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2 Introduction

2.1 The Purpose of GRASP

The analysis and modeling of data from gravitational wave detectors requires specialized numerical tech-
niques. GRASP was developed in collaboration with the Laser Interferometric Gravitational Observatory
(LIGO) project in the United States, and contains a collection of software tools for this purpose.

In order that this package be of the most use to the physics community, this package (including all
source code) is being released in the public domain. It may be freely used for any purpose with only one
condition: GRASP and its author must be acknowledged or referenced in any work or publications to which
GRASP made a contribution. This citation must specify the version number (for example, 1.0.0) of GRASP.
In addition, if the code has been modified in any way, this must also be stated. While the GRASP package is
available in the public domain, we do intend to regulate its distribution. You may request a copy of GRASP
for your personal use, or for use at your own institution, but you must not distribute it outside that group.
In addition, one person at each institution must be designated as the “responsible party” in charge of the
GRASP package. _

GRASP is intended for a broad audience, including those users whose main interest is in running simu-
lations and analyzing data, and those users whose main interest is in testing new data analysis techniques or
incorporating searches for new types of gravitational wave sources. The GRASP package includes a “cook-
book” of documented and tested low-level routines which may be incorporated in user code, and simple
example programs illustrating the use of these routines. GRASP also includes a number of high level user
applications built from these routines.

We are always interested in extending the capabilities of GRASP. Suggestions for changes or additions,
including reports of bugs or corrections, improvements, or extensions to the source code, should be commu-
nicated directly to the author.

2.2 Quick Start

If you hate to read manuals, and you just want to try something, here’s a suggestion. This assumes that the
GRASP package has been installed by your local system administrator in a directory accessible to you, such
as /usr/local/GRASP and that some 40-meter data (old-format) has also been installed, for example in
/usr/local/GRASP/data.
If you want to try running a GRASP program, type
setenv GRASPDATAPATH /usr/local/GRASP/data/19nov94.3
to set up a path to the data, then go to the GRASP directory:
cd /usr/local/GRASP/src/examples/examples 40meter
and try running one of the executables:
./locklist
will print out a list of the locked data segments from run 3 on 19 November 1994. A more interesting
program to run (in the same directory) is
./animate | xmgr -pipe
which will produce an animated display of the IFO output. Note that in order for this to work, you will need
to have the xmgr graphing program in your path. (Please see the comment about xmgr in Section 3.8).
If you only have data that has been distributed in the FRAME format, type
setenv GRASP FRAMEPATH /usr/local/GRASP/data/19nov94.3.frame
to set up a path to the data, then go to the GRASP directory:
cd /usr/local /GRASP/src/examples/examples_frame
and try running one of the executables:




./locklistF
will print out a list of the locked data segments from run 3 on 19 November 1994. A more interesting
program to run (in the same directory) is
./animateF | xmgr -pipe
which will produce an animated display of the IFO output. Note that in order for this to work, you will need
to have the xmgxr graphing program in your path. (Please see the comment about xmgr in Section 3.8).
If you want to try writing some GRASP code, a simple way to start is to copy one of the example
programs, and the Makefile, into your personal directory, and edit that:
mkdir ~/GRASP
cp /usr/local/GRASP/src/examples/examples 40meter/gwoutput.c ~/GRASP
cp /usr/local/GRASP/src/examples/examples 40meter/Makefile ~/GRASP
cd ~/GRASP
Now make editing changes to the file gwoutput . ¢, and when you are done, edit the Make£ile that you
have copied into your home directory. Find the line that reads:
all: ... gwoutput ...
and delete everything to the right of the colon except gwouput from that line (but leave a space after the
colon). Then type:
make gwoutput
to recompile this program. To run it, simply type:
gwoutput.
In general, if you want to modify GRASP programs, this is the simplest way to start.

2.3 A few words about data formats

The GRASP package was originally written for analysis of data in the “old” format, which was used in the
Caltech 40-meter IFO laboratory prior to 1996. Starting in 1997, the LIGO project, and a number of other
gravity-wave detector groups, have adopted the VIRGO FRAME data format. Almost every example in the
GRASP package has equivalent programs to read and analyze data in either format. For example animate
and animateF are two versions of the same program. The first reads data in the old format, the second
reads data in the FRAME format. We have also included with GRASP a translation program that translates
data from the old format to the new format (see translate in Section 10.16).

After careful thought, the LIGO management has decided to only distribute the November 1994 data in
the FRAME format, except to a small number of groups (belonging to the Data Translation Group) who are
responsible for ensuring that the translated data set contains the same information as the original! The initial
distributions of GRASP will include both old-format and new-format code. However after a reasonable
period of time, the old-format data and code will be removed from the package. So please be aware that
the old-format material will be reaching the end of its useful lifetime fairly soon; we do not recommend
investing much effort in these.

If you want to develop or work on data analysis algorithms, you will want to have access to this data
archive. Because many people contributed to taking this data, and because the LIGO project wants to
maintain control of its use and distribution, this data set is NOT in the public domain. However, you may
request a copy for your use, or for use by your research group. Write to: Director of the LIGO Laboratory,
Mail Stop 51-33, California Institute of Technology, Pasadena, CA 91125. The data set is available in tar
format on two Exabyte 8500c format tapes.

In order to use the data in the FRAME format, you will need to have access to the FRAME libraries.

These are available from the VIRGO project; they may be downloaded from the site http: //lapphp.in2p3.fr/-

Contact Benoit Mours mours@lapp . in2p3 . fr for further information.




2.4 GRASP Hardware & Software Requirements

GRASP was developed under the Unix (tm) operating system, on a Sun workstation network. The package
is written in POSIX/ANSI C, so that GRASP can be compiled and used on any machine with an ANSI C
compiler. All operating system calls are POSIX-compliant, which is intended to keep GRASP as portable
to different platforms as possible. The main routines could also be linked to user code written in other
languages such as Fortran or Pascal; the details of this linking, and the conventions by which Fortran and C
(or Pascal and C) routines communicate are implementation dependent, and not discussed here.

Several of the high-level applications in GRASP can be run on parallel computer systems. These
can be either dedicated parallel computers (such as the Intel Paragon or IBM SP2 machines) or a net-
work of scientific workstations. The parallel programming in GRASP is implemented with version 1.1 of
the Message Passing Interface (MPI) library specification [2]. All major computer system vendors cur-
rently support this standard, so GRASP can be easily compiled and used on virtually any parallel ma-
chine. In addition, there is a public-domain implementation of MPI called “mpich” [3] which will run
MPI-based programs on networks of scientific workstations. This makes it easy to do “super-computing
at night” by running GRASP on a network of workstations. Further information on MPI is available
from the web site http://wwiw.mcs.anl.gov/mpi/. The mpich implementation is available from
http://www.mcs.anl.gov/mpi/mpich/. By the way, if you don’t have access to parallel ma-
chines (or have no interest in parallel computing) don’t worry! The only parallel code in GRASP is found in
“top-level” applications; all of the functions in the GRASP library, and most of the examples, can be used
without any modifications on a single processor, stand-alone computer.

GRASP makes use of a number of standard numerical techniques. In general, we use version 2.6 of
the routines from “Numerical Recipes in C: the art of scientific computing” [1]. These routines are widely
used in the scientific community. The full source code, examples, and complete documentation are provided
in the book, and are also available (for about $50) in computer readable form. Ordering information and
further details are available from http://cfata2 .harvard.edu/numerical-recipes/. These
routines are extremely useful and beautifully-documented; if you don’t already have them available for your
use, you should!

In general, output from GRASP is in the form of ASCII text files. We assume that the user has graphing
packages available to visualize and interpret this output. Our personal favorite is xmgr, available in the
public domain from the site http://plasma-gate.weizmann.ac.il/Xmgxr/ which also lists
mirror sites in Europe and USA. (Please see the comment about xmgr in Section 3.8). In some cases we
do output “complete graphs” for xmgr. We do also output some data in the form of PostScript (tm) files.
Previewers for postscript files are widely available in the public domain (we like GhostView).

2.5 GRASP Installation

As we have just explained, GRASP requires access to Numerical Recipes in C libraries and to MPI and
MPE libraries. These packages must be installed, and then within GRASP a path to these libraries must be
defined. This can be done by editing a single file, and then running a shell script. This section explains each
of these steps in detail.

All of the site-specific information is contained in a single file SiteSpecificin the top-level direc-
tory of GRASP. This file contains a number of variables whose purpose is explained in this section. These
variables must be correctly set before GRASP can be used; the definitions contained in SiteSpecific
(as distributed) are probably rnot appropriate for your system, and will therefore require modification.




2.5.1 GRASP File Structure

The code for GRASP can be installed in a publicly-available directory, for example /usr/local/GRASP.
(It can also be installed “privately” in a single user’s home directory, if desired.) The name of this top-level
directory must be set in the file SiteSpecific which is contained in the top-level GRASP directory.
To do this, edit the file SiteSpecific and set the variable GRASP_HOME to the appropriate value, for
example GRASP_HOME=/usr/local/GRASP. Please note that the installation scripts are not designed to
“build” in one location and “install” in a separate location. You should go through the installation procedure
in the same directory where you eventually want the GRASP package to reside.

Within this top level directory resides the entire GRASP package. The directories within this top level
are:

data/ Contains (both real and simulated) interferometer data, or symbolic links to this data. See the
comments in Section 3 to find out how to obtain this data.

parameters/ Contains parameters such as site location information, and estimated power spectra/whitening
functions of future detectors.

doc/ Documentation (in TeX, PostScript, DV], and PDF formats) including this users guide.
man/ This may be used in the future for UNIX on-line manual pages.
testing/ This will eventually contain a suite of programs that test the GRASP installation.

include/ Header files used to define structures and other common types in the code. This also include
the ANSI C prototypes for all the GRASP functions.

src/ Source code for analyzing various aspects of the data stream, distributed among the following direc-
tories:
40-meter/ Reading data tapes produced on the Caltech 40 meter prototype prior to 1997.
inspiral/ Binary inspiral analysis (including optimal filtering and vetoing).

ringdown/ Black hole horizon ringdown (including optimal filtering). This can be used to filter
for any exponentially-decaying sinusoid.

stochastic/ Stochastic background detection (including optimal filtering and simulated signal
production)

transient/ Supernovae and other transient sources.

periodic/ Searches for pulsars and other periodic and quasi-periodic sources.

utility/ General purpose utility routines.

examples/ The source code for all of the examples given in this manual (organized by section).

optimization/ Additional library routines for optimizing GRASP operation of specific plat-
forms (i.e., supercomputers).

1lib/ Object libraries.

bin/ Executable applications and programs.
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2.5.2  Accessing Numerical Recipes in C libraries

GRASP makes use of many of the functions and subroutines from Numerical Recipes in C [1]. These
functions and subroutines are available in Fortran, Pascal, Basic, Kernighan and Ritchie (K&R) C, and
ANSI-C versions; you will need the ANSI-C routines. The source code for these functions (both * .c
and *.h files) must be installed in a directory (for example, /usr/local/recipes/src) and the
compiled object modules (* . o files) must be archived into a single library file (* . a file). The instructions
for this are included in the distribution of the source code for Numerical Recipes. In the end, a file called
librecipes_c.a must be put into a directory where it is available to the linker for compilation. A good
place to put this library is in /usr/local/recipes/lib/librecipes_c.a. When you run the
command that installs GRASP, the linker needs to be able to find these libraries. The file SiteSpecific
must then contain the line RECIPES_LIB = /usr/local/recipes/lib near the top of the file.

It is frequently useful, for debugging purposes, to be able to link with both “debug” and “profile” ver-
sions of the libraries. For this reason, we recommend that users actually create three separate libraries of
Numerical Recipes functions:

/usr/local/recipes/lib/librecipes_c.a: a library compiled for fast execution, with opti-
mization options (for example, -O3 or -x04) turned on during compilation. :

/usr/local/recipes/lib/librecipes.cg.a: a library compiled for debugging, with the'de-
bug option (typically, -g) tumed on during compilation. Note that in order to use a debugger with
this library, and to be able to step “within” the Numerical Recipes functions, the debugger must be
able to locate the source code for Numerical Recipes. Thus, after Numerical Recipes is compiled and
installed, its *.c and *.h source files must be left in their original locations and not deleted or moved.

/usr/local/recipes/lib/librecipes.cp.a: alibrary compiled for profiling, with the profil-
~ ing option (typically, -pg or -xpg for “gprof” or -p for “prof’) turned on during compilation.

One can then easily compile GRASP code with the appropriate library by setting LRECIPESin SiteSpecific.

For example to run code as rapidly as possible one would set LRECIPES = recipes._c. However to
compile code for debugging it would be preferable to set LRECIPES = recipes._cg. (Note that rather
than recompiling the entire GRASP package in this way, one can simplify modify the value of LRECIPES
within the desired Makefiles and then recompile only the code of interest.)

We have encountered one minor problem with the Numerical Recipes in C routines. Unfortunately
the authors of these routines choose to name one of their routines select (). This name conflicts with
a POSIX name for one of the standard operating system calls. In linking with certain libraries (for ex-
ample the MPI/MPE libraries) this can generate conflicts where the linker attaches the select () call
to the entry point from the wrong library. We suggest that you fix this as follows. Before building the
Numerical Recipes libraries, edit the source files recipes/rofunc.c, recipes/select.c, and
recipes/select.c.origchanging each occurence of select (toNRselect (. You will have to do
this in (respectively) three places, one place and one place in these files. Then edit the file include/nr.h
making the same change of select ( to NRselect ( in one place. This will elminate the select () rou-
tine from the Numerical Recipes library, replacing it with a routine called NRselect (), and eliminating
any possible naming conflict from the library.

2.5.3 Accessing MPI and MPE libraries

To enable use of the parallel processing code included with GRASP, one needs to link the code with an
MPI function call library. (If you do not intend to use any of the multiprocessing code, we’ll tell you
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what to do.) For performance monitoring purposes, we also make calls to the Message Passing Envi-
ronment (MPE) library, which is included with mpich [3]. If these function libraries are not currently
available on your system, you should obtain the public domain implementation mpich from the URL
given above, and follow the instructions required to build the MPI/MPE libraries for your system. After
the installation process is complete, the necessary libraries will be contained in a library archive, for ex-
ample /usr/local/mpi/lib/libmpi.aand /usr/local/mpe/lib/libmpe.a. The path to
these libraries is set in the file SiteSpecific by means of the variable MPI_LIBS. A typical line in
SiteSpecific might then read:

MPILIBS=~L/usr/local/mpi/lib -lmpi -lmpe.

You must also set BUILD MPI= true in SiteSpecific. Finally, in order to include appropri-
ate header files in any MPI programs, you will need to include a path to these header files in the file
SiteSpecific. You can do this by setting MPT_INCLUDES in the file SiteSpecific. A typical
installation might have

MPI_INCLUDES = -I/usr/local/mpi/include.

NOTE: If you don’t want to use any of the MPI code, just set:

BUILDMPI= false

in SiteSpecific. All the other MPI-specific defines are then ignored.

2.5.4 Accessing FRAME libraries

The LIGO and VIRGO detector projects have recently decided to standardize the format which their data will
be recorded in (see Section 2.3). The standard is called the FRAME format, and is still under development.
It appears quite possible that a number of other gravitational-wave detector groups will also adopt this same
format. The GRASP package contains, for every example program, both FRAME format and old format
versions. It also contains an translation program which converts data from the “old 1994” format into the
new FRAME format.

Unless you are in one of the small number of groups with access to the old-format data, you will need to
obtain the FRAME libraries. These are available from the VIRGO project; they may be downloaded from the
sitthttp://lapphp.in2p3. fr/virgo/FrameL.Contact Benoit Mours mours@lapp. in2p3. fr
for further information. In the SiteSpecific file, if you need the FRAME libraries, set a pointer to the
directory containing them. NOTE: If you don’t need the FRAME libraries, just set:

BUILD.FRAME = false
in SiteSpecific. All the other FRAME-specific defines are then ignored.

2.5.5 Real-time 40-meter analysis

The analysis tools in the GRASP package can be used to analyze data in real-time, as it is recorded by the
DAQ system. This facility is primarily for the use of experimenters working in the Caltech 40-meter lab.
and will probably not be of use to anyone outside of that group.

In order to use the GRASP tools in real time, one needs to link to a set of EPICS (Experimental Physics
and Industrial Control System) libraries, that are not otherwise needed. These permit the GRASP code to
interrogate the EPICS system to find out the names and locations of the most-recently written FRAMES of
data.

2.5.6 Making the GRASP binaries and libraries

To make the GRASP libraries and executables described in this manual, please follow these directions. It
should only take a few minutes to do this.
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10.

. Within the main GRASP directory is afile called SiteSpecific. Make acopy of SiteSpecific

called SiteSpecific. save. This way, if you mess up the installation, you can start over easily.

. Now edit SiteSpecific so that GRASP_HOME has the correct path, for example

GRASPHOME=/usxr/local/GRASP.

This must be the name of the directory on your system in which GRASP resides. If you are not the
superuser and are installing GRASP only for your own use, you can set this path to point somewhere
in your own home directory, and install GRASP there.

. Find out where Numerical Recipes in C is installed on your system. Within SiteSpecific set

RECIPES_LIB to point to the directory containing these libraries. For example

RECIPES LIB=/usr/local/numerical recipes/lib.

If Numerical Recipes in C is not installed on your system, you will have to obtain a copy, and in-
stall it, following the directions to create the library file librecipes_c.a. Note that as described
above, you might also want to create debugging libraries 1ibrecipes_cg.a and profiling libraries
librecipescp.a.

Within SiteSpecific set LRECIPES to the name of the Numerical Recipes in C library you wish
to use, for example
LRECIPES=recipes._c.

. If you intend to use the MPI code, set BUILD.MPI= true, otherwise set it to false. In this latter

case, any MPI-specific defines are ignored, and no code that makes use of MPI/MPE function calls is
compiled. (This is a shame ~ these are some of the nicest programs in the GRASP package. We urge
you to reconsider building the mpich package on your system!)

Within SiteSpecific set MPI_LIBS to point to the directory containing the MPI/MPE libraries,
and to specify the names of the link archives, for example

MPI LIB=-L/usr/local/mpi/lib -lmpi -Ilmpe.

Note that if you use the version of mpicc which is distributed with mpich you may not need to have
any of the MPI libraries referenced here; the compiler may find them automatically.

Within SiteSpecific set MPI_INCLUDES to point to the directory which contains the MPI and
MPE header (* . h) files, for example
MPI_INCLUDES = -I/usr/local/mpi/include.

Within SiteSpecific set MPICC to the name of your local MPI C compiler, for example:
MPICC = /usr/local/bin/mpicc.
You can include any compilation flags (say, —g) on this line also.

If you intend to use the FRAME code, set BUILD_FRAME = true, otherwise set it to false. In this
latter case, any FRAME-specific defines are ignored, and no code that makes use of FRAME function
calls is compiled. :

Within SiteSpecific set FRAME_DIR to point to the directory which contains the LIGO/VIRGO
format FRAME software, for example

FRAME DIR=/usr/local/frame.

This directory should contain 1ib/libFrame.a and include/FrameL.h. If you don’t need
the FRAME libraries, just leave this entry blank.
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11. Within SiteSpecific, if you want to use GRASP for real-time analysis in the Caltech 40-meter
lab, set EPICS_INCLUDES to point to the directory containing the EPICS * .h include files, and set
EPICS_LIBS to point to the directory containig the EPICS libraries. Finally, you need to uncomment
the BUILD_REALTIME define statement. If you do not intend to use your GRASP installation for
real-time analysis in the 40-meter lab, simply leave these three definitions commented out with a hash

sign (#).

12. Atthe bottom of SiteSpecific are several define statements, which are currently commented out.
These are primarily intended for production code; by undefining these lines you replace a cube root
function and some trig functions in the code with faster (but less accurate) in-line approximations. We
suggest that you leave these commented out. (You might want to consider uncommenting them if you
are burning thousands of node hours on a large parallel machine - but you do so at your own risk!)

13. There are also lines that are currently commented out, which allow you to overload functions defined
in the libraries and reference libraries of optimized functions. Once again, leave these commented out
unless you want to replace standard Numerical Recipes functions with optimized versions. Currently,
we support three sets of optimized libraries:

e The CLASSPACK optimized FFT’s for the Intel Paragon.
o The Sun Performance Library’s optimized FFT for the Sun SPARC architecture.
e The Cray/SGI optimized FFT for the RS10000 and other MIPS architectures.

e The FFTW (Fastest Fourier Transform in the West), which will ran on any computer. This is a
public domain optimized FFT package, available from the web site:
http://theory.lcs.mit.edu/~fftw
If you don’t have an optimized FFT routine for your computer, we highly recommend this — it is
a factor of three (or more) faster than Numerical Recipes.

Further details may be found in the src/optimization subdirectory of GRASP. If you want to
use these optimized library routines, first go into the appropriate subdirectory of src/optimization
and build the optimized library routine using the makefiles’s that you find there, then uncomment
the appropriate lines in SiteSpecific and follow the instructions given here.

14. Now, in the top level GRASP directory, execute the shell script InstallGRASP, by typing the
commands:
chmod +x InstallGRASP
./InstallGRASP
From here on, the remainder of the installation should proceed automatically. The Instal1GRASP
script takes information contained in the SiteSpecificfile, uses it to create Makefile’sin each
sxc subdirectory, and runs make in each of those directories.

The Makefilein each directory is constructed by concatenating the file SiteSpecific with a file called
Makefile.tailineach individual directory. If you want to try changing the compilation procedure, you
can modify the Makefile in a given directory. However this will be created each time that you run
InstallGRASP; for changes to become permanent they should either be made in SiteSpecificorin
the Makefile.tail’s.

Note that this installation procedure and code has been tested on the following types of machines: Sun 4
(Solaris), DEC AXP (OSF), IBM SP2 (AIX), HP 700 (HPUX), Intel (Linux), Intel Paragon. If you run into
problems with our installation scripts, please let us know so that we can fix them.
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If you want to experiment with GRASP or to write code of your own, a good way to start is to copy the
Makefile and the example (* . c) programs from the src/examples directory into a directory of your
own. You can then edit one of the example programs, and type “make” within your directory to compile a
modified version of the program.

If you wish to modify the code and libraries distributed with GRASP (in other words, modify the func-
tions described in this manual!) the best idea is to use cp - to recursively copy the entire GRASP directory
structure (and all associated files) into a private directory which you own. You can then install your personal
copy of GRASP, by following the directions above. This will permit you to modify source code within
any of the src subdirectories; typing make within that directory will automatically re-build the GRASP
libraries that you are using. By the way, if you are modifying these functions to fix bugs or repair problems,
or if you have a “better way” of doing something, please let us know so that we can consider incorporating
those changes in the general GRASP distribution.

2.6 Conventions used in this manual

The conventions used in this manual are not strict ones. However we do observe a few general rules:

1. Words or lines that you might type on a computer (commands, filenames, names of C-language func-
tions, and so are) are generally indicated in teletype font.

2. When a function is described, the arguments which are inputs and those which are ouzputs (or those
which are both) are indicated. Thus, for example the function
add(int a, int b,int* c) whichsets *c = a+b is described by: ‘

a: Input. One of the two integers that are added together.
b: Input. The second of these integers.
c: Output. Set to the sum of a and b.

Note that technically this is incorrect, because of course in C even the “output arguments” are really
just inputs; they are pointers to an address in memory that the routine is supposed to modify. And
technically, the statement that “c is set to...” is not correct, since in fact it is the integer pointed to
by ¢ (denoted *c) that is set. However we find that this convention makes it much easier to read the
function descriptions!

3. Most of the time, the example programs using GRASP functions are given explicitly in the manual,
so you can see the GRASP functions “in use”. Because these examples are illustrative, they are
generally “pared down” as much as possible (for example, default values of adjustable parameters are
hard-wired in, rather than prompted for).

4. Routines and example programs in GRASP generally begin with the line:
#include "grasp.h"
which includes the prototypes for all GRASP functions as well as the library header files stdio.h,
stdlib.h, math.h, values.h, and time.h. The GRASP include file "grasp.h" can be
found in the include subdirectory of GRASP.
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3 GRASP Routines: Reading/using Caltech 40-meter prototype data

There is a good archive of data from the Caltech 40-meter prototype interferometer. Although the inter-
ferometer is only sensitive enough to detect events like binary inspiral within =~ 10kpc (the distance to the
galactic center) its output is nevertheless very useful in studying data analysis algorithms on real-world in-
terferometer noise. This data was taken during the period from 1993 to 1996; for our purposes here we
will concentrate on data taken during a one-week long observation run from November 14-21, 1994. The
original data is contained on 11 exabyte tapes with about 46 total hours of data; the instrument was in lock
about 88% of the time. The details of this run, the status of the instrument, and the properties of this data
are well-described in theses by Gillespe [19] and Lyons [20].

The GRASP package includes routines for reading this data. The data is not read directly from the
tapes themselves; the data instead must be read off the tapes and put onto disk (or into pipes) using a
program called extract. The GRASP routines can then be used to read the resulting files. While the
GRASP routines can be used without any further understanding of the data format, it is very helpful to
understand this in more detail. Note that these data formats and the associated structures were defined
years before GRASP was written; we did not choose this data format and should not be held accountable
for its shortcomings. We have included a preliminary translator that translates the data from this old 1994
format into the new LIGO/VIRGO frame format. The program translate may be found in the GRASP
src/examples/examples_utility directory, and is documented in the Section on GRASP genéral
purpose utilities. ‘

If you want to develop or work on data analysis algorithms, you will want to have access to this data
archive. Because many people contributed to taking this data, and because the LIGO project wants to
maintain control of its use and distribution, this data set is NOT in the public domain. However, you may
request a copy for your use, or for use by your research group. Write to: Director of the LIGO Laboratory,
Mail Stop 51-33, California Institute of Technology, Pasadena, CA 91125. The data set is available in tar
format on two Exabyte 8500c format tapes. Each directory (for a different run on a different day) occupies
the following amount of space (in mbytes):

14nov94.1 647
14nov94.2 913
18nov94.1 1041
18novo4.2 1121
19nov94.1 1554
19nov94.2 1074
19nov94.3 1250
1%nov94 .4 1206
20nov94.1 1146
20nov94.2 1173
20nov94.3 1543

Each of these directories contains the channel . * files and the swept-sine.ascii swept-sine calibra-
tion files. In this manual, we assume that these directories (or links to them) have been placed where you can
access them. The GRASP programs that use this data determine its location by means of the environment
variable GRASP_DATAPATH. You can set this by typing (for example)
setenv GRASP.DATAPATH /usr/local/data/19nov94.3

to access the data from run 3 on November 19th. System administrators: after installing these directories in
a convenient place on your machine, we recommend that you install a set of links to them in the directory
data within the GRASP home directory. This way your users can find them without asking you for the
location!
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WARNING: this data was written on a “big-endian” machine (the sun-4 workstation is an example of
such a machine). The floats are in IEEE 754 floating-point format. Attempts to read the data in its distributed
form on a “little-endian” machine (such as Intel 80*86 computers) will yield garbage unless the bytes are
properly swapped. The routines used to read data (in particular, the function read block () ) test the byte
order of the machine being used, and swaps the byte order if the machine is “little-endian”. This introduces
some inefficiency if you are running on a “little-endian” machine, but is preferrable to having two copies of
the data, one for each architecture. If you are doing all of your work on a “little-endian” machine and you
want to avoid this inefficiency, write a program which properly swaps the byte orders of the header blocks
(which are in 4-byte units) and then also properly swaps the byte order of the data blocks (which are 2-byte
units) and reformat the raw data files. Then modify the read block () data so that it no longer swaps the
bytes on your machine.

