all GRASP
routines that depend on them.
As you will see below, I don't agree with this.

Summarizing the documentation, the procedure used to calibrate the detector
output is to

f. interpolate the swept sine calibration data, which is stored in the frequency
domain, to some convenient resolution;

2. form, from the interpolated data, what is believed to be the detector transfer
function in the frequency domain;

3. multiply, in the frequency domain, the interpolated transfer function with a
transformed segment of detector output;

4. invert the transform to yield the "calibrated" detector output.

A couple of comments here. First, the swept sine calibration data is
not only stored, in the frequency domain, it is actually obtained in the
frequency domain. The output of the HP swept sine analyzer is actually
a 3 colurnn file of data, containing freq, real, imag parts. The HP works
by driving the IFO coil voltage with a sinusoid of fixed frequency, waiting
till the IFO output settles down to a sine wave of the sarne frequency,
then outputing the ratio of output to input voltage, and the relative
phase of input and output. It then steps up to the next frequency.

There are two fundamental errors in this procedure:

1. the frequency domain interpolation of the swept sine data does not correctly
produce the transfer function; and
I don't agree with this. Please look at Figure 12, on page 70 of the
GRASP 1.5 rnanual. This is the actual data from the HP' measured
at 801 frequencies. As you can see, it varies quite smoothly over the
frequency range of interest, having only a few smooth cycles from
DC to 5kHz. For this reason, interpolating in these two sarnpled
data sets (real and imaginary parts) will give an excellent fit to the
transfer function, provided that we interpolate at rnore than a few
hundred frequency values.

2. lhe convolution of the (incorrect) transfer function with the raw data, which is
carried out here in the frequency domain, fails to accommodate itself to either
the periodic nature of the discrete Fourier transform (DFT) or the importance
of transient effects in the initial and final values of the filter output.
I don't agree with this either. The only convolution carried out in
GRASP is in the f ind-chirpO routine. The only times that we use
this, we are always convolving a function which is non-zero for most
of its sarnples (a zero-padded chirp) with a section of the data set.
This is discussed in section 5.18 of the GRASP manual, beginning

2

on page 1L7. We have been quite careful to ONLY take values of
the output which are not affected by the periodic nature of the
DFT. In fact if you read the relevant lines of code from the optinal
program on page 134 of the GRASP manual, you will see how this
works. The chirp length is L3,000. A variable called chirplen is set
to this value plus a safety factor of SAFETY-L000 (more about
this below). Then the routine f ind-chirpO searches the output of
the convolution only frorn 0 to npoint - chirplen. This is precisely
the procedure described. in Numerical Recipes.

In the following two subsections I will outline how I believe calibration should be
carried out, noting where I think the GRASP routines are flawed.
I arn not sure by what is rneant by "how the calibration should be carried
out", do you agree that the rneasured data from the HP is sufficient to
calibrate the instrurnent, or do you think it is not? If so, do you rnean
"how you should be using the calibration information" If noto what do
you think is needed for calibrating the instrument?

After you have looked these notes over we should talk.
That would be nice.

I will be relatively inaccessible this week and out of town from Saturday throught
Tuesday. I will be back Wednesday 29 October, though I may be difficult to get a
hold of owing to the NSF review (I'll probably want to sit-in on some of the sessions
in order to learn more about what's going on).
I should be available virtually anytime. My phone number at work is
414-229-6435.

1. Tun TRANSFER FUNCTIoN

The measured transfer function is a linear filter determined by applying a known
force (in this case, a swept sine wave) to the detector and measuring its response.
Let the applied force be the sequence b[/c] and the sampled response be a[k], where
k is the sample index. Define the z-transform of length N sequence c[k] by

N
n(. \ - \ - - t" [f] r-u (1)" * r -

? o
f assume that this is a typo, and also that z = exp(ioAt) where a.' is
frequency and At is the sarnple interval.

The z-transform H(z) of the transfer function h[/c] which takes the measured
response to the applied force is given by

A(z)H(z) = B(z) . (2)

In this way, from the applied a[/c] and the measured b[k] we can determine the
transfer function as an ARMA (Auto-Regressive Moving-Average) filter:

Ht -\ - Drblklz-k
Dnalklz-x'

The length of the sequences a and b determine the accuracy with which the detectors
transfer function has been determined by the measurement process.
This is in fact not how the transfer function of the instrument is mea-
sured. You might want to talk with Stan Whitcomb, Ered Raabo or

(3)

Jennie Logan, or even go to the lab and ask sorneone there to demon-
strate the procedure. A good way to do this is on a simple R-C circuit
for which you can easily compute the answer.

In order to obtain, from a measured response g the applied force c[/c], we can
apply the filter H(z). We can do this in z-space; or, we can do it in the time
domain:

vlnl : lu1n7n1n - kl - | "1n1yp - 1 - kl.
k:O lc=O

The filter output depends on past states; it is for this reason that we call it auto-
regressive. (Note also that the filter has an infinite impulse response.)
Both of these remarks are relevant. Although the filter output depends
upon past states, the way that the calibration is typically measured is
using the steady-state response to a sinusoidal driving force as described
above. The HP is a fairly intelligent machine and actually waits until
the ouput of the IFO has settled down to a steady sinusoid of fixed
frequency and phase before it makes a measurernent and steps to the
next frequency. This is measured by sornething called the 66coherencett

which must be large for the instrument to make a measurernent and step
on to the next frequency.

Since the filter response depends on past states, it is not sufficient to know
the applied force to determine the detector output. The filter output will have
an initial transient behavior associated with unknown past states. The response
of real systems eventually damps, however, and a long as we measure the system
response a[k] for a time longer than the sum of the duration of the applied force and
the damping time, the derived filter will accurately relate the force to the detector
output.
The impulse response of the instrurnent (response of the IFO-DMRO
output to a delta-function gravitational strain) has a duration of about
3 rnsec. I show it in an attached graph, Figure 5.

We can also represent the filter in the frequency domain, which is what is done
in GRASP. We can assume that we know the applied force for as long as we have
measured the system response; so, the DFT of each has the same resolution in the
frequency domain.

The problem arise when you interpolate in the frequency domain. Interpolation
in the discrete frequency domain is equivalent to ertrapolating tbe applied force
and measured response in the time domain: in this case, extrapolating a response
unmeasured and unknown. The particular extrapolation carried out by the DFT
is periodic ertrapolati,on: i.e., the detector response is assumed tobe periodic. The
"transfer function" calculated by the GRASP routines thus bears no relationship
to the actual response function.
I think that the only effect of interpolating is the one that I described
above. Provided that the transfer function varies smoothly so that you
are not interpolating values of a wildly-oscillating function, there is no
problem. As you can see from the GRASP ftgure that I reference, there
is no problem here.

For example, see figures 1 and 1. The first figure shows the product of a Gaussian
and a sinusoid, which may be though of as the time domain representation of a
transfer function. The second figure shows what happens to this transfer function

(4)

FrcuRp L. An example transfer function in the time domain.

FtcuRp 2. The transfer function of 1 a,fter its DFT has been in-
terpolated to twice the resolution in the frequency domain and
transformed back to the time domain. Note that the filter has
been replicated in the extended points.

if we transform it to the frequency domain, double the resolution there by linearly
interpolating to the intermediate frequencies, and transform back via an inverse
DFT. The resulting "transfer function" now has twice the duration in the time
domain and, consistent with the periodic extrapolation of the DFT, the original
filter has been replicated in the extended points.

I
A.11* -, ?Fr [1\-t

5

Sarn: to show that the problem that you describe here does not occur in
GRASP, I have written you a one-page demonstration program. It has
been used to produce the three graphs that follow. All the source code
and the ready-to-run executable can be found in ligo.caltech.edu:-ballen/FlNN.
The code itself is very easy to read, and is included in Section 2 of this
document. The program is called sam.c; the executable is called sarn.
To run the code, copy san and swept-sine.ascii to your home directory
(you must have write permission in the directory that you run in) then
do the following commands:
c d -
setenv GRASP-DATAPATH'pwd'
sann
You will then be prornpted for the number of frequency intervals. Enter
a nurnber (for example 8192) and a graph will pop up. If you want to
play with the code, and you need help, please ask Kent or one of Kips
postdocs for help. The program calculates the IFO-DMRO output sig-
nal that would be produced by a 2 x 1.4 solar mass chirp. When you
run it, it prompts you for the nurnber of frequency bins, then outputs a
file containing the IFO-DMRO signal as a two-column ascii file and also
displays a graph of that ffIe,
I have included here output for 8192 frequency bins (Figure 3) and 32768
frequency bins (Figure 4). I show the output in two attached figures.
As you can see, the IFO-DMRO calculated in each case looks precisely
like what one would expect. The instrument has poor low-frequency
response due to the whitening filters used to overcome seismic noise,
so the low frequency part of the IFO-DMRO has rather lower ampli-
tude than the corresponding gravitational strain h(t). The "doubling