3.1 The data format

Data is written onto the exabyte tapes in blocks about 1/2 megabyte in size. The format of the data on the
tapes is as shown in Table 1. The tape begins with a main header (denoted “mh” in the table). This is

mh[0s| Os [mh|0s| Os [mh|[gh[0s] data [mh[gh[0s]| data

1024 1024 1024 1024 1024 1024 x n 1024 1024 x n

Table 1: Format of Exabyte data tapes (first row: content, second row: length in bytes).

followed by a set of zeros, padding the length of the header block to 1024 bytes. There is then an empty
block of 1024 bytes containing zeros. This pattern is repeated until the first block containing actual data.
This is signaled by the appearance of a main header, followed by a gravity header (denoted “gh” in the figure
above). These two headers are padded with zeros to a length of 1024 bytes. This is then followed by a set
of data (the length of this set is a multiple of 1024 bytes). Information about the length of the data sets
is contained in the headers. The data sets themselves consist of data from a total of 16 channels, each of
which comes from a 12-bit A to D converter. Four of the 16 channels are fast (sample rates a bit slower than
10kHz) and the remaining 12 channels are slow (sample rates a bit slower than 1kHz). The ratio of sample
rates is exactly 10 : 1. Within the blocks labeled “data”, these samples are interleaved. The information
content of the different channels is detailed on page 136 of Lyon’s thesis [20], and is summarized in Table 3.

The program extract reads data off the tapes and writes them into files. One file is produced for each
channel; typically these files are named channel . 0 — channel. 15. The complete set of these files for
the November 1994 run fits onto two Exabyte tapes (in the 8500c compressed format). The information in
these files begins only at the moment when the useful data (starting with the gravity header blocks) begins
to arrive. The format of the data in these channel . * files is shown in Table 2. Here the main headers are

block 0 block 1 block 2 block 3
mh [ bh [ 0’s [ data | mh | bh | 0’s | data | mh | bh | 0’s | data [ mh | bh | O’s | data
1024 cs 1024 cs 1024 cs 1024 cs

Table 2: Format of a channel . 0—15 file (first row: block number, second row: content, third row: length
in bytes).

the same as before, however the headers that follow them are called binary headers (denoted by “bh” in the
table). The length of the data stream (in bytes) is called the “chunksize” and is denoted by “cs” in Table 2.
We frequently reference the data in these files by “block number” and “offset”. The block number is an
integer > 0 and is shown in Table 2. The offset is an integer which, within a given block, defines the offset
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of a data element from the first data element in the block. In a block containing 5000 samples, these offsets
would be numbered from O to 4999.

The structure of the binary headers is
struct ldbinheader {

float elapsed-time: This is the total elapsed time in seconds, typically starting from the first valid
block of data, from the beginning of the run.

float datarate: This is the sample rate of the channel, in Hz.

IS
The structure of the main headers is
struct ldmainheader {

int chunksize: The size of the data segment that follows, in bytes.
int filetype: Undocumented; often 1 or 2.

int epoch.time_sec: The number of seconds after January 1, 1970, Coordinated Universal Time
(UTC) for the first sample. This is the quantity returned by the function time () in the standard C

library.
int epoch.time msec: The number of millseconds which should be added to the previous quantity.
int tod._second: Seconds after minute, 0-61 for leap second.
int todminute: Minutes after hour 0-59.
int tod_hour: Hour since midnight 0-23.
int date_day: Day of the month, 1-31.
int datemonth: Month of the year, 0-11 is January-December.
int date.year: Years since 1900.
int date_dow: Days since Sunday, 0-6.
int sub.hdr_flag: Undocumented.

}; Note: in the original headers, these int were declared as 1ong. They are in fact 4-byte objects, and on
some modern machines, if they are declared as long they will be incorrectly interpreted as 8-byte objects.
For this reason, we have changed the header definitions to what is show above.

For several years, the extract program contained several bugs. One of these caused the channel . *
to have no valid header information apart from the elapsed time and datarate entries in the binary
header, and the chunksize entry in the main header. All the remaining entries in the main header were
either incorrect or nonsensical. This bug was corrected by Allen on 14 November 1996; data files produced
from the tapes after that time should have valid header information.

There was also a more serious bug in the original versions of extract. The typical chunksize of most
slow channels is 10,000 bytes (5,000 samples) and the chunksize of most fast channels is 100,000 bytes
(50,000 samples) but until it was corrected by Allen on 14 November 1996, the extract program would
in apparently unpredictable (though actually quite deterministic) fashion “skip” the last data point from the
slow channels or the last ten data points from the fast channels, giving rise to sequences of 4,999 samples
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from the slow channels, and correspondingly 49,990 samples from the fast channels. Not surprisingly, these
missing data points gave rise to strange “gremlins” in the early data analysis work; these are described in
Lyon’s thesis [20] on pages 150-151. These missing points were simply cut out of the data stream as shown
in Figure 1; rather like cutting out 1 millisecond of a symphony orchestra every 5.1 seconds; this gives rise
to “clicks” which excited the optimal filters. This problem is shown below; data taken off the tapes after 14
November 1996 should be free of these problems.

There are a couple of caveats regarding use of these “raw data” files. First, in the channel. * files,
there can be, with no warning, large segments of missing data. In other words, a block of data with time
stamp 13,000 sec, lasting 5 sec, can be followed by another data block with a time stamp of 14,000 sec
(i.e., 995 sec of missing data). Also, the time stamps are stored in single precision floats, so that after about
10,000 sec they no longer have a resolution better than a single sample interval. When we read the data,
we typically use the time-stamp on the first data segment to establish the time at which the first sample was
taken. Starting from that time, we then determine the time of a data segment by using elapsed_time,
since the millisecond time resolution of epoch.time msec is not good enough. (See the comments in
Section ss:timestamp).

For our purposes, the most useful channels are channel . 0 and channel.10. Channel O contains
the actual voltage output of the IFO. This is typically in the range of £100. Later, we will discuss how to
calibrate this signal. Channel 10 contains a TTL locked level signal, indicating if the interferometer was
in lock. This is typically in the range from 1 to 10 when locked, and exceeds several hundred when the
interferometer is out of lock. Note: after coming into lock you will notice that the IFO output is often zero
(with a bit of DC offset) for periods ranging from a few seconds to a minute. This is because the instrument
output amplifiers are typically overloaded (saturated) when the instrument is out-of-lock. Because they are
AC coupled, this leads to zero output. After the instrument comes into lock, the charge on these amplifiers
gradually bleeds off (or one of the operators remembers to hit the reset button) and then the output “comes
alive”. So don’t be puzzled if the instrument drops into lock and the output is zero for 40 seconds afterwards!

The contents of the channel. * files was not the same for all of the runs. Lyon’s thesis [20] gives a
chart on page 136 with some “typical” channel assignments. The channel assignments during these Novem-
ber 1994 data runs are listed in a log book; they were initially chosen on November 14, then changed on
November 15th and again on November 18th; these assignments are shown in Table 3. (Note that the chart
on page 136 of Lyon’s thesis describes the channel assignments on 15 November 94, a day when no data
was taken.)
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Channel Number | Description < 14 November 94 | Description > 18 November 94
0 ~ IFO output i ' IFO output
1 unused magnetometer
2 unused microphone
3 microphone unused
4 dc strain dc strain
5 mode cleaner pzt mode cleaner pzt
6 seismometer seismometer
7 unused slow pzt
8 unused power stabilizer
9 unused unused
10 TTL locked TTL locked
11 arm 1 visibility arm 1 visibility
12 arm 2 visibility arm 2 visibility
13 mode cleaner visibility mode cleaner visibility
14 slow pzt unused
15 arm 1 coil driver arm 1 coil driver

Table 3: Channel assignments for the November 1994 data runs. Channels 0-3 are the “fast” channels,
sampled at about 10 kHz; the remaining twelve are the “slow” channels, sampled at about 1KHz.

IFO output (channel 0)
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Figure 1: This shows the appearance of channel . 0 before and after the ext ract program was repaired
(on 14 November 1996) to correctly extract data from the Exabyte data tapes. The old version of extract
dropped the ten data points directly above the words “missing data”; in effect these were interpolated by the
diagonal line (but with ten times the slope shown since everything in between was missing).
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3.2 Function: read block ()

int readblock(FILE *fp,short **here,int *n,float *tstart,float *srate,int
allocate, int *nalloc, int seek, struct ld.binheader* bh,struct ldmainheader*
mh)
This function efficiently reads one block of data from one of the channel . * data files, operating in sequen-
tial (not random) access. On first entry, it detects the byte-ordering of the machine that it is running on, and
swaps the byte order if the machine is “little-endian” (the data was originally written in “big-endian” format,
and is distributed that way). It will also print a comment (on first entry) if the machine is not big-endian.

The arguments are:

fp: Input. A pointer to the channel . * file being read.

here: Input/Output. A pointer to an array of shorts, which is where the data will be found when
read.block() retuns. If allocate=0, then this pointer is input. If allocate is non-zero,
then this pointer is output.

n: Output. A pointer to an integer, which is the number of data items read from the block, and written to
*here. These data items are typically short integers, so the number of bytes output is twice *n.

tstart: Output. The time stamp (elapsed time since beginning of the run) at the start of the data block.
Taken from the binary header.

srate: Output. The sample rate, in Hz, taken from the binary header.

allocate: Input. The read block () function will place the data that it has read in a user defined array
ifallocateis zero. If allocateis set, it will use malloc () to allocate a block of memory, and
set *hexe to point to that block of memory. Further calls to read block () will then use calls to
realloc () if necessary to re-allocate the size of the block of memory, to accommodate additional
data points. Note that in either case, read block () puts into the array only the data from the next
block; it over-writes any existing data in memory.

nalloc: Input/Output. If allocateis zero, then this is used to tell read block () the size (in shorts)
of the array *here. An error message will be generated by read block () if this array is too small
to accommodate the data. If allocate is nonzero, then this integer is set (and reset, if needed) to the
number of array entries allocated by malloc () /realloc (). In this case, be sure that *nalloc
is zero before the first call to read block ()}, or the function will think that it has already allocated
memory!

seek: Input. If seek is set to zero, then the function reads data. If seek is set nonzero, then
read block () does not copy any data into *here. Instead it simply skips over the actual data.

bh: Output. A pointer to the binary header structure defined above.
mh: Output. A pointer to the main header structure defined above.

This is a low-level function, which reads a block of data. It is designed to either write the data into a
user-defined array or block of memory, if allocate is off, or to allocate the memory itself. In the latter
mode, the function uses nalloc to track the amount of memory allocated, and reallocates if necessary. Itis
often useful to be able to quickly skip over sections of data (for example, just after the interferometer locks,
a few minutes is needed for the violin modes to damp down). Or if the IFO is out of lock, one needs to
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quickly read ahead to the next locked section. If seek is set, then this routine behaves exactly as it would
in normal (read) mode but does not copy any data.
The function read block () returns the number of data items that will be returned on the next call
to read.block (). It returns -1 if it has just read the final block of data (implying that the next call will
return 0). It returns O if it can not read any further data, because none remains.
Note that if the user has set allocate, then the read block () will allocate memory usingmalloc () /real!
It is the users responsibility to free this block of memory when it is no longer needed, using £ree ().

Author: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: This function was designed for variable-length blocks. It might be possible to simplify it for
fixed-length block sizes.
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3.3 Example: reader program

This example uses the function read block () described in the previous section to read the first 20 blocks
out of the file channel . 0. It prints the header information for each block of data, and the 100th data item
from each block, along with the time associated with that data item.

The data is located with the utility function grasp-open (), which is documented in Section 10.2. In
order for this example program to work, you must set the environment variable GRASP_DATAPATH to point
to a directory containing 40-meter data. You can do this with a command such as

setenv GRASP.DATAPATH /usr/local/data/19nov94.3
to access the data from run 3 on November 19th.

/* GRASP: Copyright 1997, Bruce Allen */
#include "grasp.h”

int main(){
FILE =fp;
short xdata;
float tblock, time, srate;
int code,num, size=0,count=0,which=100;
struct ld.binheader bheader;
struct ld_mainheader mheader;

/* open the IFO channel for reading */
fp=grasp.open ( "GRASP_DATAPATH", "channel.0");

/* read the first 20 blocks of lock data */
while (count <20) {
/* read a block of data */
code= read.block(fp, &data, &num, &tblock, &srate, 1, &size, 0,8bheader, &mheader) ;

/* if there is no data left, then break =/
if (code==0) break:

/* print some information about the data.*/
printf ("Data block %d from file channel.0 starts at t = %f sec.\n",count, tblock);
printf ("This block sampled at %f Hz and contains %d shorts.\n",srate,num);

/* print out some information about a single data point from block */

time=tblock+ (which—1.0)/srate;

printf{"Data item %d at time %f is %d.\n",which, time,data[which-1]);
printf (*The next block of data contains %d shorts.\n\n",code};

/* increment count of # of blocks read.x/
count++;

}

/* print information about the largest memory block allocated »/
printf ("The largest memory block allocated by read block() was %d shorts long\n",size);

/* free the array allocated by read_block() =/

free(data) ;
return 0;
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3.4 Function: find_locked ()

int find locked(FILE *fp,int *s.offset,int *sblock,int *e_offset, int *e block,
*tstart,float *tend, float *srate)
This mid-level function looks in a TTL-locked signal channel (typically, channel. 10) and finds the re-
gions of time when the interferometer is locked. The first time it is called, it returns information identifying
the start and end times of the first locked region. The second time it is called it returns the start and end
times of the second locked region, and so on.
The arguments are:

fp: Input. A pointer to the file containing the TTL lock signal. A typical file name might be “channel . 10”.

s-offset: Output. The offset (number of shorts) into the block where the IFO locks. This ranges from
0 to n-1 where the number of data items in block s_block is n. This offset points to the first locked
point.

sblock: Output. The number of the data block where the IFO locks. This ranges from 0 to n-1 where
the total number of data blocks in the file is n. o

e_offset: Output. The offset (number of shorts) into the block where the IFO loses locks. This ranges
from O to n-1 where the number of data items in the block e_block. This offset points to the last
locked point (not to the first unlocked point).

e.block: Output. The number of the data block where the IFO loses lock. This ranges from s_block to
n-1 where the total number of data blocks in the file is n.

tstart: Output. The elapsed time in seconds, since the beginning of the run, of the data block in which
the first locked point was found. Note: This is not the time of lock acquisition!

tend: Output. The elapsed time in seconds, since the beginning of the run, of the data block in which the
last locked point was found. Note: this is not the time at which lock was lost!

srate: Output. The sample rate of the TTL-locked channel, in Hz.

This routine uses read block () to examine successive sections of the channel .10 data file. It
looks for continuous sequences of data points where the value lies between limits (inclusive) LOCKL=1 and
LOCKH=10. It returns the start and end points of each successive such sequence. The upper and lower limits
can be changed in the code, if desired, however these values appear to be reliable ones.

The integer retuned by find locked () is the actual number of data points in the fast channels,
during the locked period. It returns O if there are no remaining locked segments.

If there is a gap in the data stream, arising not because the instrument went out of lock, but rather
because the tape-writing program was interrupted and then later restarted, find_locked () will print out
a warning message, but will otherwise treat this simply as a loss of lock during the period of the missing
data.

Author: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: This function was designed for variable-length blocks. It might be possible to simplify it for
fixed-length block sizes.
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3.5 Example: locklist program

This example uses the function £ind_locked described in the previous section to print out location infor-
mation and times for all the locked sections in the file channel.10. Note that this example only prints
out information for locked sections longer than 30 sec.

/* GRASP: Copyright 1997, Bruce Allen */
#include "grasp.h"

int main() {
float tstart, tend, srate, totaltime,begin, end;
int start_offset,start_block, end_offset,end block,points;
FILE xfplock;

/* Open the file for reading */
fplock=grasp.open ("GRASP_DATAPATH", "channel.1l0");

while (1) {

/* find the next locked section of the data x/
points=£find_locked(fplock, &start_offset,
&start_block, &end.offset,&end _block, &tstart,&tend, &srate) ;

/* if no data remains, then exit */
if (points==0)
break;

/* calculate start and end of lock times */
begin=tstart+start.offset/srate;
end=tend+end_offset/srate;
totaltime=end—begin;

/* print out info for lock intervals > 30 seconds x/ .

if (totaltime>30.0) {
printf("Locked from t = %f to %f for %f sec\n",begin,end, totaltime);
printf ("Number of data points is %d\n",points});
printf("Start block: %d End block: %$d\n",start_block,end.block);
printf("Start offset: %4 End offset %d\n\n",start_offset,end_offset);

}

}

return 0;

25




3.6 Function: get_data ()

int get.data(FILE *fp,FILE *fplock,float *tstart,int npoint, short *location, int
*rem, float *srate,int seek)
This high-level function is an easy way to get the IFO output (gravity wave signal) during periods when the
IFO is Jocked. When called, it returns the next locked data section of a user-specified length. It also specifies
if the section of data is part of a continuous locked stream, or the beginning of a new locked section.
The arguments are:

fp: Input. Pointer to a file (typically channel . 0) containing the channel 0 data.

fplock: Input. Pointer to a file (typically "channel.10")containing the TTL lock signal.
tstart: Output. The time of the zeroth point in the returned data.

npoint: Input. The number of data points requested by the user.

location: Input. Pointer to the location where the data should be put.

rem: Output. The number of points of data remaining in this locked segment of data.
srate: Output. The sample rate of the fast data channel, in Hz.

seek: Input. If this is zero, then the data is returned in the array location[ ]. However if this input is
non-zero, then get_data performs exactly as described, except that it does not actually read any data
from the file or write to location[ J]. This is useful to quickly skip over un-interesting regions of
the data, for example the first several minutes after the interferometer acquires lock.

This function returns 0 if there is no remaining locked data stream of the requested length. It returns 1 if
it is just starting on a new locked section of the data stream, and it returns 2 if the data is part of an on-going
locked sequence.

Author: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: This function was designed for variable-length blocks. It is possible to simplify it for fixed-
length block sizes. It should also be modified to return avcomplete set of different channels, by adding
additional arguments to specify which channels are desired and where the data should be placed. This
could also be used to eliminate the seek argument.
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3.7 Example: gwoutput program

This example uses the function get_data () described in the previous section to print out a two-column
file containing the IFO output for the first locked section containing 100 sample points. In the output, the
left column is time values, and the right column is the actual IFO output (note that because this comes
from a 12 bit A-D converter, the output is an integer value from -2047 to 2048). The program works by
acquiring data 100 points at a time, then printing out the values, then acquiring 100 more points, and so on.
Whenever a new locked section begins, the program prints a banner message to alert the user. Note that
typical locked sections contain ~ 107 points of data, so this program should not be used for real work — it’s
just a demonstration!

/* GRASP: Copyright 1997, Bruce Allen */
#include *grasp.h"

main () {
float tstart, time,srate;
int remain, i,npoint,code;
FILE xfp,*xfplock;
short xdata;

/* open the IFO output file and lock file =/
fp=grasp_open ("GRASP_DATAPATH", "channel .0") ;
fplock=grasp.open("GRASP_DATAPATH", "channel.l1l0");

/# specify the number of points of output & allocate array */
npoint=100;
data=(short *)malloc(sizeof (short)*npoint);

while (1) {
/# fill the array with npoint points of data */
code=get_data (fp, fplock, &tstart,npoint,data, &remain, &srate, 0);
/* if no data remains, exit loop */
if (code==0) break;
/* if starting a new locked segment, print banner */
if (code==1) {
printf (" NEW LOCKED SEGMENT \n\n");
printf(* Time (sec)\t IFO output\n");
}
/* riow output the data =/
for (i=0;i<npoint;i++) {
time=tstart+i/srate;
printf(*"%f\t%d\n", time,datali]);
}
}
/* close the data files, and return %/
fclose(fp);
fclose (£plock);
return 0O;
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3.8 Example: animate program

This example uses the function get_data () described in the previous section to produce an animated
display showing the time series output of the IFO in a lower window, and a simultaneously calculated FFT
power spectrum in the upper window. This output from this program must be piped into a public domain

graphing program called xmgr. This may be obtained fromhttp://plasma-gate.weizmann.ac.il/Xmgr/.

(This lists mirror sites in the USA and Europe also). Some sample output of animate is shown in Figure 2.

Spectrum
100 E T T T T 1 L]

0 2 2 1 1 1 1
0.0 1000.0 2000.0 3000.0 4000.0 5000.0
f(Hz)

IFO output 4

200.0 - T

100.0

0.0

-100.0

-200.0 .
22.00 22.10

t (sec)

Figure 2: Snapshot of output from animate. This shows the (whitened) CIT 40-meter IFO a few seconds
after acquiring lock, before the violin modes have damped down

After compilation, to run the program type:

animate | xmgr -pipe &
to get an animated display showing the data flowing by and the power spectrum changing, starting from the
first locked data. You can also use this program with command-line arguments, for example

animate 100 4 500 7 900 1.5 | xmgr -pipe &
will show the data from time ¢ = 100 to time ¢ = 104 seconds, then from ¢t = 500 to t = 507, then from
t = 900 to ¢ = 901.5. Notice that the sequence of start times must be increasing.

Note: The xmgr program as commonly distributed has a simple bug that needs to be repaired, in order
for the frequency scale of the Fourier transform to be correct. The corrected version of xmgr is shown in
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case 0:

==> delt=(x[ilen-11-x{01)/ (ilen-1.0);
==> T=(x[ilen-1]-x{0]);
setlength(cg, specset,ilen/2);
xx=getx(cg, specset) ;
case 1:
==> delt={(x[1ilen-1]-x[0])/(ilen-1.0);
==> T=(x[ilen-1]1-x[01);

Figure 3: The corrections to a bug in the xmgr program are indicated by the arrows above. This bug is in
the routine do_fourier () inthe file computils.c.

Figure 3.

/* GRASP: Copyright 1997, Bruce Allen */
#include "grasp.h”

int main(int argc,char =+argv) {
void graphout(float,float,int);
float tstart=1.e35,srate=1l.e—30,tmin, tmax,dt;
double time;
int remain,i,seg=0,code,npoint=4096, seek;
FILE =xfp,*fplock;
short *xdata;

/* open the IFO output file and lock file =/
fp=grasp-open{"GRASP_DATAPATH", "channel.0");
fplock=grasp.open("GRASP_DATAPATH", "channel.10");

/* allocate storage space for data */
data=(short *)malloc(sizeof (short)s*npoint);
/* handle case where user has supplied t or dt arguments */
if (arge==1) {
tmin=-1.e30;

dt=2.e30;
arge=-—1;
}
/* now loop ... x/
seg=argc;

while (argci=1) {
/* get the next start time and dt =/
if (arge!=-1) {
sscanf (argv[seg—argc+1l], *%£", &tmin) ;
sscanf (argv[seg—argc+2], "%£", &d4t) ;
argc—=2;

/* calculate the end of the observation interval, and get data */
tmax=tmin+dt;
while (1) {
if (tstart<tmin-— (npoint+20.)/srate) seek=1l; else seek=0;
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/* if no data left, return */
if (code==0) return 0;
/* we need to be outputting now. .. */
if (tmin<=tstart){
for (i=0;i<npoint;i++) {
time=tstart+i/srate;
printf ("$£\t%d\n", time,datali]);

|
|
‘ code=get_data(fp, fplock, &tstart,npoint,data, &remain, &srate, seek) ;
|

}

/* put out information for the graphing program */
graphout (tstart, tstart+npoint/srate, (argc==1 && time>=tmax));
}
/* if we are done with this interval, try next one */
if (time>=tmax) break;
}
}
/* close files and return */
fclose (fp);
return 0;
}
/#* This routine is pipes output into the xmgr graphing program = /
void graphout(float x1,float x2,int last) {
static int count=0;
printf (*&\n"); /* end of set marker x/
/* first time we draw the plot */
if (count==0) {

printf ("@doublebuffer true\n"); /= keeps display from flashing */
printf("@s0 color 3\n"); /* IFO graph is green */
printf(“@view 0.1, 0.1, 0.9, 0.45\n"); /* setthe viewport for IFO %/
printf(*ewith gli\n"); /* reset the current graph to FFT =/
printf("@view 0.1, 0.6, 0.9, 0.95\n");/xsetthe viewport FFT */
printf ("@with g0\n"); /* reset the current graph to IFO %/
printf ("eworld xmin %f\n*,x1); /*setmin x x/
printf("@world xmax %£f\n",x2); /% setmax X x/
printf ("Gautoscale\n"); /* autoscale first time through */
printf ("@focus off\n"); /* turn off the focus markers */
printf(“@xaxis label \"t (sec)\"\n"); /=IFO axislabel */
printf ("@£f£t(s0, 1)\n"); /* compute the spectrum */
printf("@sl color 2\n"); /+FFTisred x/
printf ("@émove g0.sl to gl.sO\n"); /* move FFT to graph 1 */
printf("@with gl\n"); /* set the focus on FFT %/
printf ("@gl type logy\n"); ) /* set FFT to log freq axis =/
printf ("@autoscale\n"); /* autoscale FFT */
printf("@subtitle \"Spectrum\"\n"); /* set the subtitle x/

| printf("@xaxis label \*f (Hz)\"\n"); /xFFT axislabel */

| printf ("@with gO\n"); /* reset the current graph IFO */

‘ printf ("@subtitle \"IFO output %d\"\n",count++) ;/xset IFO subtitle »/

| if (!last) printf(*@kill s0\n"); /* kill IFO; ready to read again */

}
else {

/* other times we redraw the plot */
printf("@s0 color 3\n"); /* set IFO green x/

3 printf (“@fft(s0, 1)\n"); /% FFT it */

i printf ("@sl color 2\n"); /* set FFT red %/

| printf("eémove g0.s1l to gl.s0\n"); /* move FFT to graph 1 */
printf("@subtitle \"IFO output %d\"\n",count++) ;/* set IFO subtitle */
printf ("@world zmin %f\n",xl1); /* set min X */
printf ("@world xmax %f\n",x2); /* set max x /
printf ("@autoscale yaxes\n"); /#* autoscale IFO x/
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printf ("@clear stack\n"); /* clear the stack %/

if (!last) printf("e@kill sO\n"); /* kill IFO data =/
printf(*@with gi\n"); /* switch to FFT =/
| printf(*eégl type logy\n"); /= set FFT to log freq axis */
| printf (*@clear stack\n"); /* clear stack */
l if (!last) printf(*ekill sO\n"); /* kil FFT =/
| printf("@with g0\n"); /* ready to read IFO again x/
}
return;
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3.9 Function: read_sweptsine ()

void read.sweptsine(FILE *fpss,int *n,float **freq, float **real,float **imag)
This is a low-level routine which reads in a 3-column ASCII file of swept sine calibration data used to cali-
brate the IFO.