problem" that you claim is present in GRASP does not occur.
Because you are interested in the impulse response of the instrurnent, I
have also included a line in this code (commented out) which calculates
the impulse response. It is about 3 rnsec long, which is the reason
for the SAFETY:L000 padding factor mentioned earlier. In fact since
the sample rate is about lOkHz SAFETY-5O would probably be more
than enough. In fact you can see an effect of this in the calibrated
IFO-DMRO outputs shown in the Figs 3 and 4. If you look very closely
at the first 2 msec or so you will see a srnall transient. This is because
the chirp is turned on abruptly so you see a little transient "wiggle" at
the start. This is commented on, on page 125 of the GRASP manual, in
the time-inject-chirpO routine. It turns out to be of no consequence.
This leads me to ask the question, were the graphs that you produced
made with GRASP or with code of your own? If they were produced
with GRASP I would be interested to see your code. I believe that
there are no errors of the type that you describe in any of the GR,ASP
example programs.

IFO_DMBO produced by chirp
syslem is 2 x 1.4 $lar mass slab

This is dono with 8 l 92 t@ bire.
chlD starts st shd6 numbq 0 bul sincs lhe
instmont has no low-freq bspos€, you
only seo it starling in lh€ onlpul arcund $mplo

5000.0 1@00.0 15000.0
sarule numb€r (10 kHz smpls rale)

FlcuRo 3. This shows the GRASP-computed IFO-DMRO
that would be produced by 2 x 1.4 solar mass stars. The
chirp enters the band at l4O Hz at sample zero, on the
far left of the graph. Ilowever because of the poor low-
freq response of the instrurnent it does not appear in the
DMRO until about half a second later. This calibrated
output was computed using 8192 frequency bins.

O 4.0
3
a 2.0

o 0.0

E
= -2.0
o,

I -r.o

-r'o I
t

r o o L
0.0

IFO_DMRO produced by chirp
svsl€h is 2 x 1.4 $lar mass sla6

E
b
E

3 0.0

=
o
o'

-t0.0

E u.o
L

o
E
g
E

I o.o

ChiD starts at smpls number 0 bui sirco tho
hstrument has no low-lreq resp6s€, you
only ses il staiing In lhe outpul abund gnplo

5000.
-20.0 L

0.0 20000.0 40000.0 60000.0
sahpl€ number (10 kl'lzsmpls 6ls)

FrcuRp 4. This shows the GRASP-computed IFO-DMRO
that would be produced by 2 x 1.4 solar mass stars. The
chirp enters the band at l4O Hz at sarnple zero, on the
far left of the graph. Ilowever because of the poor low-
freq response of the instrument it does not appear in the
DMRO until about half a second later. This calibrated
output rvas computed using 32768 frequency bins. It does
not dernonstrate or indicate any of the "doubling" prob-

lerns clairned by Finn.

lmpulse response of IFO
Unil step al th6 10o'lh saml6

M€tric iryulsg her€

lmpulso rosponss
ol ih€ IFO-DMRO
channel.

- 5 . 0 t 4
50.0 70.0 90.0 110.0 130.0 150.0 170.0

sampl€ nmber (-10l+lz srplo Eto)

FtcuRe 5. This shows the GRASP-computed
IFO-DMRO's impulse response. It is the response
of the IFO to a delta-function unit irnpulse at the 100'th
time sample. It falls off after about 3 msec : 30 samples.