The arguments are:

fpss: Input. Pointer to a file in which the swept sine data can be found. The format of this data is
described below.

n: Output. One greater than the number of entries (lines) in the swept sine calibration file. This is because
the read_sweptsine returns, in addition to this data, one additional entry at frequency f = 0.

freq: Output. The array *freg[1..*n-1] contains the frequency values from the swept sine cali-
bration file. The routine adds an additional entry at DC, *freqg[0]=0. Note: the routine allocates
memory for the array.

real: Output. The array *real[l. . *n-1] contains the real part of the response function of the IFO.
The routine adds *real {0]=0. Note: the routine allocates memory for the array.

imag: Output. The array *imag[1. . *n-1 ] contains the imaginary part of the response function of the
IFO. The routine adds *imag [0]=0. Note: the routine allocates memory for the array.

The swept sine calibration files are 3-column ASCII files, of the form:

fi T1 11
fo T2 iz
fm Tm im

where the f; are frequencies, in Hz, and r; and i; are dimensionless ratios of voltages. There are typically
m = 801 lines in these files. Each line gives the ratio of the IFO output voltage to a calibration coil driving
voltage, at a different frequency. The r; are the “real part” of the response, i.e. the ratio of the IFO output
in phase with the coil driving voltage, to the coil driving voltage. The i; are the “imaginary part” of the
response, 90 degrees out of phase with the coil driving voltage. The sign of the phase (or equivalently, the
sign of the imaginary part of the response) is determined by the following convention. Suppose that the
driving voltage (in volts) is

Veoil = 10cos(wt) = 10Re™* (3.9.1)

where w = 27 x 60 radians/sec is the angular frequency of a 60 Hz signal. Suppose the response of the
interferometer output to this is (again, in volts)

Viro = 6.93 cos(wt) + 4 sin(wt)
= 6.93 cos(wt) — 4 cos({wt + 7/2)
= 8 Reilwt=m/0) (3.9.2)

This is shown in Figure 4. An electrical engineer would describe this situation by saying that the phase of
the response Viro is lagging the phase of the driving signal V51 by 30°. The corresponding line in the swept
sine calibration file would read:

60.000 0.6930 —0.40000
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Figure 4: This shows a driving voltage V. (solid curve) and the response voltage Viro (dotted curve) as
~ functions of time (in sec). Both are 60 Hz sinusoids; the relative amplitude and phase of the in-phase and
out-of-phase components of Viro are contained in the swept-sine calibration files.

Hence, in this example, the real part is positive and the imaginary part is negative. We will denote this entry
in the swept sine calibration file by S(60) = 0.8 e~%"/6 = (0.693 — 0.400:. Because the interferometer
output is real, there is also a value implied at negative frequencies which is the complex conjugate of the
positive frequency value: S(—60) = $*(60) = 0.8 /6 = 0.693 -+ 0.400:.

Because the interferometer has no DC response, it is convenient for us to add one additional point at
frequency f = 0 into the output data arrays, with both the real and imaginary parts of the response set to
zero. Hence the output arrays contain one element more than the number of lines in the input files. Note
that both of these arrays are arranged in order of increasing frequency; after adding our one additional point
they typically contain 802 points at frequencies from 0 Hz to 5001 Hz.

For the data runs of interest in this section (from November 1994) typically a swept sine calibration
curve was taken immediately before each data tape was generated.

We will shortly address the following question. How does one use the dimensionless data in the
channel. 0 files to reconstruct the differential motion Al(¢) (in meters) of the interferometer arms? Here
we address the closely related question: given Viro, how do we reconstruct V.,3? We choose the sign
convention for the Fourier transform which agrees with that of Numerical Recipes: equation (12.1.6) of [1].
The Fourier transform of a function of time V(t) is

7(f) = / 2T (1)t (3.9.3)
The inverse Fourier transform is
V() = / =2 (£)df. (3.9.4)
With these conventions, the signals (3.9.1) and (3.9.2) shown in in Figure 4 have Fourier components:
Veol(60) =5 and  Viou(—60) =5, (3.9.5)
Viro(60) = 4% and  Vipo(—60) = 4e~*/6. (3.9.6)

At frequency fo = 60 Hz the swept sine file contains
$(60) = 0.8 e7/6 = S(—60) = $*(60) = 0.8 '™/, (3.9.7)
since S(—f) = S*(f).
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With these choices for our conventions, one can see immediately from our example (and generalize to
all frequencies) that
~ Viro

Veoil (f) = T0k

In other words, with the Numerical Recipes [1] conventions for forward and reverse Fourier Transforms,
the (FFT of the) calibration-coil voltage is the (FFT of the) IFO-output voltage divided by the complex
conjugate of the swept sine response.

(3.9.8)

Aauthor: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: The swept-sine calibration curves are usually quite smooth but sometimes they contain a
“glitch” in the vicinity of 1 kHz; this may be due to drift of the unity-gain servo point.




3.10 Function: calibrate()

void calibrate (FILE *fpss,int num, float *complex, float srate,int method, int
order)
This is a intermediate-level routine which reads in a 3-column ASCII file of swept sine calibration data
used to calibrate the IFO, and outputs an array of interpolated points suitable for calibration of FFT’s of the
interferometer output.

The arguments are:

fpss: Input. Pointer to the file in which the swept sine data can be found. The format of this data is
described below.

srate: Input. The sample rate Fy,mple (in Hz) of the data that we are going to be calibrating.

num: Input. The number of points N in the FFT that we will be calibrating. This is typically N = 2F
where & is an integer. In this case, the number of distinct frequency values at which a calibration
is needed is 25~1 + 1 = N/2 + 1, comresponding to the number of distinct frequency values from
0 (DC) to the Nyquist frequency fnyquist- See for example equation (12.1.5) of reference [1]. The
frequencies are f; = —I%P;ample fori=0,---,N/2.

complex: Input. Pointer to an array complex[0. .s] where s = 2% 4 1. The routine calibrate ()
fills in this array with interpolated values of the swept sine calibration data, described in the pre-
vious section. The real part of the DC response is in complex[0], and the imaginary part is in
complex[11. The real/imaginary parts of the response at frequency f; are in complex[2] and
complex[3] and so on. The last two elements of complex[ ] contain the real/imaginary parts
of the response at the Nyquist frequency Fsample/2.

method: Input. This integer sets the type of interpolation used to determine the real and imaginary part of
the response, at frequencies that lie in between those given in the swept sine calibration files. Rational
function interpolation is used if method=0. Polynomial interpolation is used if method=1. Spline
interpolation with natural boundary conditions (vanishing second derivatives at DC and the Nyquist
frequency) is used if method=2.

order : Input. Ignored if spline interpolation is used. If polynomial interpolation is used, then order is
the order of the interpolating polynomial. If rational function interpolation is used, then the numerator
and denominator are both polynomials of order order/2 if order is even; otherwise the degree of
the denominator is (ordexr+1)/2 and that of the numerator is (oxrder-1)/2.

The basic problem solved by this routine is that the swept sine calibration files typically contain data at a
few hundred distinct frequency values. However to properly calibrate the IFO output, one usually needs this
calibration information at a large number of frequencies corresponding to the distinct frequencies associated
with the FFT of a data set. This routine allows you to choose different possible interpolation methods. If
in doubt, we recommend spline interpolation as the first choice. The interpolation methods are described in
detail in Chapter 3 of reference [1].

Author: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: It might be better to interpolate values of f 2 times the swept-sine response function, as this is
the quantity needed to compute the IFO response function.
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3.11 Example: print_ss program

This example uses the function calibrate () to read in a swept sine calibration file, and then prints out
a list of frequencies, real, and imaginary parts interpolated from this data. The frequencies are appropriate
for the FFT of a 4096 point data set with sample rate srate. The technique used is spline interpolation.

/* GRASP: Copyright 1997, Bruce Allen x/
#include "grasp.h* '
#define NPOINT 4096

int main() {
float cplx[NPOINT+2],srate, freq;
int npoint,i;
FILE xfp;

/* open the swept-sine calibration file * / :
fp=grasp_open ("GRASP_DATAPATH", "swept-sine.ascii");

/* number of points of (imagined) FFT »/
npoint=NPOINT;

/* a sample rate often used for fast channels = /
srate=9868.4208984375;

/* swept sine calibration filename is first argument %/
calibrate(fp,npoint,cplx,srate,2,0);

/* print out frequency, real, imaginary interpolated values =/
printf ("# Freqg (Hz)\tReal\t\tImag\n");
for (i=0;i<=NPOINT/2;i++) {
freg=is*srate/NPOINT;
printf ("%e\t%e\t¥e\n", freq, cplx(2%i],cplx[2+i+1]);

}

return 0;
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3.12 Function: normalize_gw()

void normalize.gw(FILE *fpss, int npoint,float srate, float *response)

This routine generates an array of complex numbers R(f) from the information in the swept sine file and
an overall calibration constant. Multiplying this array of complex numbers by (the FFT of) channel.0
yields the (FFT of the) differential displacement of the interferometer arms Al, in meters: Al (£ =
R(f)Co(f)- The units of R(f) are meters/ADC-count.

The arguments are:

fpss: Input. Pointer to the file in which the swept sine normalization data can be found.

npoint: Input. The number of points N of channel. 0 which will be used to calculate an FFT for
normalization. Must be an integer power of 2.

srate: Input. The sample rate in Hz of channel. 0.

response: Qutput. Pointer to an array response[0..s] with s = N + 1 in which R(f) will be
returned. By convention, R(0) = 0 so that response [0] =response[1]=0. Array elements
response[2i] and response[2i+ 1] contain the real and imaginary parts of R(f) at frequency
f = israte/N. The response at the Nyquist frequency response [N]=0and response [N+1]=0
by convention. '

The absolute normalization of the interferometer can be obtained from the information in the swept sine
file, and one other normalization constant which we denote by Q). It is easy to understand how this works.
In the calibration process, one of the interferometer end mirrors of mass m is driven by a magnetic coil. The
equation of motion of the driven end mass is

d2

mEﬁAl = F(t) (3.12.1)

where F'(t) is the driving force and Al is the differential length of the two interferometer arms, in meters.
Since the driving force F(t) is proportional to the coil current and thus to the coil voltage, in frequency
space this equation becomes
~ ~ W
(—2mi f)2Al = constant X Vo = constant X S*I—Iz}))-. (3.12.2)
We have substituted in equation (3.9.8) which relates Viro and {7coi1. The IFO voltage is directly proportional
to the quantity recorded in channel. 0: Vipop = ADC x Cp, with the constant ADC being the ratio of the
analog-to-digital converter’s input voltage to output count.
Putting together these factors, the properly normalized value of Al, in meters, may be obtained from the
information in channel . 0, the swept sine file, and the quantities given in Table 4 by
— —_ . Q x ADC
Al = R(f) x C, th R(f) = ——ms75 3.12.3
(f) 0 Wi (f) —47r2f2s*(f) ( " )
where the ~denotes Fourier transform, and f denotes frequency in Hz. (Note that, apart from the complex
conjugate on S, the conventions used in the Fourier transform drop out of this equation, provided that
identical conventions (3.9.3,3.9.4) are applied to both Al and to Cp). The constant quantity ¢ indicated in
the above equations has been calculated and documented in a series of calibration experiments carried out
by Robert Spero. In these calibration experiments, the interferometer’s servo was left open-loop, and the
end mass was driven at a single frequency, hard enough to move the end mass one-half wavelength and shift
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Table 4: Quantities entering into normalization of the IFO output.

Description Name Value Units
Gravity-wave signal (channel.0) | Cy varies ADC counts
A—D converter sensitivity ADC 1072048 Viro (ADC counts) ™!
Swept sine calibration S from file ViFo (Veoi) ™
Calibration constant Q 1.428 x 1074 | meter Hz? (Vcon)'l

the interference fringe’s pattern over by one fringe. In this way, the coil voltage required to bring about a
given length motion at a particular frequency was established, and from this information, the value of Q
may be inferred. During the November 1994 runs the value of Q was given by

v9.35 Hz _ymeter Hz? Veoil
Q = T =1.428 x 10 —Vc(;—' where k = 21399m (3124)

Author: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: See comment for calibrate ().
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3.13 Example: power_spectrum program

This example uses the function normalize gw() to produce a normalized, properly calibrated power
spectrum of the interferometer noise, using the gravity-wave signal from channel . 0, the TTL-lock signal
from channel .10 and a swept-sine calibration curve.

The output of this program is a 2-column file; the first column is frequency and the second column is
the noise in units of meters/v/Hz.

A couple of comments are in order here:

1. Even though we only need the modulus, for pedagogic reasons, we explicitly calculate both the real and
imaginary parts of Al(f) = R(f)Co(f).

2. The fast Fourier transform of Al, which we denote FFT[Al], has the same units (meters!) as Al. As can
be immediately seen from Numerical Recipes equation (12.1.6) the Fourier transform Al has units of
meters-sec and is given by Al = At FFT[Al], where At is the sample interval. The (one-sided)

power spectrum of Al in meters/vHz is P = \/_%_ |Al| where T = NA is the total length of the
observation interval, in seconds. Hence one has

P= \/‘17252 At [FETIAY| = 1/ %At IFFT{AL]]. (3.13.1)

This is the reason for the factor which appears in this example.

3. To get a spectrum with decent frequency resolution, the time-domain data must be windowed (see the
example program calibrate and the function avg.spec () to see how this works).

A sample of the output from this program is shown in Figure 5.

Displacement Spectrum
19Nov94 un3

10 3 ¥ LS| T

Meters/rHz

10 100 1000
Frequency (Hz)

Figure 5: An example of a power spectrum curve produced with power_spectrum. The spectrum pro-

duced off a data tape (with 100 point smoothing) is compared to that produced by the HP spectrum analyzer
in the lab.
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/% GRASP: Copyright 1997, Bruce Allen %/
#include "grasp.h"
#define NPOINT 65536

int main() {
void realft(floatx,unsigned long,int);
float response[NPOINT+2],data[NPOINT], tstart, freq;
float res_real,res_imag,dl.real,dl_imag,c0_real, cO.imag, spectrum, srate, factor;
FILE *fpifo,xfplock,*fpss;
int i,npoint,remain;
short datas[NPOINT];

/* open the IFO output file, lock file, and swept-sine file /
fpifo=grasp_open("GRASP_DATAPATH", "channel.0");
fplock=grasp_open("GRASP_DATAPATH", "channel.10");
fpss=grasp-open ("GRASP_DATAPATH", "swept-sine.ascii");

/* number of points to sample and fft (power of 2) */
npoint=NPOINT;
/* skip 200 seconds into locked region (seek=1) */
while (tstart<200.0)
get_data(fpifo, fplock, &tstart,npoint,datas, &remain, &srate, 1) ;
/* and get next stretch of data from TTL locked file (seek=0) x/
get_data(fpifo, fplock, &tstart, npoint, datas, &remain, &srate, 0);
/* convert gw signal (ADC counts) from shorts to floats %/
for (i=0;i<NPOINT;i++) data[i]=datas{il;
/* FFT the data /
realft (data—1,npoint,1);
/* get normalization R(f) using swept sine file x/
normalize_gw(fpss,npoint, srate,response);
/* one-sided power-spectrum normalization, to get meters/rHz */
factor=sqrt(2.0/(sratesnpoint));
/* compute dl. Leave off DC (i=0) or Nyquist (i=npoint/2) freq */
for (i=1l;i<npoint/2;i++) {
/= frequency */
freg=ixsrate/npoint;
/* real and imaginary parts of tilde c0 */
cO_real=data[2xi};
cO_imag=data[2*i+1};
/* real and imaginary parts of R */
res_real=response[2x*i];
res_imag=response[2xi+1];
/* real and imaginary parts of tilde dl x/
dl_real=cO.realxres.real—cO_imag*res_imag;
dl_imag=c0_realsres_imag+cO_imagsres_real;
/* |tilde dl] */
spectrum=factorssqgrt (dl.realx*dl._real+dl_imagxdl_imag) ;
/* output freq in Hz, noise power in meters/rHz */
printf ("%e\t%e\n", freq, spectrum) ;

}

return 0;

Author: Bruce Allen, ballen@dirac.phys.uwm.edu
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Comments: The IFO output typically consists of a number of strong line sources (harmonics of the 60
Hz line and the 180 Hz laser power supply, violin modes of the suspension, etc) superposed on a
continuum background (electronics noise, laser shot noise, etc) In such situations, there are better
ways of finding the noise power spectrum (for example, see the multi-taper methods of David J.
Thompson [24], or the textbook by Percival and Walden [25]). Using methods such as the F-test
to remove line features from the time-domain data stream might reduce the sidelobe contamination
(bias) from nearby frequency bins, and thus permit an effective reduction of instrument noise near
these spectral line features. Further details of these methods, and some routines that implemen them,
may be found in Section 10.17.
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3.14 Example: calibrate program

This example uses the function normalize gw() and avg_spec () to produce an animated display,
showing the properly normalized power spectrum of the interferometer, with a 30-second characteristic
time moving average. After compilation, to run the program type:
calibrate | xmgr -pipe &

to get an animated display showing the calibrated power spectrum changing. An example of the output from
calibrate is shown in Figure 6. Note that most of the execution time here is spent passing data down the
pipe to xmgr and displaying it. The display can be speeded up by a factor of ten by binning the output values
to reduce their number to a few hundred lines (the example program calibrate binned. c implements
this technique; it can be run by typing calibrate binned | xmgr -pipe).

Calibrated IFO Spectrum
80.521896 sec since last lock. t = 80.5621896 sec.

10 a . T

10™ b 4

10™ \/ 4

10" L ]
S0 ]
g 10 ; J\J E
B L I ]

10 L U ‘ l

10”7 \W | ,

10 [ M Rl

107 E . L

10 100

f (Ha)

Figure 6: This shows a snapshot of the output from the program calibrate which displays an animated
average power spectrum (Welch windowed, 30-second decay time).

/* GRASP: Copyright 1997, Bruce Allen /
#include "grasp.h"
#define NPOINT 4096

int main(int argc,char xxargv) {
void graphout (int, float, float);
void realft(floatx,unsigned long,int);
float data[NPOINT], average [NPOINT], response[2+xNPOINT+4] ;
float spec,decaytime;
float srate,tstart=0,freq,tlock;
FILE xfpifo,*fpss,*xfplock;
int 1i,j,code,npoint,remain,ir,ii,reset=0,pass=0;
short datas [NPOINT];
.double mod;

/* open the IFO output file, lock file, and swept-sine file */
fpifo=grasp_open ( "GRASP_DATAPATH", *channel.0");
fplock=grasp_open ("GRASP_DATAPATH", "channel .10");
fpss=grasp.-open ("GRASP_DATAPATH", "swept-sine.ascii");
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/* number of points to sample and fft (power of 2) */
npoint=NPOINT;

/* set the decay time (sec) =/
decaytime=30.0;
/= getdata =/
while ((code=get_data(fpifo,fplock,&tstart,npoint,datas,&remain,&srate,0))) {
/* put data into floats */
for (i=0;i<npoint;i++) data(i]l=datas[il};
/* get the normalization */
if (!pass++)
normalize_gw(fpss, 2xnpoint, srate, response) ;
/* Reset if just locked =/
if (code==1) {
reset=0;
tlock=tstart;
avg.spec (data, average,npoint, &reset, srate,decaytime, 2) ;
} else { «
/* track average power spectrum, with Welch windowing. =/
avg_spec (data, average,npoint, &reset, srate,decaytime, 2) ;
/* loop over all frequencies except DC (j=0) & Nygquist (j=npoint/2) */
for (j=1;j<npoint;j++) {
/* subscripts of real, imaginary parts */
ii=(ir=j+j)+1;
/* frequency of the point =/
freqg=0.5*srate*j/npoint;
/* determine power spectrum in (meters/rHz) & print it */
mod=response[ir]*responsel[ir]+response[iil*response[iil];
spec=sqgrt (average[j]*mod) ;
printf ("%e\t%e\n", freq, spec);
}
/* print out useful things for xmgr program ... */
graphout (0, tstart, tlock);
}
}

return 0;

}

void graphout (int last,float time,float tlock) {
static int count=0;
printf ("&\n");
/* first time we draw the plot %/
if (count++==0) {
printf("@doublebuffer true\n®);

/* end of set marker =/

/* keeps display from flashing =/

printf("@focus off\n");
printf(*@s0 color 2\n");

printf("@g0 type logxy\n");

printf("@autoscale \n");

printf ("@world xmin
printf ("@world xmax
printf ("eéworld ymin
printf ("@world ymax
printf ("@yaxis tick
printf ("@yaxis tick
printf ("@yaxis tick
printf("@yaxis tick

%e\n*,10.0);
%$e\n",5000.0);
$e\n",1l.e-=19);
%e\n",1l.e-9);
minor on\n");
major .on\n");
minor 2\n");
major 1i\n");

printf ("@redraw \n");

/* wm off the focus markers */
/x FFT is red =/

/* set graph type to log-log */
/* autoscale FFT =/

/* setmin x =/

/* set max x x/

/*setminy %/

/* setmax y =/

/* turn on tick marks %/

/* turn on tick marks %/

/* turn on tick marks =/

/* turn on tick marks %/

/= redraw graph */
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printf ("@xaxis label \"f (Hz)\"\n");

/= FFT horizontal axis label */

printf("@yaxis label \"meters/rHz\"\n"); /= FFT vertical axis label */
printf("@title \"Calibrated IFO Spectrum\”\n");/+settitle x/

/* set subtitle x/

printf ("@subtitle \"%.2f sec since last lock. t = %.2f sec.\"\n",time—tlock, time);

if (!last) printf("ekill sO0\n");

/= kill graph; ready to read agai */

printf("@subtitle \"%.2f sec since last lock. t = %.2f sec.\"\n",time—tlock, time);

}

else {
/* other times we redraw the plot x/
/= set subtitle x/
printf ("@s0 color 2\n");
printf ("@g0 type logxy\n"):;
printf (“eworld xmin %e\n*,10.0);
printf ("@world xmax %e\n",5000.0);
printf (“@world ymin %e\n",l.e-19);
printf("@world ymax %e\n",l.e—9);
printf("@yvaxis tick minor on\n");
printf("@yaxis tick major on\n");
printf("@yaxis tick minor 2\n");
printf (*@yaxis tick major 1\n");
printf ("@redraw\n") ;
if (!last) printf("@kill sO\n*);:

}

return;

Author: Bruce Allen, ballen@dirac.phys.uwm.edu

/= FFTis red */

/= set graph type to log-log */
/# set min x =/

/* set max x x/

/*setminy %/

/*setmaxy x/

/= turn on tick marks */

/* turn on tick marks x/

/* turn on tick marks */

/* tumn on tick marks */

/* redraw the graph x/

/* kill graph, ready to read again */

Comments: See comments for power _spectrum example program.



3.15 Example: diag program

This program is a frequency-domain “novelty detector” and provides a simple example of a time-frequency

diagnostic method. The actual code is not printed here, but may be found in the GRASP directory src/examples/exan

in the file diag.c.
The method used by diag is as follows:

1. A buffer is loaded with a short stretch of data samples (2048 in this example, about 1/5 of a second).

2. A (Welch-windowed) power spectrum is calculated from the data in the buffer. In each frequency bin,
this provides a value S(f).

3. Using the same auto-regressive averaging technique described in avg.spec () the mean value of
S(f) is maintained in a time-averaged spectrum (S(f)). The exponential-decay time constant for this
average is AVG_TIME (10 seconds, in this example).

4. The absolute difference between the current spectrum and the average AS(f) = |S(f) — (S(f))| is
determined. Note that the absolute value used here provides a more robust first-order statistic than
would be provided by a standard variance (AS(f))2.

5. Using the same auto-regressive averaging technique described in avg_spec() the value of AS(f)
is maintained in a time-averaged absolute difference (AS(f)). The exponential-decay time constant
for this average is also set by AVG_TIME.

6. In each frequency bin, AS(f) is compared to (AS(f)). If AS(f) > THRESHOLD X (AS(f)) then
a point is plotted for that frequency bin; otherwise no point is plotted for that frequency bin. In this
example, THRESHOLD is set to 6.

7. In each frequency bin, AS(f) is compared to (AS(f)). If AS(f) < INCLUDE x (AS(f)) then
the values of S(f) and AS(f) are used to “refine” or “revise” the auto-regressive means described
previously. In this example, INCLUDE is set to 10.

8. Another set of points (1024 in this example) is loaded into the end of the buffer, pushing out the oldest
1024 points from the start of the buffer, and the whole loop is restarted at step 2 above.

The diag program can be used to analyze any of the different channels of fast-sampled data, by set-
ting CHANNEL appropriately. It creates one output file for each locked segment of data. For example if
CHANNEL is set to 0 (the IFO channel) and there are four locked sections of data, one obtains a set of files:
ch0diag.000,ch0diag.001,ch0diag.002,and chOdiag.003.

In similar fashion, if CHANNEL is set to 1 (the magnetometer) one obtains files:
chldiag.000,chldiag.001,chldiag.002,and chldiag.003.

These files may be used as input to the xmgr graphing program, by typing:

xmgr ch0diag.000 chldiag.000

(one may specify as many channels as desired on the input line). A typical pair of outputs is shown in
Figures 7 and 8. By specifying several different channels on the command line for starting xmgzr, you can
overlay the different channels output with one another. This provides a visual tool for identifying correla-
tions between the channels (the graphs shown below may be overlaid in different colors).

Author: Bruce Allen, ballen@dirac.phys.uwm.edu
Comments: This type of time-frequency event detector appears quite useful as a diagnostic tool. It might

be possible to improve its high-frequency time resolution by being clever about using intermediate
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19 November 1994 run 1

Time/Frequency statistics for channel 0
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Figure 7: A time-frequency diagnostic graph produced by diag. The vertical line pointed to by the arrow
1s a non-stationary noise event in the IFO output, 325 seconds into the locked section. It sounds like a “drip”
and might be due to off-axis modes in the interferometer optical cavities.

information during the recursive calculation of the FFT. One should probably also experiment with
using other statistical measures to assess the behavior of the different frequency bins. It would be nice
to modify this program to also examine the slow sampled channels (see comment for get_data () ).




19 November 1994 run 1

Time/Frequency statistics for channel 1
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Figure 8: A time-frequency diagnostic graph produced by diag. This shows the identical period as the
previous graph, but for the magnetometer output. Notice that the spurious event was not caused by magnetic
field fluctuations.
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4 GRASP Routines: Reading/using FRAME format data

The LIGO and VIRGO projects have recently adopted a data format standard called the FRAME format for
time-domain data. The 40-meter laboratory at Caltech implemented this data format in Spring 1997; data
taken after that time is in the FRAME format. The FRAME libraries are publicly available from the VIRGO
project; they may be downloaded from the site http://lapphp.in2p3.fr/virgo/FrameL. Con-
tact Benoit Mours mours@lapp.in2p3 . fr for further information.

The GRASP package includes routines for reading and using data in the FRAME format. Also included
in the GRASP package is a translator (see Section 10.16) which translates data from the old data format
used in 1994 to the new FRAME format. Data distributed for use with GRASP will primarily be distributed
in this new FRAME format, and over a period of time we will remove from the GRASP package all of the
code and routines which make use of the old format. In order to help make the transition from old format to
FRAME format as smooth as possible, the GRASP package currently contains both old format and FRAME
format versions of all of the example programs. For example animate and animateF are two versions
of the same program. The first reads data in the old format, the second reads data in the FRAME format. If
you are new to GRASP, we don’t recomend that you waste your time with the old data format; start using
the FRAME format immediately.

Data distributed in the FRAME format may not be compatible with future releases of the FRAME li-
brary, so if the FRAME libraries are updated you may need to obtain a new copy of the standard 40-meter test
data set from November 1994. The data that has been distributed and is currently being distributed makes
use of either version 2.20 or 2.30 of the FRAME library. Only two files in the GRASP package (src/-
utility/frameinterface.c and src/examples/examplesutility/translate. c) de-
pend upon the version of the FRAME library. We distribute GRASP with versions of these files appropriate
for different releases (currently 2.20, 2.30, and 2.33) of the FRAME library. The version 2.30 FRAME
library data format is compatible with versions 2.30 and 2.33 of the FRAME library.

In order to give the 1994 40-meter data a form as similar as possible to the data being taken in 1997 and
beyond, the channel names used have been given equivalent “FRAME” forms. These are shown in Table 5.

Note that new data created in the frame format will attempt to address at least a couple of the problems
in the “old format” data. In particular, new frame format data (i.e., post 1996) has sample rate in Hz always
being powers of 2, for example, 4,096 Hz or 16 Hz or 16,384 Hz. In addition, each frame always contains
a power-of-two number of seconds of data. These conventions will make it easy to “match up” sample of
channels taken at different rates, and to do FFT’s of the channels. However the 1994 data does not conform
to either of these conventions: each frame of 1994 data contains 5000 samples of the slow channels, and
50,000 samples of the fast channels, during a 5.06666 - - - second interval.




Channel # < 14 Nov 94 FRAME name > 18 Nov 94 FRAME name
0 IFO output IFO.DMRO IFO output IFO_DMRO
1 unused magnetometer IFO Mag_x
2 unused microphone IFOMike
3 microphone IFO Mike unused
4 dc strain IFO_DCDM dc strain IFO_DCDM
5 mode cleaner pzt PSLMC_V mode cleaner pzt PSLMC.V
6 seismometer IFO_ Seis_1 seismometer IFO_Seis_1
7 unused slow pzt PSL_SPZTV 1.
8 unused power stabilizer ! PSL_ PSS!
9 unused unused
10 TTL locked IFO_Lock TTL locked IFO_Lock
11 arm 1 visibility IFO_EAT arm 1 visibility IFO_EAT
12 arm 2 visibility IFO_SAT arm 2 visibility IFO_SAT
13 mode cleaner visibility IFOMCR mode cleaner visibility IFOMCR
14 slow pzt IFO_SPZT unused IFO_SPZT
15 arm 1 coil driver SUS_EE_Coil .V arm 1 coil driver SUS_EE_Coil -V
ocal time.

On 18 November 1994 run 1 this was accidentally disconnected until approximately 20:00

Table 5: Channel assignments for the November 1994 data runs. Channels 0-3 are the “fast” channels,
sampled at about 10 kHz; the remaining twelve are the “slow” channels, sampled at about 1KHz. The

equivalent “FRAME” format names are also given.
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4.1 Time-stamps in the November 1994 data-set

There is a serious problem in the original data format used in November 1994. To understand the nature of
this problem, remember that the individual data samples (fast channels) are taken at about 10kHz, so that
the time between samples is about 100 usec. Ideally, the time-stamps of the individual blocks should be
recorded with a precision which is substantially greater than this, i.e. a few usec at the most. However the
November 1994 time stamps are recorded in two ways: as an integer number of seconds and msec (with
1000 psec resolution) and as a floating point elapsed time. This latter quantity has a resolution of less than
one psec at early times, but a resolution of about 2000 usec at late times (say 15,000 sec into a run).

Thus, in trans]ating the November 1994 data into frames (which have 1 nanosec resolution time-stamps),
a reasonable effort was made to “correct” these time-stamps as much as possible, and to specify the time at
which each data block begins as precisely as possible. After some research, we believe that the each block
of old-format data is precisely 76/15 = 5.0666666 - - - seconds long. So we have corrected the time stamps
accordingly. One can show that in general, our time stamps agree with those in the original data, when they
are expressed as floats, i.e. with the precison recorded in the original data set. There are some blocks where
there is an error in the least-significant bit of the cast-into-float quantity; we do not understand this as well
as we would like. ‘

Please, be warned that the absolute time indicated by these stamps is not correct! These time stamps
were not taken with a modern GPS clock system, or even with an old-fashioned WWYV system. Our under-
standing is that the real-time computer system on which these data were originally taken had its clock set by
wristwatch, with an accuracy of perhaps +5 minutes.. Indeed the computer system crashed on November
15, 1994 and the clock was subsequently reset again, so even the time difference can not be trusted between
November14 and November18 data. It appears that the computer clock was not reset after November15th,
so the relative times in the remaining data may be trustworthy with somewhat better than £1 msec accuracy.

In any data anaysis work (such as pulsar searching) where it is important to have precise time-stamps,
these shortcomings must be taken into account. If you really want to determine the times more precisely
than a millisecond, our only suggestion is to examine the seismometer data channel and correlate it with
similar data taken by a system with good time-stamps. We don’t know where to find such data, but it might
exist, somewhere, in the public domain. If you do go to this trouble, please write to us and tell us the
conclusions of your study. We would be delighted to correct the absolute offset error in these November
1994 time-stamps, if someone could show us how to do it!

50



4.2 Function: fget_ch{()

int fget.ch(struct fgetoutput *fgetoutput, struct fgetinput *fgetinput)
This is a general function for sequentially reading one or more channels of FRAME format data. It can be
used to obtain either locked sections only, or both locked and unlocked sections, and to retrieve calibration
information from the FRAME data. It concatenates multiple frames and multiple files containing frames as
necessary, to retum continuous-in-time sequences.

The inputs to the routine £get_ch () are contained in a structure:

struct fgetinput {
int nchan;
char **chnames;
int npoint;
short **locations;

: char *(*files) ();

int (*filedes) () ;
int inlock;
int seek;
int calibrate;

Y

The different elements of the structure are:
nchan: Input. The number of channels that you want to retrieve (> 1).

chnames: Input. The list of channel names. Each element of chnames [0 . .nchan-1] is a pointer to
a null-terminated string. Note that the number of channels requested, and their names, must not be
changed after the first call to fget_ch. It is assumed that the first channel in the list has the fastest
sample rate of any of the requested channels.

npoint: input. The number of points requested from the first channel. (May change with each call.)

locations: Input. The locations in memory where the arrays corresponding to each channel should be
placed are locations[0. .nchan-1].(May change with each call.)

files(): Input. A pointer to a function, which takes no arguments, and returns a pointer to a null-
terminated character string. This string is the name of the file to look in for FRAME format data. If
no further frames remain in the file, then the function £iles () is called again. When this function
returns 2 null pointer, it is assumed that no further data remains. A useful utility function called
framefiles () has been provided with GRASP, and may be used as this argument. (May change
with each call.)

filedes (): Input. This argument is used if and only if the previous argument, fgetinput.files
is NULL. If fgetinput.files is not NULL then this argument is not used. This argument is a
pointer to a function, which takes no arguments, and returns an integer file descriptor. The integer
returned is a file descriptor for a file containing FRAME format data. If no further frames remain
in the file, then the function filedes () is called again. When this function returns a negative file
descriptor, it is assumed that no further data remains. (May change with each call.)

inlock: Input. Set to zero, return all data; set to non-zero, return only the locked sections of data. If set
nonzero, then on output £getoutput.locklowand fgetoutput.lockhi will be set.
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seek: Input. Set to zero, return data. Set to non-zero, seek past the data, performing all normal operations,
but do not actually write any data into the arrays pointed to by locations[0. .nchan-1]. (May
change with each call.) This is useful for skipping rapidly past uninteresting regions of data, for
example, the first few minutes after coming into lock.

calibrate: Input. If set non-zero, return calibration information. If set to zero, do not return calibration
information. (May change with each call.)

Except as noted above, it is assumed that none of these input arguments are changed after the first call to

fget_ch(). Itis also assumed that within any given frame, the numbers of points contained in different

channels are exact integer multiples or fractions of the numbers of points contained in the other channels.
The outputs from the routine £get_ch () are contained in a structure:

struct fgetoutput {
double tstart;
double srate;
int *npoint;
int *ratios:
"int discarded;
double tfirst;
double dt;
double lostlock;
double lastlock;
int returnval;
int frinum;
float *fri;
int tcalibrate;
int locklow;
int lockhi;

Y

The different elements of the structure are:

tstart: Output. Time stamp of the first point output in channel chnames [0]. Note: please see the
comments in Section 4.1.

srate: Output. Sample rate (in Hz) of channel chnames[0].

npoint: Output. The number of points returned in channel chnames[i] is npoint[i]. Note that
npoint [0] is precisely the number of points requested in the input structure fgetinput.npoint.

ratios: Output. The sample rate of channel chnames[0] divided by the sample rate of channel
chnames[i]isgiveninratios[i]. Thus ratios[0]=1.

discarded: The number of points discarded from channel chnames[0]. These points are discarded
because there is a missing period of time between two consecutive frames, or because the instrument
was not in lock for long enough to return the requested number of points (or for both reasons).

tfirst: Output. The time stamp of the first point returned in the first call to fget_ch ().

dt: Output. By definition, tstart-tfirst, which is the elapsed time since the first time stamp.
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lostlock: Output. The time at which we last lost lock (if searching only for locked segments).
lastlock: Output. The time at which we last regained lock (if searching only for locked segments).

returnval: Output. The return value of £get._ch(): 0 if it is unable to satisfy the request, 1 if the
request has been satisfied by beginning a new locked or continuous-in-time section, and 2 if the data
returned is part of an ongoing locked or continuous-in-time sequence.

frinum: Output. Three times the number of frequency values for which we are returning static calibration
information. If this number is not divisible by three, something is wrong!

fri: Output. A pointer to the array of calibration data. This data is arranged with a frequency, then
the real part, then the imaginary part of the response, followed by another frequency, then real part,
then imaginary part, etc. So £ri[0]=fy, £ri[l]=rg, fri[2]1=dg, fri[3]=f1, fri[4]1=ry,
fri[5]=t1,... and the total length of the array is fri [0. . frinum-1].

tcalibrate: Qutput. The time at which the current calibration information became valid.

locklow. Output. The minimum value (inclusive) for "in-lock” in the lock channel. Set if and only if
fgetinput. inlockis nonzero.

lockhi. Output. The maximum value (inclusive) for "in-lock” in the lock channel. Set if and onl'y if
fgetinput.inlockis nonzero.

This routine is a useful interface to the FRAME library. It reads frames from files. To get the name of the
first file to open, this routine calls the function files () specified in the input structure. Then, whenever
there are no remaining frames in this file, it calls £iles () again. This function must return the name of
the desired file, or NULL if no files remain. For example:

static char *filelist[]={

"Cl-94_11_19 23 _50_46", "Cl-94_11_19_23_53_28",
"Cl-94_11_19_23_56_10", "C1-94_11_19_23_58_52",
"C1-94_11 20_00_01_34", "C1l-94_11_20_00_04_16" 3;

char *files() {
static int entry=0;
if (entry>=6)
return NULL;
else
return filelist[entry++];

The function fget_ch () returns O if it is unable to satisfy the request for fgetinput.npoint
points. It returns 1 if the request has been satisfied, and it is beginning a new locked section (or if the frames
were not contiguous in time, and it is beginning with a new frame). It returns 2 if the data returned is part of
an ongoing locked or continuous sequence.

When several channels are requested, and they have different sample rates, the first channel requested
must always have the fastest sample rate. Other requested channels may have this same sample rate, but
none may have a faster sample rate. Points are returned from the slower channels if and only if they satisfy
the following condition. Suppose that r is the ratio of the channel 0 sample rate to the channel K sample
rate, and label the points in channel 0 by ¢ = 0, - - -, nr — 1, and the points in channel Kby j = 0,---,n—1.
Then point ; in channel K is returned if and only if point ¢ = rj is returned from channel 0.
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Authors: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: We intend to store the ranges corresponding to “in lock” in the frames, so these will not need
to be entered by the user.




4.3 Function: framefiles ()

char *framefiles()
This is a “utility function” for frame access. It takes no arguments, and returns a pointer to a static character
string. It is intended primarily as an argument to be passed to the function fget_ch() via the structure
member fgetinput.files.

The operation of the framefiles () is determined by two environment variables: GRASP_FRAMEPATH,
and GRASP_REALTIME. If GRASP_REALTIME is set, then the framefiles () interogates the EPICS
control system and returns a pointer to a character string containing the name of the frame file most recently
written to disk. This option is only intended for use in the 40-meter lab control room, for real-time analysis
of data. For most users of GRASP, this option will never be used. Note: to set/unset the environment vari-
able, use the commands:

setenv GRASP.REALTIME

unsetenv GRASP REALTIME
respectively.

If the GRASP_REALTIME environment variable is NOT set, then the behavior of framefiles () is
determined by the value of the GRASP_FRAMEPATH environment variable. This variable should point to a
directory, and may be set with a command like:

setenv GRASPDATAPATH /usr/local/GRASP/data/l8nov94.lframe
The first time that framefiles () is called, it looks for all files named C1-* in the directory pomted
to by GRASP_FRAMEPATH. The file names are stored internally, framefiles () retumns a pointer to a
character string containing the name of the first of these files. The second call to framefiles () returns
the name of the second file found in the directory, and so on. When no more files remain, framefiles ()
returns a NULL pointer.

A simple way to analyze a subset of data is to create a directory containing symbolic links to the FRAME
files containing data that you want to analyze, and to set the environment variable GRASP_FRAMEPATH to
point to that directory.

Authors: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: None.
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4.4 Example: locklistF program

This example uses the function £get_ch described in the previous section to print out location information
and times for all the locked sections in the directory pointed to by the environment variable GRASP_FRAMEPATH.
To run this program, type
setenv GRASP FRAMEPATH /usr/local/GRASP/18nov94.1lframe
locklistF
and a list of locked time intervals will be printed out. Here is some typical output:

locklistF

Framel. Version:April 10, 1997; v2.23(Apr 10 1997 18:32:52 ../src/FrameL.c¢)
GRASP: framefiles(): using 83 files from directory /ballen2/18nov94.lframe

Id: frameinterface.c,v 1.4 1997/04/30 07:00:39 ballen Exp

Name: RELEASE_1_3 :

In lock from t = 0.000000 into run to 526.450008 into run for 526.450008 sec
Out of lock from t = 526.450008 into run to 555.384692 into run for 28.934683 ;.
In lock from t = 555.384692 into run to 667.775527 into run for 112.390835 sec
Out of lock from-t = 667.775527 into run to 708.000798 into run for 40.225272
In lock from t = 708.000798 into run to 2268.670924 into run for 1560.670125 s
Out of lock from t = 2268.670924 into run to 2283.429062 into run for 14.75813
In lock from t = 2283.429062 into run to 3954.517061 into run for 1671.088000
Out of lock from t = 3954.517061 into run to 3966.367962 into run for 11.85090
GRASP: fget_ch(): FRAMES NOT SEQUENTIAL

run 3 frame 842 ended at time: 785221840.948503 sec

run 3 frame 843 started at time: 785223012.765137 sec

Time gap is 1171.816634 sec

Gap starts 4266.133503 seconds into run; ends 5437.950137 seconds into run.
Discarding 294210 points remaining in the previous frame(s).

Id: frameinterface.c,v 1.4 1997/04/30 07:00:39 ballen Exp

Name: RELEASE_1_3

In lock from t = 3966.367962 into run to 4266.133503 into run for 299.765540 s
Out of lock from t = 4266.133503 into run to 5437.950137 into run for 1171.816
GRASP: fget_ch(): FRAMES NOT SEQUENTIAL

run 3 frame 1040 ended at time: 785224015.965104 sec

run 3 frame 1041 started at time: 785224175.714844 sec

Time gap is 159.749740 sec

Gap starts 6441.150104 seconds into run; ends 6600.899844 seconds into run.
Discarding 132000 points remaining in the previous frame(s) .

Id: frameinterface.c,v 1.4 1997/04/30 07:00:39 ballen Exp

Name: RELEASE 1_3

In lock from t = 5437.950137 into run to 6441.150104 into run for 1003.199968
Out of lock from t = 6441.150104 into run to 6600.899844 into run for 159.7497
In lock from t 6600.899844 into run to 7375.472558 into run for 774.572714 s
Out of lock from t = 7375.472558 into run to 7391.474039 into run for 16.00148
In lock from t = 7391.474039 into run to 7685.337699 into run for 293.863659 s
Out of lock from t = 7685.337699 into run to 7719.763049 into run for 34.42535
In lock from t = 7719.763049 into run to 7973.647310 into run for 253.884261 s
Out of lock from t = 7973.647310 into run to 8083.507974 into run for 109.8606
In lock from t = 8083.507974 into run to 9160.715956 into run for 1077.207982
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Out of lock from t = 9160.715956 into run to 9220.780081 into run for 60.064125 ¢
In lock from t = 9220.780081 into run to 10552.863624 into run for 1332.083544 se
Out of lock from t = 10552.863624 into run to 10585.141461 into run for 32.277835
In lock from t = 10585.141461 into run to 11466.650847 into run for 881.509386 sec
Out of lock from t = 11466.650847 into run to 11483.939559 into run for 17.28871:
In lock from t = 11483.939559 into run to 13268.796352 into run for 1784.856793 ¢
Out of lock from t = 13268.796352 into run to 13297.379120 into run for 28.58276¢
GRASP: fget_ch(): could not open NULL file name

had 0 points; still need 296000 points...

Discarding 0 points remaining in the previous frame(s).

Id: frameinterface.c,v 1.4 1997/04/30 07:00:39 ballen Exp

Name: RELEASE_1_3

Note that this example only prints out information for locked sections longer than 30 sec. Also notice
that because there are time gaps in between some of the sucessive frames, error messages are printed out.
Notice the form of the GRASP error and warning messages. These typically begin with a line like:

GRASP: fget.ch(): this is the warning or error message
which specifies which GRASP function the error messages come from. They end with a pair of lines like

Id: frameinterface.c,v 1.4 1997/04/30 07:00:39 ballen Exp

Name: Name: RELEASE.1.3
which are information about the file from which the waming or error message came, including its ver-
sion/release numbers. Here is the code for the 1lock1istF example program:

/* GRASP: Copyright 1997, Bruce Allen %/
#include "grasp.h"

int main() {
double begin, end, savebegin, saveend;
struct fgetoutput fgetoutput;
struct fgetinput fgetinput;

/* this number of samples is about 30 seconds of data x/
fgetinput.npeint=296000;

/* number of channels needed is one x*/
fgetinput.nchan=1;

/= storage for channel names, data locations, points returned, ratios */
fgetinput.chnames=(char #x)malloc(fgetinput.nchanxsizeof (char *));
fgetinput.locations=(short x¢)malloc (fgetinput.nchanxsizeof (short *));
fgetoutput.npoint=(int *)malloc (fgetinput.nchanxsizeof (int));
fgetoutput.ratios=(int *)malloc (fgetinput.nchanxsizeof (int));

/= since we operate in SEEK mode, no space needed for data storage */
fgetinput.locations [0]=NULL;

/* use utility function framefiles() to retrieve file names x* /
fgetinput.files=framefiles;

/* get only the Jocked sections */
fgetinput.inlock=1;

/* seek over data (we don’t care what the values are!) =/
fgetinput.seek=1;
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/* don’t need calibration information */
fgetinput.calibrate=0;

/* set channel name */
fgetinput.chnames[0}="IFO_DMRO";

/* start the main loop */
while (1) {

/* find the next locked section of the data */
fget_ch(&fgetoutput, &fgetinput) ;

/* see if we fell out of lock, and print if we did */
if (fgetoutput.returnval==1) {

/* time at whick lock lost (relative to start of run) =/
begin=fgetoutput.lostlock—-£fgetoutput.tfirst;

/* time at whick lock aquired (relative to start of run) */
end=fgetoutput.lastlock—fgetoutput.tfirst;
if (begin>0.0 || fgetoutput.returnval==0) {
printf(*In lock from t = %£f into run to %f into run for %f sec\n",
saveend, begin,begin—saveend) ;
printf("Oout of lock from t = %f into run to %f into run for %f sec\n",
begin, end, end—begin) ;

}

saveend=end;

}

/* if no data remains, then exit x/

if (fgetoutput.returnval==0) {
printf ("End of data at time %f\n", fgetoutput.tstart—fgetoutput.tfirst);
break;

}
}

return 0;
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4.5 Example: gwoutputF program

This example uses the function fget_ch () described in the previous section to print out a two-column file
containing the IFO output for the first locked section containing 100 sample points. To run this program,
type

setenv GRASP.FRAMEPATH /usr/local/GRASP/18nov94.l1frame

gwoutputF
In the output, the left column is time values, and the right column is the actual IFO output (note that because
this comes from a 12 bit A-D converter, the output is an integer value from -2047 to 2048). The program
works by acquiring data 100 points at a time, then printing out the values, then acquiring 100 more points,
and so on. Whenever a new locked section begins, the program prints a banner message to alert the user.
Note that typical locked sections contain = 107 points of data, so this program should not be used for real
work — it’s just a demonstration!

/* GRASP: Copyright 1997, Bruce Allen x/
#include "grasp.h*

main() {
float tstart, time,srate;
int i,npoint,code;
short xdata;
struct fgetinput fgetinput;
struct fgetoutput fgetoutput;

/* specify the number of points of output & allocate array =/
npoint=100;

data=(short *x)malloc(sizeof (short)*npoint);
fgetinput.npoint=npoint;

/* we only want one channel of data x/
fgetinput.nchan=1;

/* use the framefiles() function to find it */
fgetinput.files=framefiles;

/> allocate space to store channel names */
fgetinput.chnames=(char *x)malloc(fgetinput.nchanxsizeof (char *));

/= allocate space for data storage location addresses */
fgetinput.locations=(short **x)malloc (fgetinput.nchan*sizeof (short *));

/* allocate space for numbers of points returned in each channel =/
fgetoutput.npoint=(int *)malloc (fgetinput.nchanxsizeof (int));

/* allocate space for ratios of channel sample rates x/
fgetoutput.ratios=(int *)malloc {fgetinput.nchanxsizeof (int));

/* channel name */
fgetinput.chnames[0]="IFO_DMRO";

/* set up different cases x/

if (NULL!=getenv ("GRASP_REALTIME")) {
/[ don’t care if locked */
fgetinput.inlock=0;

}

else {
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/* only locked */
fgetinput.inlock=l;

}

fgetinput.seek=0;
fgetinput.calibrate=0;
fgetinput.locations[0]}=data;

while (1) {
/* get npoint points of data x/
code=fget_ch(&fgetoutput, &fgetinput);
tstart=fgetoutput.dt;
srate=fgetoutput.srate;

/* if no data remains, exit loop =/

if (code==0) break;

/* if starting a new locked segment, print banner */

if (code==1) {:
printf (" NEW LOCKED SEGMENT
printf{(* Time (sec)\t IFO output\n");

}

/* now output the data */

for (i=0;i<npoint;i++) {
time=tstart+i/srate;
printf ("%£\t%d\n", time, (int)datalil);

}

/* close the data files, and return =/
return 0;
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4.6 Example: animateF program

This example uses the function £get_ch () described in the previous section to produce an animated dis-
play showing the time series output of the IFO in a lower window, and a simultaneously calculated FFT
power spectrum in the upper window. To run this program, type

setenv GRASP.FRAMEPATH /usr/local/GRASP/18nov94.lframe

animateF | xmgr -pipe
This output from this program must be piped into a public domain graphing program called xmgzr. This
may be obtained from http://plasma-gate.weizmann.ac.1il/Xmgr/. (This lists mirror sites in
the USA and Europe also). Some sample output of animateF is shown in Figure 9.