8

2. GRASP coDE usED To pRoDUcp Alt pN's FIGURES

#include <stdio.h>

*include (uenory.h)

* include "grasp.h"

*def ine HSCALE 1.e20

nainO {
f loat f s tar t , srate, tcoal , *c0, *c9Q, *aegp6ns. '

in t J i l led, i ,nnax=1,nbins ;
void real f t (f loat* ,unsigned 1ong, int) ;
FILE * fp;

pr int f ("Please euter the number of desired f req bins\n") ;
scanf ("%d",&nbins) ;
for (i=0; i<30; i++) i1 (nbins==(nmax+=nnax)) break;
i f (i<12 | | i>=30) t
pr int f ("This roust be a polrer of two)=8192.\nr ') ;

ex i t (1) ;
)
nbins*=2;

/* allocate memory *,/

c0=(f loat*)nal loc (s izeof (f loat) *15ins1 ;
c90= (f loat*) roal"loc (s izeof (f loat) *15i1s) ;
response= (float *)na11o c (s izeof (f loat) * (nbins+l)) ;

/* set start frequency, sanple rate, nake chirp */

nake-f i l ters (1 .4, 1 .4, c0, c90, fs tar t=140. 0, nbins , srate=9868 .0, &f i1ted, &tcoal ,4000,4) ;
pr int f ("Chirp length is 7.d. \n" , f i1 led) ;

/* Unconment this line to see the inpulse respoBse of the instrunent */

/ , r , f o r (i =0 ; i <nb ins ; i ++) c0 [i] =0 .0 ; c0h00 l=1 .0 ; * /

/* put chirps into frequency donain */

real f t (c0-1,nbins, 1) ;

/* open file containiug calibration data, get response, and scale */

fp=grasp-open("GRASP_DATAPATH", "swept-s ine. asci i ") ;
nornalize-gw (fp, nbins , srate , response) ;
for (i=0; i<nbins; i++) response[i]*=HSCALE;

/* avoid floating point errors in inversion */

ntrax=o . 05*f start *nbins/srate ;
f e3 (i =0 ; i <n roax ; i ++) r esponse l i l =1 .e10 ;

/* determine IFO channetO input shich gould have produced etaveform */

rat io(c0, c0,response,nbins/2) ;

/* invert FFT */

r ea l f t (c0 -1 ,nb ins , - 1) ;

/* roake a graph shouing IF0-DMR0 */

pr int f ("Fi1e tenp.graph contains IFO-DMRO produced by 2 x ! .4 solar nasses. \n") ;
graph(c0,nbins , 1) ;
l

3. CoNvor,urloNs

Consider a finite impulse response (FIR) or moving average (MA) filter b of
length l[and indexed from 0:

N-1.

ylnl: I u1t'1"7" - n1. (5)
ft=0

The sequence gr is the convolution of the two sequences b and r. This convolution
can be carried out in the discrete frequency domain if one is careful of the peri,odici,ty
imposed by the DFT.

The summation above has been written assuming that r and y have infinite
length. Suppose we have a finite length stretch of data r, indexed from 0 to M,
and that we wish to filter it with b to produce gr. As written, y[0] depends on r[0]
and on previous values of r that are unknown. In fact, we don't actually know all
the values of o needed to produce g until we are -|y' samples into the response.

It is conventional to assume that r and b are zero at indices outside their defined
range. Suppose that b and r are extended to length N + M , with r defined to be zero
aLits final l[points and b defined to be zero at its final M points. Finally define
both these new sequences to be periodic, so that references to sequence elements /c
outside the range 0 . . . N + M - 1 evaluate to sequence elements k mod (N+ M - 1).
With these definitions. one can verifv that the summation

N+M-r
\-ylnl: L blk)rfn-kl
ft:0

correctly produces the output ylnlfor n:0...M - 1, in addition to non-physical
output at later times. Also note that g is defined for all n and is periodic with
period N + M, corresponding to the periodicity of b and r.

If we transform the periodic sequence g to the discrete frequency domain we will
find that l[k] is equal to 61te1l;.7tc1. Crucial for our ability to do this, and attain
this result, was our extension of r and b and the imposition of periodic boundary
conditions so that the sequence y was properly periodic. Were we not to extend
by zero-padding the sequences r and b, but try to evaluate the convolution in
the frequency domain, the DFT will enforce its own periodicity and, without the
zero-padding, cause the initial lf - 1 elements of the sequence y to involve filter
coefficients times the lasf coefficients of the input sequence c.
As I stressed above, the only GRASP routine that does convolution and
deconvolution is the f ind-chirpO routine. The only times that we use
this routine, we do exactly what you describe: zero pad the filters then
only examine the part of the output which has not been 66polluted" by
wraparound.