Spectrum
1 00 E T T T M T

o r L ) 1
0.0 1000.0 2000.0 3000.0 4000.0 5000.0
f(H2)

IFO output 4

200.0
100.0
0.0 ¥

~100.0

-200.0 ! !
22.00 2210 22.20

t (sec)

Figure 9: Snapshot of output from animateF. This shows the (whitened) CIT 40-meter IFO a few seconds
after acquiring lock, before the violin modes have damped down

After compilation, to run the program type:

animateF | xmgr -pipe &
to get an animated display showing the data flowing by and the power spectrum changing, starting from the
first locked data. You can also use this program with command-line arguments, for example

animateF 100 4 500 7 900 1.5 | xmgr -pipe &
will show the data from time ¢ = 100 to time ¢ = 104 seconds, then from ¢ = 500 to ¢ = 507, then from
t = 900 to ¢t = 901.5. Notice that the sequence of start times must be increasing. Note: the start times are
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Figure 10: The corrections to a bug in the xmgr program are indicated by the arrows above. This bug is in

case O:

==> delt=(x[ilen~-1]1-x[{0])/(ilen-1.0);
==> T=(x[ilen-1]1-x{01);
setlength(cg, specset,ilen/2);
xx=getx{cg, specset) ;
case 1:
==> delt=(x[ilen-1]-x[0])/(ilen-1.0);
==> T=(x[ilen-1]-x[0]);

the routine do_fourier () inthe file computils.c.

measured relative to the first data point in the first frame of data.

for the frequency scale of the Fourier transform to be correct. The corrected version of xmgr is shown in
Figure 10.

Note: The xmgr program as commonly distributed has a simple bug that needs to be repaired, in order

/* GRASP: Copyright 1997, Bruce Allen */
#include "grasp.h"

int main(int argc,char sxargv) {

void graphout (float, float, int);

float tstart=1l.e35,srate=l.e-30,tmin, tmax,dt;
\ double time;

int i,seg=0,code,npoint=4096;

short *data;

struct fgetinput fgetinput;

struct fgetoutput fgetoutput;

/* number of channels */
fgetinput.nchan=1;

/* source of files */
fgetinput.files=framefiles;

/* storage for channel names, data locations, points retumed, ratios */
fgetinput.chnames=(char *x)malloc (fgetinput.nchan*sizeof (char *)); ‘
fgetinput.locations=(short *x)malloc (fgetinput.nchanssizeof (short *)); k
fgetoutput.npoint=(int *)malloc(fgetinput.nchanssizeof (int));

fgetoutput.ratios=(int *)malloc(fgetinput.nchanxsizeof (int));

/* set up channel names, etc. for different cases */
fgetinput.chnames (0] ="IFO_DMRO";

/* set up for different cases =/

if (NULL!=getenv ("GRASP_REALTIME")) {
/* 40 meter lab =/
fgetinput.chnames[0]=getenv ("GRASP_REALTIME") ;
fgetinput.inlock=0; '
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}

else {
/* Nov 1994 data set */
fgetinput.inlock=1l;

}

/* number of points to get =/
fgetinput.npoint=npoint;

/* don’t seek, we need the sample values! */
fgetinput.seek=0;

/* but we don’t need calibration information */
fgetinput.calibrate=0;

/* allocate storage space for data */
data=(short #*)malloc(sizeof (short)*npoint);
fgetinput.locations[0]l=data;

/* handle case where user has supplied t or dt arguments */
if (arge==1) {

tmin=-—1.e30;

dt=2.e30;

argc=—1;

}

/*nowloop ... x/
seg=argc;
while (argc!=1) {
/* get the next start time and dt */
if (arge!=—-1) {
sscanf (argv[seq—argc+1], "$£f", &tnin) ;
sscanf (argviseqg—argc+2], "%f*,&at);
argc—=2;

/= caiculate the end of the observation interval, and get data x/
tmax=tmin+dt;
while (1) {
/* decide whether to skip (seek) or get sample values */
if (tstart<tmin-— (npoint+20.)/srate)
fgetinput.seek=1l;
else
fgetinput.seek=0;

/# seek, or get the sample values */
code=fget_ch(&fgetoutput, &fgetinput) ;

/* elapsed time, sample rate */
tstart=fgetoutput.dt;
srate=fgetoutput.srate;

/* if no data left, return */
if (code==0) return 0;

/+ we need to be outputting now. .. */
if (tmin<=tstart){
for (i=0;i<npoint;i++) {
time=tstart+i/srate;
printf("$f\t%d\n", time,datali]);
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}

}

/#* put out information for the graphing program %/

graphout (tstart, tstart+npoint/srate, (argec==1 && time>=tmax));

}

/* if we are done with this interval, try next one x/
if (time>=tmax) break;

}

return 0;

}

/* This routine is pipes output into the xmgr graphing program */
void graphout (float x1,float x2,int last) {
static int count=0;
printf ("&\n"); /* end of set marker %/
/* first time we draw the plot */
if (count==0) {

printf ("@doublebuffer true\n"); /= keeps display from flashing =/
printf("@s0 coloxr 3\n"); / IFO graph is green x/
printf("@view 0.1, 0.1, 0.9, 0.45\n"); /=* setthe viewport for IFO x/
printf ("@with gl\n"); /* reset the current graph to FFT #/
printf("@view 0.1, 0.6, 0.9, 0.95\n");/«setthe viewport FFT *»/ .
printf(*@with g0\n"); /= reset the current graph to IFO x/
printf('@world xmin %$f\n",x1); /* set min X x/

printf (*@world xmax $£f\n",x2); /* set max x */

printf ("Rautoscale\n"); /* autoscale first time through */
printf(*@focus off\n"); /* tumn off the focus markers %/
printf ("@xaxis label \"t (sec)\*\n"); /*IFO axislabel x/

printf ("@fft(s0, 1)\n"); /* compute the spectrum */
printf("@sl color 2\n"); /*FFTis red */

printf ("@move g0.sl to gl.s0\n"); /* move FFT to graph 1 x/
printf("@with gl\n"); /* set the focus on FFT */
printf("@gl type logy\n"); /* set FFT to log freq axis */
printf("@autoscale\n"); /* autoscale FFT x/

printf("@subtitle \"Spectrum\"\n"); /xsetthe subtitle x/
printf ("@xaxis label \*f (Hz)\"\n"); /*FFT axis label x/

printf(*@with g0\n"); /* reset the current graph IFO */
printf("@subtitle \"IFO output %d\"\n",count++) ;/+set IFO subtitle */
if (!last) printf("@kill sO0\n"); /* kill IFO; ready to read again */
}
else {
/* other times we redraw the plot x/
printf("@s0 coloxr 3\n"); /* set IFO green «/
printf("@fft(s0, 1)\n"); /* FFTit =/
printf("@sl color 2\n"); /= set FFT red %/
printf(“@move g0.sl1 to gl.s0\n"); /= move FFT to graph 1 */
printf("@subtitle \"IFO output %d\“\n",count++) ; /% set [FO subtitle */
printf ("€world xmin %f\n",x1); /= set min x =/
printf ("@world xmax %f\n",x2); /* set max x */
printf ("@autoscale yaxes\n"); /* autoscale IFQ */
printf("@clear stack\n"); /* clear the stack =/
if (llast) printf(*@kill sO\n"); /* kill IFO data x/
printf("@with gl\n"); /= switch to FFT «/
printf{"@gl type logy\n"); /#* set FFT to log freq axis x/
printf("@clear stack\n"); /* clear stack =/
if (!last) printf("e@kill sO0\n"); /= kill FFT =/
printf ("@with g0\n"); /* ready to read IFO again */
}
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return;

}
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4.7 Swept-sine calibration information

The swept sine calibration files are 3-column ASCII files, of the form:

fo o 10

h 1 i1

fa T2 i2
fm Tm im

where the f; are frequencies, in Hz, and 7; and ¢; are dimensionless ratios of voltages. There are typically
m = 801 lines in these files. The data from these files (as well as one additional line of the form
0.00.00.0

showing vanishing response at DC) have been included in the frames. Each line gives the ratio of the IFO
output voltage to a calibration coil driving voltage, at a different frequency. The r; are the “real part” of the
response, i.e. the ratio of the IFO output in phase with the coil driving voltage, to the coil driving voltage.
The ¢; are the “imaginary part” of the response, 90 degrees out of phase with the coil driving voltage. The
sign of the phase (or equivalently, the sign of the imaginary part of the response) is determined by the
following convention. Suppose that the driving voltage (in volts) is

Veoil = 10 cos(wt) = 10Re™* 4.7.1)

where w = 27 x 60 radians/sec is the angular frequency of a 60 Hz signal. Suppose the response of the
interferometer output to this is (again, in volts)

Viro = 6.93 cos(wt) + 4 sin(wt)
= 6.93 cos(wt) — 4 cos(wt + 7/2)
— 8 Reilwt—m/6) (4.7.2)

This is shown in Figure 11. An electrical engineer would describe this situation by saying that the phase
of the response Virg is lagging the phase of the driving signal V., by 30°. The corresponding line in the
swept sine calibration file would read:

60.000 0.6930 ~0.40000

Hence, in this example, the real part is positive and the imaginary part is negative. We will denote this entry
in the swept sine calibration file by S(60) = 0.8 e~¥"/6 = (.693 — 0.400i. Because the interferometer
output is real, there is also a value implied at negative frequencies which is the complex conjugate of the
positive frequency value: S(~60) = S*(60) = 0.8 "6 = 0.693 + 0.400.

Because the interferometer has no DC response, it is convenient for us to add one additional point at
frequency f = 0 into the output data arrays, with both the real and imaginary parts of the response set to
zero. Hence the output arrays contain one element more than the number of lines in the input files. Note
that both of these arrays are arranged in order of increasing frequency; after adding our one additional point
they typically contain 802 points at frequencies from 0 Hz to 5001 Hz.

For the data runs of interest in this section (from November 1994) typically a swept sine calibration
curve was taken immediately before each data tape was generated.

We will shortly address the following question. How does one use the dimensionless data in the swept-
sine calibration curve to reconstruct the differential motion Al(¢) (in meters) of the interferometer arms?
Here we address the closely related question: given Vipg, how do we reconstruct V.,;1? We choose the sign
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Figure 11: This shows a driving voltage V,; (solid curve) and the response voltage Viro (dotted curve) as
functions of time (in sec). Both are 60 Hz sinusoids; the relative amplitude and phase of the in-phase and
out-of-phase components of Viro are contained in the swept-sine calibration files.

convention for the Fourier transform which agrees with that of Numerical Recipes: equation (12.1.6) of[1].
The Fourier transform of a function of time V (¢) is

V(f) = / 2TV ()t 4.7.3)
The inverse Fourier transform is
V()= / e~ (f)df. (4.7.4)
With these conventions, the signals (4.7.1) and (4.7.2) shown in in Figure 11 have Fourier components:
Veoil(60) =5 and  Veou(—60) = 5, 4.7.5)
Viro(60) = 46™™/®  and  Vipo(—60) = de*"/6. (4.7.6)

At frequency fy = 60 Hz the swept sine file contains
5(60) = 0.8 e™"/% = §(—60) = S*(60) = 0.8 &'™/8. 4.7.7)

since S(—f) = S*(f).
With these choices for our conventions, one can see immediately from our example (and generalize to
all frequencies) that

Vool (f) = ;/1—2% (4.7.8)

In other words, with the Numerical Recipes [1] conventions for forward and reverse Fourier Transforms,
the (FFT of the) calibration-coil voltage is the (FFT of the) IFO-output voltage divided by the complex
conjugate of the swept sine response.

Author: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: The swept-sine calibration curves are usually quite smooth but sometimes they contain a
“glitch” in the vicinity of 1 kHz; this may be due to drift of the unity-gain servo point.
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4.8 Function: GRcalibrate ()

void GRcalibrate(float *fri,int frinum, int num, float *complex, float srate,int
method, int order)
This is a intermediate-level routine which takes as input a pointer to an array containing the swept sine data,
and outputs an array of interpolated points suitable for calibration of FFT’s of the interferometer output.
The arguments are:

fri: Input. Pointer to an array containing swept sine data. The format of this data is £ri [0]=fo,
fri[ll=rg, frif[2]=ty, £xri{31=f1, £xri[4]=ry, £xri[5]=iy,... and the total length of the
array is f£ri[0. . frinum-1].

frinum: Input. The number of entries in the array £xri [0. . frinum-1]. If this number is not divisible
by three, something is wrong!

num: Input. The number of points NV in the FFT that we will be calibrating. This is typically N = 2%
where k is an integer. In this case, the number of distinct frequency values at which a calibration
is needed is 2571 + 1 = N/2 + 1, corresponding to the number of distinct frequency values from
0 (DC) to the Nyquist frequency fNyquist- See for example equation (12.1.5) of reference [1]. The
frequencies are f; = %Fsample fori=0,---,N/2.

srate: Input. The sample rate Fyapmple (in Hz) of the data that we are going to be calibrating.

complex: Input. Pointer to an array complex[0. .s] where s = 2% + 1. The routine calibrate ()
fills in this array with interpolated values of the swept sine calibration data, described in the pre-
vious section. The real part of the DC response is in complex[0], and the imaginary part is in
complex[1]. The real/imaginary parts of the response at frequency f; are in complex[2] and
complex[3] and so on. The last two elements of complex[ ] contain the real/imaginary parts
of the response at the Nyquist frequency Fiample/2.

method: Input. This integer sets the type of interpolation used to determine the real and imaginary part of
the response, at frequencies that lie in between those given in the swept sine calibration files. Rational
function interpolation is used if method=0. Polynomial interpolation is used if method=1. Spline
interpolation with natural boundary conditions (vanishing second derivatives at DC and the Nyquist
frequency) is used if method=2.

order: Input. Ignored if spline interpolation is used. If polynomial interpolation is used, then order is
the order of the interpolating polynomial. If rational function interpolation is used, then the numerator
and denominator are both polynomials of order order/2 if order is even; otherwise the degree of
the denominator is (ordexr+1)/2 and that of the numerator is (ordexr-1)/2.

The basic problem solved by this routine is that the swept sine calibration data in a frame typically
contain data at a few hundred distinct frequency values. However to properly calibrate the IFO output, one
usually needs this calibration information at a large number of frequencies corresponding to the distinct
frequencies associated with the FFT of a data set. This routine allows you to choose different possible
interpolation methods. If in doubt, we recommend spline interpolation as the first choice. The interpolation
methods are described in detail in Chapter 3 of reference [1].

Author: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: It might be better to interpolate values of f2 times the swept-sine response function, as this is
the quantity needed to compute the IFO response function.
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4.9 Example: print_ssF program

This example uses the function GRcalibrate () to read the swept sine calibration information from a
frame, and then prints out a list of frequencies, real, and imaginary parts interpolated from this data. The
frequencies are appropriate for the FFT of a 4096 point data set with sample rate srate. The technique
used is spline interpolation. To run this program, and display a graph, type

setenv GRASP FRAMEPATH /usr/local/GRASP/18nov94.lframe

print.ssF > outputfile

xmgr -nxy outputfile

/* GRASP: Copyright 1997, Bruce Allen #/
#include "grasp.h"
#define NPOINT 4096

int main() {
float cplx[NPOINT+2],srate, freq;
int npoint,i;
struct fgetoutput fgetoutput;
struct fgetinput fgetinput;

/* we need to ask for some sample values, even though all we want is calibration s/
fgetinput.npoint=256;

/* number of channels »/
fgetinput.nchan=1;

/* storage for channel names, data locations, points returned, ratios */
fgetinput.chnames=(char **)malloc(fgetinput.nchanxsizeof (char *));
fgetoutput .npoint=(int *)malloc (fgetinput.nchan*sizeof (int));

fgetoutput.ratios=(int *)malloc(fgetinput.nchan*sizeof (int));

/* use utility function framefiles() to retrieve file names */
fgetinput.files=framefiles;

/* don’t care if IFO is in lock %/
fgetinput.inlock=0;

/# don’t need data anyway, so might as well seek */
fgetinput.seek=1;

/* but we DO need the calibration information */
fgetinput.calibrate=1;

/= set the channel name */
fgetinput.chnames [0]="IFO_DMRO";

/* number of points of (imagined) FFT =/
npoint=NPOINT;

/* now get the data (none) and calibration (what we want) * /
fget_ch(&fgetoutput, &fgetinput) ;

/* the fast-channel sample rate */
srate=fgetoutput.srate;

/* swept sine calibration array is first argument */
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GRcalibrate (fgetoutput.fri, fgetoutput. frinum,npoint, cplx, srate,2,0);

/* print out frequency, real, imaginary interpolated values */
printf("# Freg (Hz)\tReal\t\tImag\n'); .
for (i=0;i<=NPOINT/2;i++) {
freg=i*srate/NPOINT;
printf ("%e\t%e\t%e\n", freq, cplxi2*i], cplx[2*i+1]);

}

return 0;

Swept Sine Calibration Curve
18 Nov 1994, run 2

1e+04 T T T T T T
— imaginary part
5e403 F e
i
= —— real part
5
=
j=)]
g l
E 0
: ‘
T
2
2
K
[
m \/
-5e+03 | E
-1e+04 . L - L 4 L - L .
0.0 1000.0 2000.0 3000.0 4000.0 5000.0

Frequency f (Hz)

Figure 12: A swept sine calibration curve, showing the real and imaginary parts, produced by the example
program print_ssF.
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4.10 Function: GRnormalize ()

void GRnormalize(float *£ri, int frinum, int npoint, float srate, float *response)
This routine generates an array of complex numbers R(f) from the swept sine information in a frame,
and an overall calibration constant. Multiplying this array of complex numbers by (the FFT of) the raw [FO
- data yields the (FFT of the) differential displacement of the interferometer arms Al, in meters: Al (f) =
R(f)Crro(f). The units of R(f) are meters/ADC-count.
The arguments are:

fri: Input. Pointer to an array containing swept sine data. The format of this data is £xri[0] =,
fri[l]=ro, fri[21=tp, fri(31=f1, fri(4]=r;, £ri[5]1=iy,... and the total length of the
array is £ri[0. . frinum-1].

frinum: Input. The number of entries in the array £ri [0 . . £rinum-1]. If this number is not divisible
by three, something is wrong!

npoint: Input. The number of points N of IFO output which will be used to calculate an FFT for
normalization. Must be an integer power of 2.

srate: Input. The sample rate in Hz of the IFO output.

response: Output. Pointer to an array response[0..s] with s = N + 1 in which R(f) will be
returned. By convention, R(0) = 0 so that response[0]=response[1]1=0. Array elements
response[2¢] and response [2i+4 1] contain the real and imaginary parts of R(f) at frequency
f = israte/N. The response at the Nyquist frequency response [N]=0and response [N+1] =0
by convention.

The absolute normalization of the interferometer can be obtained from the information in the swept sine
file, and one other normalization constant which we denote by Q. It is easy to understand how this works.
In the calibration process, one of the interferometer end mirrors of mass m is driven by a magnetic coil. The
equation of motion of the driven end mass is

d2
m——=Al=F(t 4.10.1
where F'(t) is the driving force and Al is the differential length of the two interferometer arms, in meters.
Since the driving force d(t) is proportional to the coil current and thus to the coil voltage, in frequency space
this equation becomes

Viro

S(f)

We have substituted in equation (4.7.8) which relates 1711:0 and 17;011. The IFO voltage is directly proportional
to the quantity recorded in the TFO output channel: Vipo = ADC x Cipo, with the constant ADC being the
ratio of the analog-to-digital converters input voltage to output count.
| Putting together these factors, the properly normalized value of Al, in meters, may be obtained from the
| information in the IFO output channel, the swept sine calibration information, and the quantities given in

(—2mi f)2Kl = constant X ‘7;011 = constant X (4.10.2)

Table 6 b;
PeeH ~ — ] Q x ADC
Al = R(f) X CIFO with R(f) = W, (4.10.3)

where the " denotes Fourier transform, and f denotes frequency in Hz. (Note that, apart from the complex
conjugate on S, the conventions used in the Fourier transform drop out of this equation, provided that
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Table 6: Quantities entering into normalization of the IFO output.

Description Name Value Units
Gravity-wave signal (IFO output) | Ciro varies ADC counts
A—D converter sensitivity ADC 10/2048 Viro (ADC coun’cs)_l
Swept sine calibration S) from file Viro (Vcaﬂ)“1
Calibration constant Q | 1428 x10~% | meter Hz2 (Vo) ™"

identical conventions (4.7.3,4.7.4) are applied to both Al and to Cipp). The constant quantity @ indicated
in the above equations has been calculated and documented in a series of calibration experiments carried
out by Robert Spero. In these calibration experiments, the interferometer’s servo was left open-loop, and
the end mass was driven at a single frequency, hard enough to move the end mass one-half wavelength and
shift the interferences fringes pattern over by one fringe. In this way, the coil voltage required to bring about
a given length motion at a particular frequency was established, and from this information, the value of Q
may be inferred. During the November 1994 runs the value of ) was given by

VO35 8 2 - :
Q= ﬂki—z — 1.428 x 10‘4%@—2— where k = 21399—%V—C;’;—372-. (4.10.4)
coil meter oz

Author: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: See comment for calibrate().
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4.11 Example: power_spectrumF program

This example uses the function GRnormalize () to produce a normalized, properly calibrated power spec-
trum of the interferometer noise, using the gravity-wave signal and the swept-sine calibration information
from the frames.

The output of this program is a 2-column file; the first column is frequency and the second column is
the noise in units of meters/ v/Hz. To run this program, and display a graph, type

setenv GRASP FRAMEPATH /usr/local/GRASP/18nov94.lframe

power.spectrumF > outputfile

xmgr -nxy outputfile

A couple of comments are in order here:

1. Even though we only need the modulus, for pedagogic reasons, we explicitly calculate both the real and
imaginary parts of Al(f) = R(f)Ciro(f).

2. The fast Fourier transform of Al, which we denote FFT[A!], has the same units (meters!) as Al. As can
be immediately seen from Numerical Recipes equation (12.1.6) the Fourier transform Al has units of
meters-sec and is given by Al = At FFT[Al], where At is the sample interval. The (one-sided)

power spectrum of Al in meters/vHz is P = \/g IKZI where T = NAt is the total length of the
observation interval, in seconds. Hence one has

[ 2 2At
=) — =4/ — . 4.11.
P NAz At [FFT[Al)] I [FFT[AL] (4.11.1)
This is the reason for the factor which appears in this example.

3. To get a spectrum with decent frequency resolution, the time-domain data must be windowed (see the
example program calibrate and the function avg._spec () to see how this works).

A sample of the output from this program is shown in Figure 13.

/* GRASP: Copyright 1997, Bruce Allen x/
#include "grasp.h"
#define NPOINT 65536

int main() {
void realft (floatx,unsigned long, int);
float response[NPOINT+2],data[NPOINT], freq;
float res_real,res.imag,dl_real,dl.imag, cO_real,cO.imag, spectrum, srate, factor;
int i,npoint;
short datas[NPOINT];
struct fgetinput fgetinput;
struct fgetoutput fgetoutput;

/* We need only the IFO output */
fgetinput.nchan=1;

/* use utility function framefiles() to retrieve file names */
fgetinput.files=framefiles;

/= storage for channel names, data locations, points returned, ratios %/
fgetinput.chnames= (char *x)malloc(fgetinput.nchan*sizeof (char *));
fgetinput.locations=(short *x)malloc(fgetinput.nchanxsizeof (short *});
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fgetoutput.npoint=(int *)malloc(fgetinput.nchanxsizeof (int));
fgetoutput.ratios=(int *)malloc(fgetinput.nchanssizeof(int));

/* set channel name */
fgetinput.chnames{0]="IFO_DMRO";

/* are we in the 40-meter lab? x/

if (NULL!=getenv("GRASP_REALTIME")) {
/* for Caltech 40-meter lab =/
fgetinput.inlock=0;

}
else {
/* for Nov 1994 data set x/
fgetinput.inlock=1;
}

/* number of points to sample and fft (power of 2) »/
fgetinput.npoint=npoint=NPOINT;
fgetinput.calibrate=1;

/* the array where we want the data to be put x/
fgetinput.locations([0])=datas;

/* skip 200 seconds into locked region (just seek, no need for data) /

fgetinput.seek=1;

fgetoutput.tstart=£fgetoutput.lastlock=0.0;

while (fgetoutput.tstart—fgetoutput.lastlock<200.0)
fget_ch (&fgetoutput, &fgetinput);

/#* and get next stretch of data (don’t seek, we need data) */
fgetinput.seek=0;
fget_ch(&fgetoutput, &fgetinput) ;

/* the sample rate */
srate=fgetoutput.srate;

/* convert gw signal (ADC counts) from shorts to floats */
for (i=0;i<NPOINT;i++) data[il=datas[i];

/* FFT the data x/
realft(data—1,npoint,1);

/* get normalization R(f) using swept sine calibration information from frame */
GRnormalize (fgetoutput.fri, fgetoutput. frinum, npoint, srate,response);

/* one-sided power-spectrum normalization, to get meters/THz /
factor=sqrt(2.0/(sratexnpoint));
/* compute dl. Leave off DC (i=0) or Nyquist (i=npoint/2) freq =/
for (i=1;i<npoint/2;i++) {
/* frequency =/
freg=ixsrate/npoint;
/* real and imaginary parts of tilde c0 */
cO.real=datal2%i];
cO.imag=data[2*i+1l];
/* real and imaginary parts of R =/
res_real=response([2x*i];
res_imag=response[2*i+1];
/* real 'and imaginary parts of tilde dl »/
dl_real=cO_realsres_real—cO.imagsres_imag;
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dl_imag=cO_realsres_imag+cO.imag*res.real;

[ |tilde dl] =/

spectrum=£factorssqgrt (dl.realxdl_real+dl_imag*dl_imag) ;
[/ output freq in Hz, noise power in meters/rHz */

printf ("%e\t%e\n", freq, spectrum) ;

}

return 0;

Author: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: The IFO output typically consists of a number of strong line sources (harmonics of the 60
Hz line and the 180 Hz laser power supply, violin modes of the suspension, etc) superposed on a
continuum background (electronics noise, laser shot noise, etc) In such situations, there are better
ways of finding the noise power spectrum (for example, see the multi-taper methods of David J.
Thompson [24], or the textbook by Percival and Walden [25)). Using methods such as the F-test
to remove line features from the time-domain data stream might reduce the sidelobe contamination
(bias) from nearby frequency bins, and thus permit an effective reduction of instrument noise near
these spectral line features. Further details of these methods, and some routines that implemen them,
may be found in Section 10.17.
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Figure 13: An example of a power spectrum curve produced with power_spectrumF. The spectrum
produced off a data tape (with 100 point smoothing) is compared to that produced by the HP spectrum
analyzer in the lab.
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4.12 Example: calibrateF program

This example uses the function GRnormalize () and avg-spec() to produce an animated display,
showing the properly normalized power spectrum of the interferometer, with a 30-second characteristic
time moving average. After compilation, to run the program type:

setenv GRASP.FRAMEPATH /usr/local/GRASP/18nov9%4.lframe

calibrateF | xmgr -pipe &
to get an animated display showing the calibrated power spectrum changing. An example of the output from
calibrateF is shown in Figure 14. Note that most of the execution time here is spent passing data down
the pipe to xmgr and displaying it. The display can be speeded up by a factor of ten by binning the output

" values to reduce their number to a few hundred lines (the example program cal ibratebinnedF.c

implements this technique; it can be run by typing calibrate binnedF | xmgr -pipe).

Calibrated IFO Spectrum
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Figure 14: This shows a snapshot of the output from the program calibrateF which displays an animated

average power spectrum (Welch windowed, 30-second decay time).

/# GRASP: Copyright 1997, Bruce Allen +/
#include "grasp.h"
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#define NPOINT 4096

int main() {

void graphout (int, float, float);
float data[NPOINT],average[NPOINT],response[2*xNPOINT+4] ;
float spec,decaytime;

float srate, tstart=0, freq, tlock;

int i,j,code,npoint,ir,ii,reset=0,pass=0;

short datas[NPOINT];

double mod;

struct fgetinput fgetinput;

struct fgetoutput fgetoutput;

/* number of channels needed is one */
fgetinput.nchan=1;

/* use utility function framefiles() to retrieve file names */
fgetinput.files=framefiles;

/* storage for channel names, data locations, points returned, ratios */
fgetinput.chnames=(char *x)malloc (fgetinput.nchan*sizeof (char *));
fgetinput.locations=(short *x)malloc(fgetinput.nchanxsizeof (short x));
fgetoutput.npoint=(int *)malloc(fgetinput.nchan*sizeof (int));
fgetoutput.ratios=(int *)malloc(fgetinput.nchan*sizeof (int)) ;

/* set up channel name */
fgetinput.chnames{0]="IFO_DMRO";

/* set up channel names for different cases */

if (NULL!=getenv("GRASP_REALTIME")) {
/* for Caltech 40-meter lab */
fgetinput.inlock=0;

}

else {
/= for Nov 1994 data set */
fgetinput.inlock=1;

}

/* number of points to sample and fft (power of 2) =/
fgetinput.npoint=npoint=NPOINT;

/* we do need the data, so don’t seek */
fgetinput.seek=0;

/* do need calibration information #/
fgetinput.calibrate=1;

/* where to put the data points */
fgetinput.locations[0]l=datas;

/= set the decay time (sec) =/
decaytime=30.0;

/* get data =/
while (code=fget_ch(&fgetoutput,&fgetinput)) {
tstart=fgetoutput.dt;

srate=fgetoutput.srate;

/> put data into floats */
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for (i=0;i<npoint;i++) datal[il=datas([i];

/* use the swept-sine calibration (properly interpolated) to get R(f) */
if (!pass++) GRnormalize(fgetoutput.fri, fgetoutput.frinum, 2+npoint, srate, response);

/* Reset if just locked %/
if (code==1) {

reset=0;

tlock=tstart;

avg.spec (data,average,npoint, &reset, srate,decaytime, 2);
} else {

/# track average power spectrum, with Welch windowing. */
avg.spec (data, average,npoint, &reset, srate,decaytime, 2);

/* loop over all frequencies except DC (j=0) & Nyquist (j=npoint/2) */ ‘

for (j=1;j<npoint;j++) {
/* subscripts of real, imaginary parts */
ii=(ir=j+j)+1;
/* frequency of the point =/
freg=0.5+sratexj/npoint;
/* determine power spectrum in (meters/rHz) & print it */
mod=response[ir]xresponse(irl]+response[iil*response[ii]; .
spec=sqrt (average [j]*mod) ;
printf ("%e\t%e\n", freq, spec) ;

}

/= print out useful things for xmgr program ... =/

graphout (0, tstart, tlock);

}
}

return 0;

void graphout (int last,float time,float tlock) {
static int count=0;
printf(*&\n"); /* end of set marker */
/= first time we draw the plot */
if (count++==0) {
printf ("@doublebuffer true\n"); /* keeps display from flashing =/

printf("@focus off\n");

/* turn off the focus markers x/

printf ("@s0 color 2\n"); /x FFTisred =/
printf ("@g0 type logxy\n"); /* set graph type to log-log */
printf ("@Qautoscale \n"); /* autoscale FFT «/
printf("€world xmin %e\n",10.0); /* set min x */
printf ("@world xmax %e\n",5000.0); /* set max x =/
printf ("@world ymin %e\n",l.e—19); /* setminy */
printf ("@world ymax %e\n",l.e-9); /* set max y =/
printf("@yaxis tick minor on\n"); /* turn on tick marks %/
printf("@yaxis tick major on\n"); /* turn on tick marks %/
printf ("@yaxis tick minor 2\n"); /* turn on tick marks */
printf ("@yaxis tick major 1\n"); /* turn on tick marks =/

printf ("@redraw \n"); . /x redraw graph */

printf(“@xaxis label \"'f (Hz)\"\n"); /% FFT horizontal axis label */

printf ("@yaxis label \'meters/rHz\"\n"); /+FFT vertical axis label /

printf("@title \"Calibrated IFO Spectrum\”\n");/*settitlex/

/= set subtitle =/

printf ("@subtitle \"%.2f sec since last lock. t = %.2f sec.\"\n", time—tlock, time);
if (!last) printf(*@kill sO0\n"); /* kill graph; ready to read agai */
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}

else {
/* other times we redraw the plot */
/* set subtitle */
printf("@subtitle \"%$.2f sec since last lock. t = %.2f sec.\"\n", time—tlock, time);

printf("@s0 color 2\n"); /+FFTisred */
printf("@g0 type logxy\n®); /* set graph type to log-log */
printf ("@world xmin %e\n",10.0); /* set min X */
printf ("@world xmax %e\n",5000.0); /* set max x */
printf("eéworld ymin %e\n",l.e—19); /*setminy x/
printf ("@world ymax %e\n",l.e-9); /* set max y =/
printf("@yaxis tick minor on\n"); /* tumn on tick marks =/
printf ("@yaxis tick major on\n"); /* turn on tick marks */
printf("@yaxis tick minor 2\n"); /* turn on tick marks */
printf(“@yaxis tick major 1\n"); /* tum on tick marks */
printf ("@redraw\n"); /* redraw the graph */
if (!last) printf(*@kill s0\n"); /* Kill graph, ready to read again =/
}
return;

Author: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: See comments for power_spectrumF example program.
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4.13 Example: diagF program

This program is a frequency-domain “novelty detector” and provides a simple example of a time-frequency
diagnostic method. The actual code is not printed here, but may be found in the GRASP directory src/examples/exan
in the file diagF . c. To run the program type:
setenv GRASP FRAMEPATH /usr/local/GRASP/18nov%4.lframe
diagF &
which will start the diagF program in the background.
The method used by diagF is as follows:

1. A buffer is loaded with a short stretch of data samples (2048 in this example, about 1/5 of a second).

2. A (Welch-windowed) power spectrum is calculated from the data in the buffer. In each frequency bin,
this provides a value S(f).

3. Using the same auto-regressive averaging technique described in avg_spec () the mean value of
S(f) is maintained in a time-averaged spectrum (S(f)). The exponential-decay time constant for this
average is AVG_TIME (10 seconds, in this example).

4. The absolute difference between the current spectrum and the average AS(f) = |S(f) — (S(f))] is
determined. Note that the absolute value used here provides a more robust first-order statistic than
would be provided by a standard variance (AS(f))2.

5. Using the same auto-regressive averaging technique described in avg_spec () the value of AS(f)
is maintained in a time-averaged absolute difference (AS(f)). The exponential-decay time constant
for this average is also set by AVG_TIME.

6. In each frequency bin, AS(f) is compared to (AS(f)). If AS(f) > THRESHOLD x (AS(f)) then
a point is plotted for that frequency bin; otherwise no point is plotted for that frequency bin. In this
example, THRESHOLD s set to 6.

7. In each frequency bin, AS(f) is compared to (AS(f)). If AS(f) < INCLUDE x (AS(f)) then
the values of S(f) and AS(f) are used to “refine” or “revise” the auto-regressive means described
previously. In this example, INCLUDE is set to 10.

8. Another set of points (1024 in this example) is loaded into the end of the buffer, pushing out the oldest
1024 points from the start of the buffer, and the whole loop is restarted at step 2 above.

The diagF program can be used to analyze any of the different channels of fast-sampled data, by set-
ting CHANNEL appropriately. It creates one output file for each locked segment of data. For example if
CHANNEL is set to 0 (the IFO channel) and there are four locked sections of data, one obtains a set of files:
ch0diag.000,ch0diag.001,ch0diag.002,and chO0diag.003.

In similar fashion, if CHANNEL is set to 1 (the magnetometer) one obtains files:
chldiag.000,chldiag.001,chldiag.002,and chldiag.003.

These files may be used as input to the xmgr graphing program, by typing:

xmgr ch0diag.000 chldiag.000

(one may specify as many channels as desired on the input line). A typical pair of outputs is shown in
Figures 15 and 16. By specifying several different channels on the command line for starting xmgr. you
can overlay the different channels output with one another. This provides a visual tool for identifying corre-
lations between the channels (the graphs shown below may be overlaid in different colors).

Author: Bruce Allen, ballen @dirac.phys.uwm.edu
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is a non-stationary noise event in the IFO output, 325 seconds into the locked section. It sounds like a “drip”

i Figure 15: A time-frequency diagnostic graph produced by diag. The vertical line pointed to by the arrow
‘ and might be due to off-axis modes in the interferometer optical cavities.

Comments: This type of time-frequency event detector appears quite useful as a diagnostic tool. It might
be possible to improve its high-frequency time resolution by being clever about using intermediate
information during the recursive calculation of the FFT. One should probably also experiment with

| using other statistical measures to assess the behavior of the different frequency bins. It would be nice
| to modify this program to also examine the slow sampled channels (see comment for get_data ()).
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Figure 16: A time-frequency diagnostic graph produced by diag. This shows the identical period as the
previous graph, but for the magnetometer output. Notice that the spurious event was not caused by magnetic
field fluctuations.
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5 GRASP Routines: Gravitational Radiation from Binary Inspiral

One of the principal sources of gravitational radiation which should be detectable with the first or second
generation of interferometric detectors is binary inspiral. This radiation is produced by a pair of massive
and compact orbiting objects, such as neutron stars or black holes.

The simplest case is when the two objects are describing a circular orbit about their common center-of-
mass, and neither object is spinning about its own axis. With these assumptions the system 1s then described,
at any time, by the masses m; and ms of the objects, and their orbital frequency €2. (It is also necessary to

“describe the orientation of the orbital plane and the positions of the masses at a given time; these are details

we will sort out later).
For convenience in dealing with dimensional quantities, we introduce the Solar Mass M, and the Solar

Time T, defined by

Mg = 1.989 x 10* grams (5.0.1)
Tg = (%) Mg = 4.925491 x 1076 sec. (5.0.2)

GRASP functions typically measure masses in units of M and times in units of seconds.
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5.1 Chirp generation routines

The next several subsections document a number of routines for generating “chirps” from coalescing bina-
ries. This package of routines is intended to be versatile, flexible and robust; and yet still fairly simple to use.
The implementation we have included in this package is based on the second post-Newtonian treatment of
binary inspiral presented in [6] and augmented by the spin-orbit and spin-spin corrections presented in [7].
The notation we use — even in the source code — closely reflects the notation used in those papers. In keeping
with that notation, these routines calculate the orbital phase and orbital frequency. The gravitational-wave
* phase of the dominant quadrupolar radiation can be obtained by multiplying the orbital phase by two. The
routines can be used to compute a few chirp waveforms (say to make transparencies for a seminar), or for
wholesale computations of a bank of matched filters. :

The routines are flexible in the sense that they have a number of run-time options available for choosing
the post-Newtonian order of the phase calculations, or choosing whether or not to include spin effects. We
have also isolated those parts of the code where the messy post-Newtonian coefficients appear; thus the
routines may be easily modified to include yet higher-order post-Newtonian terms as they become available.

The post-Newtonian equations for the orbital phase evolution are notoriously ill-behaved [8, 9] as the
binary system nears coalescence. In this regime the expansion parameters [namely the relative velocity v /c
of the bodies and/or the field strength G Mo /{c?7orbit)] used in the derivation are comparable to unity. In
post?-Newtonian calculations higher orders such as post®-Newtonian terms have been discarded. Because of
this truncation, quantities that are are positive definite in an exact calculation (say the energy-loss rate, or the
time derivative of the orbital frequency) often become negative in their post-Newtonian expansion when the
orbital separation becomes small. When this happens you are using a post-Newtonian expression in a regime
where its validity is questionable. This is cause for concern, and it may be cause for terminating a chirp
calculation; but, it need not crash your code. A full-scale gravitational-wave search will need to compute
chirps over a broad range of parameters, virtually assuring that any post-Newtonian chirp generator will be
pushed into a region of parameter space where it doesn’t belong. These routines are designed to traverse
these dangerous regions of parameter space as well as possible and gently warn the user of the dangers
encountered. The calling routines may wish to act on the warnings coming from the chirp generator. For
example a severe warning may prompt the calling routine to discard a given filter from a data search, because
the second post-Newtonian calculation of the chirp is so dubious that it can’t give meaningful results.

In the next several sections we detail the use of three routines used to compute the “chirp” of a coa-
lescing binary system. The first routine we describe is phase_frequency (). This is the underlying
routine for the other chirp routines. Given a set of parameters (e.g. the two masses, and the upper and lower
cut-off frequency for the chirp) it returns the orbital phase and orbital frequency evolution as a function of
time. Next we describe chirp_filter () which returns two (unnormalized) chirp signals. This routine
can be used for wholesale production of a bank of templates for a coalescing binary search. The routine
strain () returns the full second post-Newtonian gravitational wave strain. This can be used for plotting
and examining the expected waveform of a given coalescing binary, or to add a “realistic” signal into de-
tector noise. The strain output contains all the (sub)harmonic structure and its amplitude reflects the true
astrophysical distance to the source.
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5.2 Function: phase_frequency ()

int phase_frequency(float ml, float m2, float spinl, float spin2, int n_phasetez.
float *phaseterms, float Initial Freqg, float Max FregqRgst, float *Max FregActual
float Sample.Time, float **phase, float **frequency, int *steps.alloc, int =
*steps.£illd, int err_cd sprs)

This function computes the orbital phase and orbital frequency evolution of an inspiralling binary. It re-

turns an integer termination code indicating how and why the chirp calculation terminated. This routine is

the engine that powers the other chirp generation routines. The arguments are:

ml: Input. The mass of body-1 in solar masses.
m2: Input. The mass of body-2 in solar masses.
spinl: Input. The dimensionless spin parameter of body-1. See section on spin effects.
spin2: Input. The dimensionless spin parameter of body-2. See section on spin effects.

n.phaseterms: Input. Integer describing the number of post-Newtonian (pN) approximation terms
implemented in the phase and frequency calculations. In the present implementation this should be
set to 5. .

phaseterms: Input. The array phase_terms [0. .nphaseterms-1] specifies which pN approxi-
mation terms will be included in the phase frequency calculations. Setting phase_ terms[i]=0.0
nullifys the term. Setting phase_terms[i]=1.0 includes the term. This allows for easy run-time
nullification of any term in the phase and frequency evolution, e.g. setting phase terms[4]1=0.0
eliminates the second post-Newtonian terms from the calculation.

Initial Freq: Input. The starting orbital frequency of the chirp in Hz.

Max Freqg Rgst: Input. The requested orbital frequency where the chirp will stop. However, the actual
calculation may not proceed all the way to this orbital frequency. This is discussed at length below.

Max_Freg-Actual: Output. The floating number *Max Freqg-Actual is the orbital frequency in Hz
where the chirp actually terminated.

Sample_Time: Input. The time interval between successive samples, in seconds.

phase: Input/Output. The phase ephemeris 2 in radians is stored in the array *phase[0..steps_£i11d-1].
Input in the sense that much of the internal logic of phase_frequency () depends on how the
pointers *phase (and * frequency below) are set. If either is set to NULL memory allocation will
be performed inside phase_frequency (). If both are not NULL then it is assumed the calling
routine has allocated the memory before calling phase_frequency ().

frequency: Input/Output. Similar to phase above. The frequency ephemeris f = d€2/dt is stored in
the array *frequency[0. .steps £i11d-1].

steps.alloc: Input/Output. The integer *steps.alloc is the number of floating point entries allo-
cated for storing the phase and frequency evolution, i.e. the length of **phase and ** frequency.
This integer should be set in the calling routine if memory is allocated there, or it will be set in-
side phase_frequency () if memory is to be allocated there. If both of the pointers *phase
and *frequency are not NULL then phase_frequency () understands that the calling rou-
tine is taking responsibility for allocating the memory for the chirp, and the calling routine must set
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*steps_alloc accordingly. In this case phase_frequency () will fill up the arrays **phase
and **frequency until the memory is full (i.e fill them with *steps_alloc of floats) or until
the chirp terminates, whichever is less.

steps_filld: Output. The integer *steps_£il1d is the integer number of time steps actually com-
puted for this evolution. It is less than or equal to *steps_alloc.

clscnc_time: Output. The float *clscnc_time is the time to coalescence in seconds, measured from
the instant when the orbital frequency is Initial Freqgiven by t¢in Egs.(5.4.1) and (5:4:2).

err_cd.sprs: Input. Error code supression. This integer determines at what level of disaster encoun-
tered in the computation of the chirp the user will be explicitly warned about with a printed message.
Set to O: prints all the termination messages. Set to 4000: suppresses all but a few messages which
are harbingers of complete disaster. The termination messages are numbered from 0 to 3999 loosely
in accordance with their severity (the larger numbers corresponding to more severe warnings). Any
message with 2 number less than err_cd_sprs will not be printed. A termination code of 0 means
the chirp calculation was executed as requested. A termination code in the 1000’s means the chirp
was terminated early because the post-Newtonian approximantion was deemed no longer valid. A ter-
mination code in the 2000’s generally indicates some problem with memory allocation. A termination
code in the 3000’s generally indicates a serious logic fault. Many of these “3000” errors result in the
termination of the routine. If you get an error message number it is easy to find the portion of source
‘code where the fault occured; just do a character string search on the four digit number.

This phase and frequency generator has a number of very specialized features which will be discussed
later. However, before we proceed further, we show a simple example of how phase_frequency () can
be used.

Authors: Alan Wiseman, agw @tapir.caltech.edu and Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: This function will need to be extended when results of order 2.5 and 3 post-Newtonian calcu-
lations have been reported and published.
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5.3 Example: phase_evoltn program

This example uses phase_frequency () to compute the phase and frequency evolution for an inspiraling
binary and prints the results on the screen (stdout). The other output messages go to stderx.

/* GRASP: Copyright 1997, Bruce Allen x/

#include ‘*grasp.h*

int main() {
float ml,m2,spinl, spin2,phaseterms([S],clscnc_time, *xptrphase, sptrfrequency;
float time,Initial_Freq,Max.Freg_ Rgst,Max.Freq.Actual, Sample_Time, time_in.band;
int steps_alloc,steps_filld,i,n.phaseterms,err_cd_sprs,chirp_ok;

/* Set masses and spins of the orbital system: =/
nl=m2=1.4;
spinl=spin2=0.;

/* Set ORBITAL frequency range of the chirp and sample time: =/
Initial_Freg=60.; /* in cycles/second =/
Max_Freq.Rgst=2000.; /* in cycles/second */
Sample_Time=1./9868.4208984375; /* in seconds */

/* Use this block to compare with Will & Wiseman, PRD 54, 4813 (1996) Figure 10, page 4846.
spinl=0.1; spin2=0.5;
ml=1.4; m2=12.0;
Initial_Freq=75.0; Max_Freq-Rqst=180.0; =/

/* post-Newtonian {O(1/c"n)] terms you wish to include (or supress)
in the phase and frequency evolution: */

n_phaseterms=5; /* the number of entries in phaseterms »*/
phaseterms[0] =1_; /* The Newtonian piece */

" phaseterms{l] =0.; /* There is no O(1/c) correction */
phaseterms[2] =1.; /* The post-Newtonian correction */
phaseterms[3] =1.; /* The 3/2 PN correction */
phaseterms([4] =1.; /* The 2PN correction */

/* Set memory-allocation and error-code supression logic: =/
ptrphase=ptrfrequency=NULL;
err_cd.sprs=0;

/* Use phase_frequency() to compute phase and frequency evolution: */

chirp.ok=phase_frequency(ml,m2,spinl, spin2,n.phaseterms, phaseterms,
Initial_Freqg,Max_Freg-Ragst,&Max_Freg_Actual, Sample_Time, &ptrphase,
&ptrirequency, &steps_alloc,&steps_filld, &clscnc_time, err_cd_sprs) ;

/* ... and print out the results: */

time_in_band=(float) (steps.filld—1)x*Sample._Time;

fprintf (stderx, "\nml=%f m2=%f Initial_ Freg=%f\n", ml,m2,Initial_Freq);

fprintf (stderx, "steps_£filld=%i steps_alloc=%1 Max_Freg Actual=%f\n-",
steps_filld, steps.alloc,Max.Freg.Actual) ;

fprintf(stderx, "time_in_band=%f clscnc_time=%f\n", time_in_band, clscnc-time) ;

fprintf(stderx, "Termnination code: %i\n\n",chirp_ok);

for (i=0;i<steps_£filld;i++){
time=ixSample_Time;
printf ("$i\t%E£\t%E\E$E\n",1, time,ptrphase[i],ptrfrecquencylil);

}

return 0;

}
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Here is the output from the phase_evoltn example:

GRASP: Message from function phase_frequency() at line number 439 of file "pN_chi
Frequency evolution no longer monotonic.

Phase evolution terminated at frequency and step: 911.681702 13357
Terminating chirp. Termination code set to: 1201

Returning to calling routine.

$Id: man_inspiral.tex,v 1.17 1997/08/07 22:31:57 ballen Exp $

$Name: RELEASE_1 5_2 3

ml=1.400000 m2=1.400000 Initial_ Freg=60.000000
steps_£i111d=13357 steps_alloc=16384 Max_Freq Actual=911.681702
time_in_band=1.353408 clscnc_time=1.353573

Termnination code: 1201

0 0.000000 0.000000 60.000000
1 0.000101 0.038204 60.001675
2 0.000203 0.076369 60.003353
3 0.000304 0.114627 60.005020
4 0.000405 0.152820 60.006695
5 0.000507 0.191071 60.008366
6 0.000608 0.229173 60.010052
13349 1.352699 797.669800 720.294189
13350 1.352800 798.134949 741.157715
13351 1.352901 798.614136 764.565786
13352 1.353003 799.109192 791.015686
13353 1.353104 799.622192 821.015320
13354 1.353205 800.155457 . 854.720337
13355 1.353307 800.710999 890.133667
13356 1.353408 801.286499 ' 911.681702

The first seven lines of output come directly from phase_frequency (),and are printed to stderr.
These give a warning message telling why the chirp calculation was terminated; it no longer had monoton-
ically increasing frequency. It also tells where the chirp was terminated; after computing 13357 points it
has reached a frequency of 907Hz. The termination code (1201) is also printed. Knowing the termination
code makes it easy to find the segment of source code that produced the termination; just do a search for
the character string “1201” and you will find the line of code where the termination code was set. Setting
err_cd_sprs greater than 1201 would suppress the printing of this warning message and all messages
with a termination code less than 1201. However, even without the printed message the calling routine can
determine the value of the termination code; it is retumed by phase_frequency ().

The rest of the output comes from the phase_evoltn program. The quantity time_in band=
(steps_filld—1)xSample.Time is the length (in seconds) of the computed chirp. The quantity
clscnc_time is the value of ¢, that enters Egs.(5.4.1) below. The four column output from left to right is
the integer index of the data points, time stamp of each point in seconds (starting arbitrarily from zero), the
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orbital phase in radians (starting arbitrarily from zero), and the orbital frequency (starting from the initial
frequency of 6 0Hz).

To summarize: It takes about 1.35 seconds for two 1.4M objects to spiral in from an orbital fre-
quency of 60Hz to an orbital frequency of 911Hz. The chirp calculation was terminated at 911Hz -
instead of the requested 2000Hz — because the post-Newtonian expression used to compute the chirp is
clearly out of its region of validity: the frequency is no longer increasing. Examining the last few data
points shows that the frequency was rising quickly — as expected ~ until the last two data points. During
this inspiral the orbital system went through 811.09/(2m) ~127.53 revolutions. The two integer num-
bers steps_filldand steps.alloc are the number of actual data points computed and the number of
floating point memory slots allocated, respectively. (Memory is allocated in blocks of 4096 floats at a time.
Thus steps_alloc will generally exceed steps_£i111d.) The values of the phase and frequency at ev-
ery 1/Sample_Time= 1.10333 x 10~* seconds starting from when the binary had an orbital frequency of
6 0Hz until it neared “coalescence” at 911Hz have been calculated.




5.4 Detailed explanation of phase_frequency () routine

The phase_frequency () routine starts with inputs describing the physical properties of the system (the
masses) and an initial frequency from which to start the evolution. We then compute the orbital frequency
evolution [in cycles/second] directly from the formula given in [6]

1) = TorTome {9 o T 327 ° 10°
1855099 56975 371 _7/8}
(14450688 + 558048" * 204" > © ’ (5.4.1)

where my is the total mass of the binary. The time integral of this equation gives the orbital evolution in
cycles. Multiplying by 2 yields the orbital phase in radians

= gom Lo (25, 55) o S
( 9275495 284875 1855 2) 61/8} .

14450688 | 258048 T 2048 (5.4.2)
Here © is a dimensionless time variable
Mo :
O= te—t), 543
5T®mtot( ¢ ) ' ( )

N = u/myet, and 2, is the time of coalescence of the two point masses. Similarly the constant ¢ is the
phase at coalescence, which is arbitrarily set in phase_frequency () so that ¢ = 0 at the initial time.
[See the detailed discussion of the phase conventions below.] Also-notice that the mass quantities only
appear as ratios with the solar Mass M, and the time only appears as a ratio with the quantity Tp =
4.925491 x 107° sec in Eq.(5.0.2).