The GRASP routines for producing the "calibrated" time domain output se-
quence of the interferometer makes exactly this mistake: they fail to extend and
zero-pad the input sequence and the filter before evaluating the convolution in the
frequency domain. The result is that sequence elements in the early part of the
"calibrated" output are contaminated by contributions from the late time detec-
tor output, and sequence elements at late times are contaminated by early time
elements.
Please stop making this claim! There are NO GRASP ROUTINES
THAT PRODUCE THE "CALIBRATED'' TIME DOMAIN OUTPUT

(6)

SEQUENCE OF THE INTERFEROMETER. In fact it does not make
sense to do this, although you can try. If you attempt to do this, you
will find that the h(t) can not be represented by a floating-point variable;
the IFO noise has such a large dynarnic range that the the region frorn
0.1 to 100 Hz will occupy the entire floating-point dynarnic range. If you
use a double-precision variable you might be able to represent h(t), how-
ever you will find that it is very un-interesting, dominated entirely by
the low frequency component. It will look like a noisy sinusoid at very
low frequency. Since the instrument has essentially zero low frequency
response, when you atternpt to "invert" the IFO-DMRO to obtain h(t)
you are dorninated by low frequency components of the noise.
If you study GRASP you will notice that we NEVER attempt to cal-
culate or pass h(t), for exactly this reason. I did notice that your new
postdoc Soma (hopefully this is the correct spelling) apparently tried to
do this, which she reported in Kip's group rneeting yesterday. As I said
this is not a smart or useful thing to do. I can suggest several experi-
ments that Sorna can do if you'd like me to, as a way of understanding
this is a deep and profound way.

In fact, since the GRASP routines use a filter whose length is equal to the length
of the sequence being filtered, no element of the convolution between the filter and
the raw detector output is correctly evaluated (which, it could be commented, is
no great loss because, as we have already shown, the transfer function has been
incorrectly evaluated).
Again, in our filtering process, the filters are always zero padded and we
ignore the part of the convolution contaminated by wraparound.

A more extended discussion of how zero-padding is used and convolutions of a
reasonable length filter with indefinitely long times series can be accomplished using
the DFT can be found in most texts on digital signal processing, or in Numerical
Recipes [1].
It can also be found in GRASP section 5.18, and as I said already, the
code does this correctly.

Note that evaluation of filtering via a convolution is possible only with an
FIR filter: it is not possible with any kind of infinite impulse response (IIR) or
auto-regressive (AR) filter. If we form the transfer function as the ratio of the
z-transforms ofthe detector output and the calibrated input, the transfer function
will be an ARMA filter, which cannot be written as a straight convolution in this
way.
As f comment, the actual irnpulse response of the IFO is about 3 msec
long. Provided that we deal with data trains much longer than this, we
can treat it as a ffnite impulse response system.

4. Coxct ustol.ts

As presently constructed, GRASP does not correctly produce h[/c], the interfer-
ometer displacement measurement.
As I said earlier, there is NOTHING in GRASP that produces h[k]. And
it does not make much sense to try and do this.

It does not correctly form the transfer function that takes detector output to
strain, nor does it correctly implement a convolution in the frequency domain.

1 1

I think that these are both done correctly. If you do not agree, then I
challenge you to the following: produce a graph showing the response
of the instrument IFO-DMRO channel to a 2 x 1.4 solar mass chirp,
and cornpare it with the GRASP-produced graphs that I have included
here.

All results that depend on GRASP calibrated detector output are, consequently
suspect.
f do not agree with this conclusion.

Since the errors are conceptual in nature it is likely that they also appear else-
where in GRASP wherever filtering or convolution operations are performed; how-
ever. this has not been checked.
I have checked these operations rather carefully. I am quite willing to
believe that I may have errors in GRASP, however I do not believe that
this docurnent describes any errors in GRASP.
Samo on another topic, I would like to thank you for the help that you've
given Joe and me in finding and correcting several conceptual errors in
our stochastic background paper. In particular, I had not realized that
we could not use vfr as a termination criteria.

RppeRnucns

[1] William H. Press, Brian P. Flannery, Saul A. Teukolsky and William T. Vetterling. Numerical
Recipes (FORTRAN Version). Cambridge University Press, Cambridge, second edition, 1992.

	Intro
	Reading/Using Caltech 40-meter Prototype Data
	Reading/Using FRAME Format Data
	Gravitational Radiation from Binary Inspiral
	Black Hole Ringdown
	Stochastic Background Detection
	General Purpose Utilities
	References
	Supplemental Instructions