These formulations of the post-Newtonian equations for the phase and frequency are simple to imple-
ment: each pass through the loop increments the time by the sample time (Sample_Time in the example)
and computes the phase and frequency using Eqgs. (5.4.1) and (5.4.2). However, there is an alternative for-
mulation. In deriving these equations the “natural” equation that arises is of the form f = F(f). [See e.g.
(101 Eq.(3).] This in turn can be integrated to give an equation of the form ¢, — ¢t = T'(f). In our formula-
tion this equation has been inverted — throwing away higher-order post-Newtonian terms as you go — to give
Eq.(5.4.1). However the equation in the form ¢, —t = T'(f) can also be implemented directly. In this type of
formulation one would again increment the time, but then use a root-finding routine to find the frequency at
each time step. Our chosen method has the advantage of avoiding a time-consuming root-finder at each time
step; however the alternative formulation has undergone fewer damaging post-Newtonian transformations,
and may therefore be more accurate.

In our formulation we only need to call a root-finding routine at the start of the chirp to find the value
of t. — t when the system is at the initial frequency. In order to insure that we find the correct root for the
starting time we begin a search at a time when the leading order prediction of the frequency is well below
the desired starting frequency. We step forward in time until we bracket the root; we then call the Numerical
Recipes root-finder rtbis () to compute the root precisely. This is depicted in the lower right corner of
figure 17 where we show the value of the “time” coordinate X that corresponds to an initial frequency of
60Hz. This method is virtually assured of finding the correct root in that it will find the first solution as we
proceed from right to left in figure 17. The primary problem in finding this root is that there may actually be
no meaningfull start-time for the specified chirp. For example, if you you were to specify a chirp with two
1.4 M objects with an initial frequency of 1000Hz, you can see from the figure that there is no value of X
(i.e. t. — t) that corresponds to this frequency. In this case phase_frequency () will search from right
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to left for the start time. It will notice that it is passing over the peak in the graph and out of the regime of
post-Newtonian viabilty. It will then terminate the search and notify the caller that there is no solution for
the requested chirp.

~ The behavior of the frequency equation is shown in figure 17. As time increases the frequency rises to
a maximum and then begins to decrease dramatically. Notice that the maximum occurs when the dimen-
sionless time parameter © = 5’7—19%”_:—01 = X? is approximately unity; this feature is only weakly dependent
on the mass ratio. The fact that © =~ 1 means the post-Newtonian corrections in Eq.(5.4.1) are comparable
to the leading order term. Therefore, this peak is a natural place to terminate the post-Newtonian chirp
approximation. In the example the code terminated the chirp for precisely this reason. [See the warning
message.] '

Although it is not shown in the figure the behavior of f as X nears zero is very abrapt; the function

goes sharply negative and then turns around and diverges to +oo as X — 0 (i.e. ¢t — %.). This abrupt
behavior will happen on a time scale of order T, (a few microsecends). Typical sample times are likely
to be on the order of a tenth of a millisecond, and therefore the iterative loop may step right over this
maximum-minimum-divergence behavior of the frequency function altogether. Don’t worry. The routine
phase_frequency () handles this case gracefully. The routine will stop the chirp calculation and warn
the caller if the time stepper goes beyond the coalescence time. It will also stop the chirp calculation if
it senses that the time has stepped over the dip in frequency and is on the strongly divergent part of the
frequency curve near the X = 0 axis. |
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5.5 Function: chirp_filters{()

int chirp_filters(float ml, float m2, float spinl, float spin2, int n_phaseterm:
float *phaseterms, float Initial.Freg, float Max FregRgst, float *Max FregActual
float Sample. Time, float **ptrptrCos, float **ptrptrSin, int *steps.alloc, -
int *steps_filld, int err_cd.sprs)
This function is a basic stripped-down chirp generator. It computes two — nearly orthogonal ~ chirp wave-
forms for an inspiralling binary. The two chirps differ in phase by 7 /2 radians. The chirp values are given
by Eqs.(5.6.1) and (5.6.2). Just as the phase and frequency calculator phase_freguency () returns an
integer number which describes how the chirp calculation was terminated, this routine does also.

The arguments are:

m1: Input. The mass of body-1 in solar masses.
m2: Input. The mass of body-2 in solar masses.
spinl: Input. The dimensionless spin parameter of body-1. See section on spin effects.
spin2: Input. The dimensionless spin‘parameter of body-2. See section on spin effects.

n_phaseterms: Input. Integer describing the number of terms implemented in the phase and frequency f
calculations. In the present implementation this should be set to 5. f

phaseterms: Input. The array phase_terms[0. .nphaseterms-1] describes which terms will
be included in the phase frequency calculations. Setting phase_terms[i]=0 nullifys the term.
Setting phase_terms [i]=1 includes the term. This allows for easy run-time nullification of any
term in the phase and frequency evolution, e.g. setting phase_terms [4]=0 eliminates the second
post-Newtonian terms from the calculation.

Initial Freq: Input. The starting orbital frequency of the chirp in Hz.

Max.FreqRgst: Input. The requested orbital frequency where the chirp will stop. However, the actual
calculation may not proceed all the way to this orbital frequency.

Max Freg.Actual: Output. The floating number *Max _Freg.Actual is the orbital frequency in Hz
where the chirp actually terminated.

Sample_Time: Input. The time interval between points in seconds.

ptrptrCos: Input/Output. The chirp corresponding to Eq.(5.6.1) 1is stored in
*ptrptrCos[0. .steps£i11d-1]. Inputin the sense that much of the internal logic of chirp filters (
depends on how the pointers *ptrptrCos (and *ptrptrSin below) are set. If either is set to '
NULL memory allocation will be performed inside chirp_filters (). If both are not NULL then
it is assumed the calling routine has allocated the memory before calling chirp_filters ().

ptrptrSin: Input/Output. Similar to ptrptrCos above. The chirp corresponding to Eq.(5.6.2) 1s
stored in *ptrptrSin{0..steps.f£illd-1].

steps.alloc: Input/Output. The integer *steps_alloc is the number of floating point entries al-
located for storing the two chirps, i.e. the number of valid subscripts in the arrays * *ptrptrCos
and **ptrptxrSin. This integer should be set in the calling routine if memory is allocated there,
or it will be set inside chirp.filters () if memory is to be allocated there. If both of the point-
ers *ptrptrCos and *ptrptrSin are not NULL then chirp-filters () understands that the
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calling routine is taking responsibility for allocating the memory for the chirp, and the calling rou-
tine must set *steps_alloc accordingly. In this case chirp_filters () will fill up the arrays
**ptrptrCos and * *ptrptrSin until the memory is full (i.e fill them with *steps_alloc of
floats) or until the chirp terminates, whichever is less.

steps_filld: Output. The integer *steps.£i11dis the number of time steps (sample values) actually
computed for this evolution. It is less than or equal to *steps_alloc: -

clscnc_time: Output. The float *clscnc_time is the time to coalescence in seconds, measured from
the instant when the orbital frequency is Initial Freq given by t. in Eqs.(5.4.1) and (5.4.2).

err.cd_sprs: Input. Error code supression. This integer specifies the level of disaster encountered in
the computation of the chirp for which the user will be explicitly wamed with a printed message. Set
to O: prints all the termination messages. Setto 4000: suppresses all but a few messages which are
harbingers of true disaster. The termination messages are numbered from 0 to 3999 loosely in accor-
dance with their severity (the larger numbers corresponding to more severe warnings). Any message
with a number less than err_cd._sprs will not be printed. A termination code of 0 means the chirp
calculation was executed as requested. A termination code in the 1000’s means the chirp was termi-
nated early because the post-Newtonian approximantion was deemed no longer valid. A termination
code in the 2000’s generally indicates some problem with memory allocation. A termination code in
the 3000’s generally indicates a serious logic fault. Many of these “3000” errors result in the termina-
tion of the program. If you get an error message number it is easy to find the portion of source code
where the fault occured; just do a character string search on the four digit number.

Authors: Alan Wiseman, agw @tapir.caltech.edu and Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: None.
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5.6 Detailed explanation of chirp_filters () routine

The routine chirp_filters () calls phase_frequency () to find out the how the orbital phase and
frequency evolve in accordance with the input parameters. It then makes a single pass through that phase
and frequency ephemeris, computing the chirps as it goes, and storing the information in the space al-
ready allocated for the phase and frequency. Most of the fault checking and computations are done in the
phase_fregquency () routine, and all the errors messages and wamings come from there.

The routine chirp_filters () computes

g\ [2rTomuot f (t)] 23
=2 2¢(t .6.
and the other orbital-phase chirp which is 7/2 out of phase with h,(t)
p \ [27Tomior f (t)} 23
hs(t) =2 20(t) , .6.
s(t) (MQ)[ A sin 2¢(t) (5.6.2)

with all the leading numerical factors we display.

If the so called “restricted” post?-Newtonian polarizations [leading order in the amplitude, but post?-
Newtonian phase corrections] are desired, they can be easily assembled from h. and hs. The “+” (plus)
polarization is given by ' : '

halt) = —%(1 + cos? ) he(t) (5.6.3)

and the “X” (cross) polarization is given by
hy (t) = —2%f(cos i) hs(t) . (5.6.4)

Here D is the (luminosity) distance to the source in centimeters, c is the speed of light in centimeters/second,
and ¢ is the inclination angle (radians) of the of the angular momentum axis of the source relative to the line-
of-sight. See Will and Wiseman [7] figure 7 for the precise definition of the inclination angle.

The restricted post>-Newtonian strain amplitude impinging on the detector can also be calculated from
the output of chirp_filters () by

where F; and Fy are the detector beam-pattern functions.

In the remainder of this section we will clarify some technical issues involving the orbital phase. First,
in computing ¢(t) in phase_frequency () we have arbitrarily set the constant ¢. in Eq.(5.4.2) such that
¢ = 0 at the beginning of the chirp. The astrophysical convention for defining the orbital phase angle ¢
given in [7] measures ¢ in the plane of the orbit from the ascending node. [The ascending node of the
orbit is where body-1 passes through the plane of the sky going away from the observer.] Choosing ¢, in
this way we have assumed that body-1 is passing through the ascending node of the orbit at the instant we
start our chirp. Detailed information about the overall phase is not needed for many purposes (i.e. matched
filters), therefore our choice is of little consequence. If this information needs to be included for some
application, chirp_filters () can be modified to do so; thus one can leave the computational engine
phase_frequency () untouched.

The second issue involving the phase is a bit more delicate. We have used the true orbital phase ¢(t)
to compute oscillatory part of the chirp in Eqs.(5.6.1) and (5.6.2). But should we use the logarithmically

modulated phase variable
’ 4Gmyo <
y(t) = ¢ = 29T sy ) 566)
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in our computation of the chirp? After all, the true phase of the gravitational-wave signal impinging on the
detector is 2¢. Let us examine the effect on our signal replacing sin 2¢ in Eq.(5.6.2) with the logarithmically
corrected sin 2y

el v 0/52))

(8”—;$ﬁln(f<t>/fo>) ~ cos2gsin n(70/1)
(S ra5(0/1)) o026 (567

sin2y = sin <2¢ —

= sin 2¢) cos (SwmtOth

~ (1 + 0(1/c6)> sin 2¢ —
The O[1/c?] is a post®-Newtonian term and can be neglected in the present post?-Newtonian analysis. How-
ever the coefficient of the cos 2¢ is a post3/2-Newtonian order correction to the waveform, and must be
included in any full post?>-Newtonian analysis. This logarithmic term is included in the waveform calcula-
tion in the stxrain () routine. However, the last line of Eq.(5.6.7) also shows that the logarithmic phase
correction can be considered a post®/2-Newtonian correction to the amplitude. In our present restricted
post-Newtonian chirp calculation we neglect these higher order amplitude corrections, so we are justified i in
neglecting the logarithmic correction to the phase.

The advantage of neglecting the logarithm is that it speeds up the calculation of the chirps: we don t
have to compute a logarithm at each time step. However, this may be at expense of accurately track-
ing the signal phase of a strongly relativistic source. After all much research has gone into computing
the gravitational wave phase from these sources and we shouldn’t willy-nilly discard these phase correc-
tions. Is it difficult to modify our code to include this term? Not at all. In fact, the inclusion of the
logarithmic correction to the gravitational wave phase would not affect phase_frequency (), at all.
The fact that this logarithmic propagation effect only enters the chirp_filters () routine and not the
phase_freguency () routine may seem like a computational quirk, but this actually has a physical origin:
The routine phase_frequency () computes the local orbital phase of the binary; whereas, the physical
origin of the logarithmic term is a propagation effect and has nothing to do with the orbital phase,

This is not say that no log terms will ever be needed in phase_frequency (). Note that at post*-
Newtonian order there are log terms which do affect the local instantaneous orbital motion of the binary, so
if phase._frequency () is ever modified to incorporate that order, then log terms will appear there also.

Another issue involving the log term in the phase is the presence of the “arbitrary” scale factor f,
entering the definition of ¥ (t) in Eq.(5.6.6). The net effect of adjusting this constant is to change the value
of another arbitrary constant in our phase and frequency equations; it shifts the value of ¢, in Eq.(5.4.3). In
order to to facilitate swift computation, we choose f, to be the minimum frequency of the requested chirp.
This insures that the ratio in the logarithm is of order unity during the chirp computation.
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5.7 Example: filters program

This example uses chirp-filters () to generate two chirps 7/2 out of phase with each other. It also
demonstrates a different memory allocation option than the phase_evoln example program.

/* GRASP: Copyright 1997, Bruce Allen %/

#include “grasp.h"

int main() {
float ml,m2,spinl,spin2,phaseterms[5],clscnc_time, *xptrCos,*ptrSin;
float time,Initial.Freqg,Max.Freq-Ragst,Max Freq.Actual, Sample_Time, time_in_band;
int steps_alloc,steps_£filld,i,n.phaseterms,err_cd_sprs,chirp_ok;

/= Set physical parameters of the orbital system: =/
ml=m2=1.4;
spinl=spin2=0.;

/* Set ORBITAL frequency range of the chirp and sample time: */
Initial Freg=60.; /* in cycles/second =/
Max-Freq-Rgst=2000.; /* in cycles/second */
Sample.Time=1./9868.4208984375; /« in seconds */

/* post-Newtonian [O(1/c*n)] terms you wish to include (or supress)
in the phase and frequency evolution: */
n_phaseterms=5;

phaseterms[0] =1.; /* The Newtonian piece */
phaseterms{1] =0.; /* There is no O(1 /c) correction */
phaseterms[2] =1.; /* The post-Newtonian correction x/
phaseterms[3] =1.; /* The 3/2 PN correction #/
phaseterms (4] =1.; /* The 2PN correction */

/* Set memory-allocation and error-code supression logic: */
steps.alloc=10000;

ptrCos=(float x)malloc(sizeof (float)=*steps_.alloc);
ptrSin=(float *)malloc(sizeof (float)xsteps.alloc);
err.cd_sprs=0; /0 means printall warnings */

/* Use chirp_filters() to compute the two filters: */

chirp_ok=chirp.filters(ml,m2,spinl, spin2,n-phaseterms,phaseterns,
Initial_Freq,Max.Freg_Rgst,&Max_Freq.Actual, Sample_Time,
&ptrCos, &ptrSin, &steps.alloc, &steps_£il1ld,&clscnec_time, err_cd_sprs);

/* ... and print out the results: x/
time_in_band=(float) (steps_-filld—1)x*Sample.Time;
fprintf (stderr, "\nml=%f m2=%f Initial_Freg=%f\n", ml,m2,Initial.Freq);
fprintf (stderr, "steps_filld=%1 steps_alloc=%i Max_Freq Actual=%£f\n",
steps_filld,steps.alloc,Max Freg-Actual) ;
fprintf (stderr, "time_in_band=%f clscnc_time=%f\n",time.in_band,clscnc_time);
fprintf (stderr, "Termnination code: %$i\n\n*;&hirp.ok);+
for (i=0;i<steps_filld;i++){
time=ixSample_Time;
printf ("$i\t$E£\e%f\t%f\n", i, time,ptrCos[i],ptrSiniil);

}

return 0;

}
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Figure 18: The zero-phase chirp waveform from a 2 x 1.4M( binary system, starting at an orbital fre-
quency of 60 Hz. The top graph shows the frequency of the dominant quadrupole radiation as a function of
time, and the middle graph shows the waveform. The bottom graph shows a 40-msec stretch near the final

inspiral/plunge.

Notice that we only allocated enough memory for 10000 points, and we know from the output from the
previous example that this chirp takes 13515 points. Therefore running this example results in following
error message printed to stderr:

GRASP:phase_frequency() :Allocated memory is filled up before
reaching the maximum frequency regested for this chirp.

Orbital Frequency Reached(Hz): 98.867607, Number of points: 10000
Terminating chirp. Termination code set to: 2001

Returning to calling routine. '

However, even though the routine ran out of memory it still computed the first 10000 points of the chirp
and returned them in the arrays *ptrptrCos[0..steps.alloc-1] and
*prrptrSini0..stepsalloc-1].
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5.8 Practical Suggestion for Setting Up a Large Bank of Filters:

- We have carefully explained (how to avoid) a number of the pitfalls in computing post-Newtonian chirps.

Before using the chirp generators to spit out hundreds or thousands of chirps needed for a bank of filters and
farming out the computations out to dozens of parallel processors in a massive coalescing binary search, we
strongly suggest that you edit the examples already given and check the routine against the three extreme
cases you will encounter in your search.

1. Try the example with both masses set to the minimum mass in your proposed search, i.e. compute

' the phase and frequency evolution and the chirps for the template in the upper right hand corner in
figure 33. This is the template of longest duration. If you are going to have a memory allocation
problem you will have it with this template. Also, knowing the duration of the longest template in
your search will help you decide the length of the segments of data which you filter. In general, you
want the length of these data segments to be at least several times longer than the longest chirp. See

Section 5.18 for further details.

2. Try the chirp generator with both masses set to the maximum mass in your search, ie. compute
the phase and frequency evolution of the template in the lower left corner of figure 33. This is the
shortest duration template and the one least likely to make it to the upper cut off frequency before
going out of the region of post-Newtonian viability. This case will be the most demanding test of
the “chirp-termination” logic in phase_frequency (). Itis also possible in the case of extremely
large masses that there really is no chirp at all in the frequency regime requested. For example a
binary composed of two 100M, object will coalesce long before it reaches the initial chirp frequency
of the 60Hz we are using as our a lower cutoff frequency in our example. Don’t worry. The routine
phase_frequency () will warn you that the root finder was unable to find a viable solution for the

initial time. You'may have to adjust the search range accordingly.

3. Try the chirp generator with one mass at the minimum allowed value and the other mass at the max-
imum allowed value, i.e. compute the phase and frequency evolution for the template in the upper
left comner of figure 33. This is the template which is most dominated by post-Newtonian terms in the

evolution.

If the routine gives satisfactory results for these three cases, it should work for all the cases shown in figure
33; you are now ready for wholesale production.
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5.9 Spin Effects

In the simple case where the spin vectors of the bodies are aligned (or antialigned) with the orbital angular
momentum axis, the GRASP chirp-generating functions have the built-in capability of computing the leading
order spin-orbit and spin-spin corrections to the inspiral chirp. To use this feature no modification of
the chirp-generating routines [phase._frequency () or chirp_filters()]is necessary; simply pass
nonzero values of the spin paramenters to the functions. This can easily be done by editing the example
programs phase_evoltn.c and/or filters.c to pass nonzero values of the variables spinl and
spin2. [See below for definitions and allowed ranges of spinl and spin2.] )

When spinning bodies are involved, the full gravitational waveform can be quite complicated; the orbital
plane and the spin vectors of the individual bodies can precess. The precession causes a modulation of the
signal. However, the GRASP routines only implement the the special case when the spins are assumed to
be aligned (or antialigned) with the orbital angular momentum axis. In this case there is no precession and,
therefore, no modulation of the amplitude of the signal. Also in this case, the spin-corrections to the orbital
frequency and phase are given by simple modifications to the nonspin phase and frequency Egs. (5.4.1) and
(5.4.2). The necessary terms can be found in Eq.(F22) in Appendix F of [7], and are given by

f@®) = ————_167TT@mtot {@ + 160 [xs + (dm/m)xa] —4077XS ) |
_ 237 2 2 ) ~7/8 }
<——512n[(xs) (Xa)])O7"" + o p (5.9.1)

and

1 113 19
60) = oo {655+ (bxe-+ Gm/mxe] - s ) O

1185
- (B2l - () 05+ . | (592)
512
Here © is the dimensionless time variable given by Eq. (5.4.3). The ellipses represent the nonspin (post)™-
Newtonian terms already given in Eqgs. (5.4.1) and (5.4.2). The quanties xs and X, are related to the angular

momentum of the bodies by

1/5; S’2>
s==|—=+—=1, 59.3
X 2<m%+m§ (5.9.3)
1/75; Sa
- _ =22 9.4
Xa Z(m% m§> ’ (594

where 5y(g) is the signed magnitude of the angular momentum vector of each body. The sign being positive
(negative) for spins aligned (antialigned) with the the angular momentum axis. By comparing the nonspin
phase and frequency evolution [Eqs. (5.4.1) and (5.4.2)] with the spin corrections in Egs. (5.9.1) and (5.9.2),
we see that the spin-orbit corrections (terms linear in xs and X,) simply modify the (post)3/ 2_Newtonian
contributions and the spin-spin corrections (term quadradic in xs and x,) modify the (post)®-Newtonian
contributions. :

Specifally, the spin quantities passed to the chirp generation routines are the signed, dimensionless
(Kerr-like) parameters of each body

: S1]
1=+1 595
spin m% , ( )
S
spin2 = L i' , (5.9.6)
™m3
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where the +(—) sign is chosen if the spin is aligned (antialigned) with the orbital angular momentum axis.
Some calculations (e.g. those requiring a precise definition of the orbital phase) are sensitive to the index
assigned to the bodies. The GRASP convention is that m; is the smaller of the two masses; therefore spinil
should be the spin assigned to the smaller of the two masses.

What is the allowable range for the spin parameters spinl and spin2? For Kerr black holes, we know
lspin1(2)| = (ISy(2)l/ mf(z)) < 1. For spinning neutron stars, stability studies (based on relativistic numer-
ical hydrodynamic simulations) show that the spin parameter must satisfy |spin1(2)| = (|Syz)l/ mf@)) S
0.6. These limits can serve as a hard upper bound for a choice of spin parameters. However, observed
pulsars in binaries have spin parameters substantially smaller than this limit, e.g. for the Hulse-Taylor pulsar
we have spinl < 6.5 x 1073, (See [10] for discussion and references.) Like all post-Newtonian equations,
Egs. (5.9.1) and (5.9.2) are slow-motion approximations to the fully relativistic equations of motion; there-
fore they are most accurate — and well behaved — for smaller values of the spin parameters. The GRASP
routines have been tested for a modest range of masses (0.1M(,10M) and spins (—0.2,4-0.2) in the fre-
quency band 60Hz < f,rp < 2000Hz; they seem to give reasonable results in this regime. Finally, the
admonitions and suggestions given in Sec. (5.8) about setting up banks of filters hold here also: test the
chirp-generating functions with the extreme values of masses and spins you intend to use in your search.
If the functions give satisfactory. results at the “corners” of the parameter space, they should work on the
interior of the parameter space.
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5.10 Function: make_filters()

void make_filters(float ml, float m2, float *chl, float *ch2, float fstart,
int n, float srate, int *filled, float *t_coal, int err_cd-sprs, int order)
This function is an even more stripped down chirp generator, which fills a pair of arrays with waveforms

for an inspiralling binary. The two chirps differ in phase by 7/2 radians and are given by Egs.(5.6.1) and

| (5.6.2). This routine assumes spinless masses, and computes a chirp with phase corrections up to a specified

& post-Newtonian order.

i The arguments are:

R ——

0 ml: Input. The mass of body-1 in solar masses.
m2: Input. The mass of body-2 in solar masses.

chl: Output. Upon return, ch1[0..filled-1] contains the O-phase chirp. The remaining array
elements chl[filled. .n-1] are set to zero.

¢ ch2: Output. Upon return, ch2 [0..filled-1] contains the 7/2-phase chirp. The remaining array
elements ch2{filled. .n-1] are set to zero.

. fstart: Input. The starting gravity-wave frequency of the chirp in Hz. Note: this is twice the orbital
frequency!

n: Input. The length of the arrays ch1[] and ch2[].

srate: Input. The sample rate, in Hz. This is 1/At where At is the time interval between successive
entries in the chl [] and ch2 [] arrays.

£illed: Output. The number of of time steps actually computed, before the chirp calculation was termi-
nated, or until the arrays were filled (hence filled < n). Thus, on return, only the array elements
chl[0..filled-1] and ch2[0..filled-1] are contain the chirp; the remaining array ele-
ments are zero-padded.

t_coal: Output. The time to coalescense measured from the first point output, in ch* [0].

err_cd_sprs: Input. Error code supression. This integer specifies the level of disaster encountered in
the computation of the chirp for which the user will be explicitly warned with a printed message. Set
to O: prints all the termination messages. Set to 4000: suppresses all but a few messages which are
harbingers of true disaster. (See identical argument in chirp.filters ().

order: Input. The order of the post-Newtonian approximation. This ranges from 0 (quadrupole approx-
o imation) up to 4 (second post-Newtonian order). Technicially, order is the power in (v/c) past the
- quadrupole approximation to which the post-Newtonian expansion is taken.

This routine assumes that you have already allocated storage arrays for the chirps. Note that the coales-
cence time may be much later than the last non-zero entry written into the ch1[] and ch2 [] arrays.

Author: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: None.
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5.11 Stationary phase approximation to binary inspiral chirps

Much of the literature on binary inspiral data analysis approximates chirps in the frequency domain by
the method of stationary phase. The main reason for this approximation is the need to generate analytical
expressions in the frequency domain, where almost all of the optimal filtering algorithm takes place. A side
benefit is that the post-Newtonian expansion seems better behaved in the frequency domain—that is, there
is no nonmonotonic frequency evolution as depicted in figure 17.

Therefore, GRASP includes sp_filters (),astationary phase chirp generator similar tomake filters().

The advantage of this function is a considerable savings in CPU time by avoiding FFTs of time-domain
chirps in the generation of matched filters. The disadvantage is that stationary phase is only an approxima-
‘tion, albeit a very good one in many situations of interest.

The stationary phase approximation can be found in any textbook on mathematical methods in physics.
An excellent discussion in the context of binary inspiral can be found in section II C of [11].

The stationary phase approximations to the Fourier transforms of h.(t) and & (¢) [Egs. (5.6.1,5.6.2)] are
given in the restricted post-Newtonian approximation by

_ _ 5u 1/2 M 1/3 _1/6p-1/6 ]
he(f) = (96M@> (7r2M6> FoTL " exp (¥ (f)], (5.11.1)
hs(f) = ihe(f), (5.11.2)

where f is the gravitational wave frequency in Hz, M is the total mass of the binary, and 4 is the reduced

mass. Note that h. ;(f) have dimensions of 1/Hz. The instrument strain per Hz, h(f), is obtained from a

linear superposition of h. s(f) in exactly the same way as h(t) is obtained from he,s(t). See the discussion
following Egs. (5.6.1,5.6.2).

The restricted post-Newtonian approximation assumes that the evolution of the waveform amplitude is
given by the 0’th-order post-Newtonian expression, but that the phase evolution is accurate to higher order.
This phase is given by

U(f) = 27nfte—2¢.— /4
30 . <371.5 55) s »
S o3 2 —~ 167
+ 128, [I t 7 9" T
(15293365 27145 3085 2) -1

508032 soa T2 "

38645 5
+ (T +5n)winal, G4

where z = (7M fTg/Mg)'/3, the coalescence phase o is determined by the binary ephemeris, and the
coalescence -time t. is the time at which the bodies collide. The chirps h. and hs are given ¢, = 0 and
¢, = —m/4, respectively. All but the last term of (5.11.3) can be found in [12]; for the last term see the
warning at the end of section 5.12.

The chirps are set to zero for frequencies below the requested starting frequency and above an upper
cutoff f,. Physically, f. should correspond to the epoch whén orbital inspiral turns to headlong plunge.
The formula for f, currently is not known for an arbitrary pair of objects, but in the limit of extreme mass
ratio (and no spins) it should be equivalent to the well-known innermost stable circular orbit (ISCO) of
Schwarzschild geometry. The frequency of the Schwarzschild ISCO can be computed exactly and is given

in Hz by
Mgy

=2 5.11.4
6327 MTg 114

fe
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In the absence of anything better, sp-filters () uses the Schwarzschild f. for all binaries, a kludge

which seems to work surprisingly well (see the compare._chirps program).
There is as yet no definitive, published investigation of how good the stationary phase approximation is
for chirps. A future version of this document would be 2 good place for one!
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5.12 Function: sp_filters()

void sp-filters(float ml, float m2, float *chl, float *ch2, float fstart,
int n, float srate, float *f.c, float t.c, int order)
This function generates stationary phase approximations to binary inspiral chirp waveforms. Its input and
output are similar to make_filters (). The difference is that the chirps are generated in the frequency
domain using the stationary phase approximation.

The arguments are: '

ml: Input. The mass of body-1 in solar masses.
m2: Input. The mass of body-2 in solar masses.

chl: Output. Uponreturn, ch1[0. .n-1] contains the stationary phase approximation to h¢(f) [Eq. (5.11.1)]
in the same format as would be returned by a realft () of a time-domain function sampled at rate
srate. That is, except for DC and Nyquist frequencies, chl[2*1] and ch1[2*i+1] contain
respectively the real and imaginary parts of A.(f) for f = i  srate/n. This function sets ch1[0]
(DC) and ch1{1] (Nyquist) to zero. The chirp is also set to zero for f < fstart and for f > f.c
(see section 5.11 for f.). The output ch1[0. .n-1] has dimensions of 1/Hz.

ch2: Output. Upon return, ch2 [ ] contains ks (f) in the same way that chl [ ] contains A(f).

fstart: Input. The starting gravitational-wave frequency of the chirp in Hz. Note: this is twice the
orbital frequency!

n: Input. The length of the arrays ch1[0..n-1] and ch2[0..n-1].
srate: Input. The sample rate, in Hz.

£_c: Output. The coalescence frequency f,, as described in section 5.11. This is the high-frequency cutoff
of the chirps.

t-c: Input. The coalescence time, in seconds. Note this is the time of the end of the chirp (see sec-
tion 5.13).

order: Input. Order of generated chirps in (7 M fTg /Mg )Y/? (twice the post-Newtonian order).

This function assumes that you have already allocated storage for the chirps.

Author: Benjamin Owen, owen@tapir.caltech.edu

Comments: The sp_filters () function doesn’t include spins yet. Also, the approximation to f. needs
to be improved. It will be simple to add higher-order post-Newtonian phase terms as they appear in
the literature.

Warning: [ have included the 2.5-post-Newtonian term in this version of sp_-filters (), but it should be
treated with caution. To the best of my knowledge I am the only one in the world who has calculated
W (f) at this order, in a manuscript yet to be submitted. Somebody should check up on this term. Any
volunteers?
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5.13 Example: compare_chirps program

This example compares a chirp generated by sp_filters () toa chirp with identical parameters generated
by make_filters (); the output is shown in Figure 19. The chirp generated by sp_filters() is
transformed to the time domain, and the two chirps are superimposed on one graph.

/= GRASP: Copyright 1997, Bruce Allen %/
/* compare_chirps.c: by Benjamin Owen, 1997 */

#include "grasp.h*

#define FSTART 40. /* GW starting frequency, in Hz /

#define SRATE 10000. /* Sample rate, in Hz =/

#define LENGTH 32768 /* Twice no of freq bins = samples in time domain */
#define MASS1 10.0 /* mass of first body, in solar masses */

#define MASS2 10.0 /* mass of second body, in solar masses */

int main() {
FILE *xfp;
float t.c, £, xsp, *td, xdummy;
int 1i;
void realft(float#,unsigned long,int);

/* Allocate memory for chirps */

sp = (float *)malloc(sizeof (float)=*LENGTH) ;
td = (float x)malloc(sizeof (float)=*LENGTH) ;
dummy = (float *)malloc(sizeof (float)=*LENGTH) ;

/= Generate time-domain chirp for comparison purposes x/
make_filters (MASS1, MASS2, td, dummy, FSTART, LENGTH, SRATE, &i, &t_c, 2000, 4);

/= Generate stationary phase chirp in frequency domain */
sp.filters (MASS1, MASS2, sp, dummy, FSTART, LENGTH, SRATE, &f, t.c, 4):

/* Transform stationary phase chirp to the time domain x/
realft(sp—1, LENGTH, -1);

/= Graph both chirps in the time domain. First output file. /
fp = fopen("compare_chirps.output", "w");
for (i=0; i<LENGTH; i++)
fprintf (fp, "%$f %f %f\n", i/SRATE, td[i), sp[i]*2*SRATE/LENGTH) ;
fclose(fp);

/* Now graph the contents of the file using xmgr */
system("xmgr -nxy compare_chirps.output &");

return 0;

Note that to get the graph to show both chirps as simultaneous functions of time, sp-filters ()
needed to know the coalescence time found by make_filtexs (), so the latter function is called first.
If the coalescence time input to sp.filters() had been zero , its chirp would have finished at the
beginning—or equivalently, the end—of the time-domain data.

Also note that the inverse realft () of the stationary phase chirp had to be multiplied by a factor to be
comparable to the time-domain chirp. The 2 /LENGTH factor is left out of the inverse realft (), and the

107




Stationary Phase Approximation

2 x 10 solar mass bodies

1. 2.0
time (sec)

03 ﬂ 05 -
| 0.0
~0.2 | ]
_ H -05 : !
07— R0} AT [ - SR S
2002 008 0.47 052 057 0.62 0903 0913 0923

Figure 19: The output of compare.chirps, comparing the stationary-phase approximate waveform
FFT’d into the time domain (red curve) with a 2nd-order pbst—Newtonian chirp calculated in the time do-
main, using make_filters () (black curve). The lower part of the graph shows three interesting regions
of the upper (complete) graph. The bottom left detail shows the Gibbs startup-transient, the bottom middle
detail shows a typical region of good agreement, and the bottom right detail shows the Gibbs turn-off tran-
sient. The Gibbs startup transient is also visible at the far right of the upper figure, which is periodically
identified with the far left.

SRATE factor is needed to keep the dimensions right. (Also, the forward realft () of the time-domain
chirp would need to be multiplied by 1/ SRATE to compare to the stationary phase chirp.)
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5.14 Wiener (optimal) filtering

The technique of optimal filtering is a well-studied and well-understood technique which can be used to
search for characteristic signals (in our case, chirps) buried in detector noise. In order to establish notation,
we begin this section with a brief review of the optimal filtering technique.

Suppose that the detector output is a dimensionless strain h(t). (In Section 3 we show how to construct
this quantity for the CIT 40-meter prototype interferometer, using the recorded digital data stream). We
denote by C(t) the waveform of the signal (i.e., the chirp) which we hope to find, hidden in detector noise,
in the signal stream h(t). Since we would like to know about chirps which start at different possible times
to, we'll take C(t) = T(t — to) where T'(t) is the waveform of a chirp which enters the sensitivity band of
the interferometer at time ¢ = O (for the moment, forget about the fact that the chirps come in two different
phase “flavors”).

We will construct a signal S which is a number, defined by

§= / * dt Q) (5.14.1)

where Q(t) is an optimal filter function in time domain, which we will shortly determine in a way that
maximizes the signal-to-noise ratio S/N or SNR. We will assume that Q is a real function of time.

We use the Fourier transform conventions of (3.9.3) and (3.9.4), in terms of which we can write-the
signal S as

S =.[Z“ﬁ:#[:#%*W“HW%Umwﬁ
_ /wﬁﬁwﬁﬂf—ﬁﬂﬂﬁﬁﬁ

= [ #hnaw. | (5142

This final expression gives the signal value S written in the frequency domain, rather than in the time

domain.
Now we can ask about the expected value of S, which we denote (S). This is the average of S over an

ensemble of detector output streams, each one of which contains an identical chirp signal C (t) but different
realizations of the noise:
h(t) = C(t) + n(t). (5.14.3)

So for each different realization, C(t) is exactly the same function, but n(t) varies from each realization to
the next. We will assume that the noise has zero mean value, and that the phases are randomly distributed,
so that (7i(f)) = 0. We can then take the expectation value of the signal in the frequency domain, obtaining

®) = [ abmen= [ #6Ha). (5144)

We now define the noise N to be the difference between the signal value and its mean for any given element
of the ensemble:

N=S§—(S)= /_ °:o dFR(F)G (). (5.14.5)

The expectation value of N clearly vanishes by definition, so (V) = 0. The expected value of N 2 is non- -
zero, however. It may be calculated from the (one-sided) strain noise power spectrum of the detector Sr(f),
which is defined by

(AR () = 5Sh1FDIF = 1), (5.146)
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and has the property that -
n?(t)) = /O Su(f) df. (5.14.7)

We can now find the expected value of N2, by squaring equation (5.14.5), taking the expectation value, and
using (5.14.6), obtaining

WY = [ d [ eOEn NG
= 3 [ @ samiaonr
AL GEOR (5148)

There is a nice way to write the formulae for the expected signal and the expected noise-squared. We
introduce an “inner product” defined for any pair of (complex) functions A(f) and B(f). The inner product
is a complex number denoted by (A, B) and is defined by

(4,8) = [ d&r AN DSHFD)- (5149)

Because S}, is positive, this inner product has the property that (A4, A) > 0 for all functions A(f), vanishing
if and only if A = 0. This inner product is what a mathematician would call a “positive definite norm”; it
has all the properties of an ordinary dot product of vectors in three-dimensional Cartesian space.

In terms of this inner product, we can now write the expected signal, and the expected noise-squared, as

<S>=(§C;,Q) and <N2>=%(Q,Q). (5.14.10)

(Note that whenever Sj, appears inside the inner product, it refers to the function Sy, (| f]) rather than Sy (f).)
Now the question is, how do we choose the optimal filter function @ so that the expected signal is as large
as possible, and the expected noise-squared is as small as possible? The answer is easy: to maximize the

signal-to-noise ratio i
<§>2_ (52 _, s
N (V%) (@

= O _ T omife
Qi) = Sh(FD)  S(fD) ' 61412

Going back to the definition of our signal S, you will notice that the signal S for “arrival time offset” £ is
given by

Q
. 5.14.11)
5 (

we choose

[¢]

s = [ g E(f)@*(f)

f)
L s sh (i)
(f) —27'zfto
/ f——Sh(lfD (5.14.13)

Given a template T and the signal h, the si gnal values can be easily evaluated for any choice of arrival times
to by means of a Fourier transform (or FFT, in numerical work). Thus, it is not really necessary to construct
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a different filter for each possible arrival time; one can filter data for all possible choices of arrival time with
a single FFT. '

The signal-to-noise ratio for this optimally-chosen filter can be determined by substituting the optimal
filter (5.14.12) into equation (5.14.11), obtaining

SN2 _ oA Ay o [P R CEP _ /°° IC()P
(z) =2@@=2] @cas=4] “5i G1419
You will notice that the signal-to-noise ratio S/N in (5.14.11) is independent of the overall normalization
of the optimal filter Q: if we make @ bigger by a factor of ten, both the expected signal and the expected
noise increase by exactly the same amount. For this reason, we will frequently specify the normalization of
the filter so that the expected noise-squared from a specified source is unity: (N?) = 1. This adjustment or
change of the filter normalization can be obtained by moving the (fictitious) astrophysical system emitting
the chirp template either closer or farther away from us. Because the metric strain h falls off as 1/distance,
the measured signal strength S is then a direct measure of the inverse distance.

For example, consider a system composed of two 1.4 Mg masses in circular orbit. Suppose that nor-
malizing the optimal filter for this system so that (N 2) = 1 corresponds to putting the system at a distance
of 15 megaparsecs (i.e., choosing C(t) to be the strain produced by an optimally-oriented two x 1.4 Mg
system at a distance of 15 megaparsecs). If we then detect a signal with a signal-to-noise ration S/N = 30,
this corresponds to detecting an optimally-oriented source at a distance of half a megaparsec. ’

The functions correlate () and productc () are designed to perform this type of optimal filtering.
We document these routines in the following section and in Section s:utility, then provide a simple example
of an optimal filtering program.

There is an additional complication, arising from the fact that the gravitational radiation from a binary
inspiral event is a linear combination of two possible orbital phases, as may be seen by reference to equations
(5.6.1) and (5.6.2). Thus, the strain produced in a detector is a linear combination of two waveforms,
corresponding to each of the two possible (0° and 90°) orbital phases:

A(t) = aTo(t) + BTso(t) + n(t)- (5.14.15)

Here the subscripts 0 and 90 label the two possible orbital phases; the constants o and [ depend upon the
distance to the source (or the normalization of the templates) and the orientation of the source relative to the
detector. Thus Tp(¢) denotes the (suitably normalized) function h,(t) given by equation (5.6.1) and Tgo(2)
denotes the (suitably normalized) function hs(t) given by equation (5.6.2).

In the optimal filtering, we are now searching for a pair of amplitudes o and (3 rather than just a single

amplitude. One can easily do this by choosing a filter function

= To(f) = Too(f) omifs
Qf) = g?rifto, (5.14.16)
Sn(lf1)
We will assume that the individual filters for each polarization are normalized by the convention just de-
scribed, and that they are orthogonal:
To To) _ g and Too Too) _ 9 anq (20,290} — o (5.14.17)
Sn’ Sh
Note that T and Ty are only exactly orthogonal in the adiabatic limit where they each have many cycles
in any frequency interval df in which the noise power spectrum Sp{f) changes significantly. Also note that
the filter function Q(f) does not correspond to a real filter Q(t) in the time domain, since Q(—f) # Q*(f).
so that the signal

h =
S(te) = (S—hQ> (5.14.18)
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is a complex-valued functions of the lag to. We define the noise as before, by N = S—(S). Its mean-squared
modulus is

1 ~ =
(NP = 5@.Q)
_ 1 To — iToo To —iToo
T2 Sh ’ Sh
1[(Th To Tgo Tgo
= —|{=,=1+ =2, 5.14.19
where we have made use of the orthornormality relation (5.14.17). Now the expected signal at zero lag
to =01is _ _ - 5 N :
(S) = -<h—>, G| =(2Toth T"O, To—To) _ oyt 2i8. (5.14.20)
Sh Sh Sh
Hence the signai-to—noise ratio is
__<S) =a+if. (5.14.21)

V(N

In the absence of a signal (S) = 0 and the variance of this quantity (from the definition of V) is unity:

(51 _
Ny = L (5.14.22)

In the presence of a signal, the signal-to-noise ratio is

()P _ 221 |(R To b Tw)’

The attentive reader will notice that we have lost a factor of /2 in the signal-to-noise ratio compared to
the case where we were searching for only a single phase of waveform. This is because of the additional
uncertainty associated with our lack of information about the relative contributions of the two orbital phases.
In other words, if we know in advance that a waveform is composed entirely of the zero-degree orbital
phase, then the expectation value of the signal-to-noise, determined by equation (5.14.11) would be given
by (S)/N = v/2a. However if we need to search for the correct linear combination of the two possible
phase waveforms, then the expectation value of the signal-to-noise is reduced to (S)/N = av.
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5.15 Function: correlate()

void correlate(float *s,float *h,float *c,float *r,int n)
This function evaluates the correlation (as a function of lag time t) defined by the discrete equivalent of
equation (5.14.13):

=5 [ bz e 6151

It is assumed that k(f) and &(f ) are Fourier transforms of real functions, and that 7(f ) is real. The factor
of 1/2 appears in (5.15.1) for efficiency reasons; in order to calculate the integral (5.14.13) one should set
7(f) = 2/Sk(f). The routine assumes that 7 vanishes at both DC and the Nyquist frequency.

The arguments are:

s: Output. Upon return, the array s [0 . .n-1] contains the correlation s(t) at times

t=0,At, 248, -, (n— 1)At. (5.15.2)

h: Input. The array h[0..n-1] contains the positive frequency (f > 0) part of the complex function
h(f). The packing of k into this array follows the scheme used by the Numerical Recipes routine
realft (), which is described between equations (12.3.5) and (12.3.6) of [1]. The DC component
B(O) is real, and located in h[0]. The Nyquist-frequency component h( fNyquist) is also real, and
is located in h[1]. The array elements h{2] and h[3] contain the real and imaginary parts, re-
spectively, of h(Af) where Af = 2 Iryquist/n = (nAt)” 1 Array elements h[27] and h[2]+1]
contain the real and imaginary parts of h(j Af) forj = 1,---,n/2 — 1. Itis assumed that r(f)
is the Fourier transform of a real function, so that correlate () can infer the negative frequency
components from the equation A(—f) = R*(§)

c: Input. The array c[0..n-1] contains the complex function ¢, packed in the same format as f—z( i3
with the same assumption that &—f) = &*(f). Note that while you provide the function &(f ) to
the routine, it is the complex-conjugate of the function contained in the array ¢ [ ] which is used
in calculating the correlation. Thus if 7 is positive, correlate (s, c, c, r,n) will always retum
s[0] > 0.

r: Input. The array r [0. .n/2] contains the values of the real function 7 used as a weight in the integral.
This is often chosen to be (twice!) the inverse of the receiver noise, as in equation (5.14.13), so that
7(f) = 2/S1(|f]). The array elements are arranged in order of increasing frequency, from the DC
value at subscript 0, to the Nyquist frequency at subscript n/2. Thus, the j'th array element r[J]
contains the real value 7(j Af), for j = 0,1,---,n/2. Again it is assumed that 7#(—f) = 7*(f) =
(f). ;

n: Input. The total length of the complex arrays h and c, and the number of points in the output array s.

Note that the array r contains n/2 + 1 points. n must be even.

The correlation function calculated by this routine is $FF T~1[h&*7] and has the same dimensions as the

product h x & x 7. The definition is

n—1
. 5 2 hycjrse ~2mijh/n (5.15.3)
_7 =0

where it is understood that ﬁn_j = fz}‘ and that ¢,_; = E;, and that 7y_; = 7.
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Note that theinput arrays h [ ] and ¢ [ ] can be the same array. For example correlate(s,c,c,r,n)
calculates the discrete equivalent of

s(t) = % [_ Z df |E(F) % (f) e 2mift. (5.15.4) .

Author: Bruce Allen, ballen @dirac.phys.uwm.edu

Comments: For the sake of efficiency, this function does not include the contribution from either DC or
Nyquist frequency bins to the correlation (these are negligible in any sensible data).
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5.16 Function: avg_inv.spec ()

void avg.inv_spec (float flo, float srate,int n,double decay,double *norm, float
*htilde, float* mean pow.spec, float* twice_inv.noise)
This function maintains an auto-regressive moving average (see avg-spec ()) of the power spectrum
Sk(f), and an array containing 2/Sy(f), which can be used for opt1ma1 filtering. This latter array is set
to zero below a specified cuff-off frequency f,,. -
The arguments are:

flo: Input. The low frequency cut-off fj,,, in Hz.
srate: Input. The sample rate, in Hz.
n: Input. The number of points in the arrays.

decay: Input. The quantity exp(—a) as defined in avg_spec (). Sets the characteristic decay time for
the auto-regressive average.

norm: Input/Ouput. Used for internal storage. Set to 0 when you want to begin a new auto-regressive
average. Must not be altered otherwise.

htilde: Input. The array htilde [0. .n-1] contains the positive frequency FFT of the metric pertur-
bation.

mean.pow.spec: Output. The array mean pow_spec [0..n/2] contains the mean power spectrum.
Should be zeroed when resetting to begin a new average. The array element mean pow_spec[0]
contains the power spectrum at DC, and the array element mean pow_spec[n/2] contains the
power spectrum at the Nyquist frequency srate/2.

twice_invnoise: Output. The amray twice_inv.noise[0..n/2] contains 2/S,(f). It is set to
zero for f < fiow- The array element twice_inv.noise[0] contains the DC value, and the array
element twice_inv.noise[n/2] contains the value at the Nyquist frequency srate/2.

Author: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: We assume here that the “correct” thing to do is the average the spectrum, then invert it. There
may be a better way to construct the weight function for an optimal filter, however.
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5.17 Function: orthonormalize ()

void orthonormalize(float* chOtilde, float* ch90tilde, float* twice_inv.noise,
int n, float* n0, float* n90)
This function takes as input the (positive frequency parts of the) FFT of a pair of chirp signals. Upon return,
the 90° phase chirp has been made orthogonal to the 0° phase chirp, with respect to the inner product defined
by 2/5},. The normalizations of the chirps are also returned.
The arguments are:

chOtilde: Input. The FFT of the zero-phase chirp Tp.
ch90tilde: Input/Output. The FFT of the 90°-phase chirp Tgg.

twice_invnoise: Input. Armray containing 2/S). The array element twice_invmnoise[0] con-
tains the DC value, and the array element twice.inv.noise([n/2] contains the value at the
Nyquist frequency.

n: Input. Defines the length of the arrays: chOtilde[0..n-1],ch90tilde[0..n-1],and twice_inv_noi.j
n0: Output. The normalization of the O-phase chirp. |
n90 : Output. The normalization of the 90°-phase chirp.

Using the notation of (5.14.9) one may define an inner product of the chirps. The normalizations are
defined as follows: ’ j

(Qo: Qo) (5.17.1)

where Qo is the optimal filter defined for the zero-phase chirp Tp. The chirps are orthogalized inter-
nally using the Gram-Schmidt procedure. We first calculate (Qo, Qo) and (Qgo, Qo) then define ¢ =
(@90, Qo)/(Qo, Qo). We then modify the 90°-phase chirp setting Tog — Too — €Tp. This ensures that
the inner product (Qgg, Qo) vanishes. The normalization for this newly-defined chirp is then defined by

(Qo0, Qg0)- (5.17.2)

=

1 —
ns

Author: Bruce Allen, ballen@dirac.phys.uwm.edu
Comments: Notice that the filters () and Qg are not in general orthogonal except in the adiabatic limit
as Sy (f) varies very slowly with changing f. Our approach to this is to construct a slightly-modified

ninety-degree phase signal. Note however that this may introduce small errors in the determination of
the orbital phase. This should be quantified.
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5.18 Dirty details of optimal filtering: wraparound and windowing

To carry out optimal filtering, we need to break the data set (which might be hour, days, or weeks in length)
into shorter stretches of N points (which might be seconds or minutes in length). We can understand the
effects of “chopping up” the data most easily in the case for which (1) the instrument noise is white, so that
Sr(f) = 1; (2) the source is so close that its signal overwhelms the noise in the IFO, and (3) we are looking
for a signal with a given phase (not a linear combination of the two orbital phases).

We want to calculate a signal .S as a function of lag ¢ using an FFT.

S(to) = / R(ET(t — to)dt ~ S(io) = 3 ATy, (5.18.1)
7

where we have written both the continuous-time and discrete-time version of the same equation. Using the
definition of the discrete Fourier transform, and writing

N-1 N-1
hj=> e %N and Ty, = ) e U=k /N, (5-18.2)
k=0 k=0

one can easily compute that the signal as a function of lag iy is

N-1N-1N-1 - ~ o _

S(Zo) = Z Z Z e-—2m_’/k/Nhke—Qm(j—io)k’/NTk, (5.18.3)
j=0 k=0 k=0

IN-1

= N(Sk’_klezﬂigk,/N;lkal (5.18.4)

= Ne=2miiok/Np T (5.18.5)

Thus, if the data is treated as periodic, and the template is treated as periodic, one can compute the corre-
lation as a function of time using only an FFT. In particular, the use of rectangular windowing does create
sidelobes of the template’s frequency components. However it also creates identical sidelobes of the signal’s
frequency components - so in effect the correlation in the time domain can be calculated exactly, without
any windowing of the signal being necessary.

The only complication arises from the fact that the FFT treats the data as being periodic. Let’s consider
some simple examples to illustrate the effects of this. In all of our examples, the number of data points
is N = 65,536 = 216 and the (schematic) chirp filter has length m = 13,500 and is zero-padded after
that time. Please remember, in all the figures that follow, to identify the far right hand side of the graph
(¢ = 65535) with the far left hand side (¢ = 0). Figure 20 shows S(ig) for a schematic chirp which begins
at the first data point in the rectangular window. You will notice that the filter output peaks at ¢ = 0. If the
incoming chirp arrives somewhat later (it starts at ¢ = 15,000) as shown in Figure 21 then the filter output
peaks at the start time, as shown. A chirp in the signal which starts at the 7 = 65,535 — 13, 500 as shown in
Figure 22 causes the filter output to peak at i = 52,035. Thus, in order to find chirps, we need to find the
maxima of the filter output over the interval i = 0---, N —m.

Chirp filters can be “stimulated” or “triggered” by events that are not chirps. We will shortly discuss
some techniques that can be used to distinguish triggering events that are chirps from those that are simply
noise spikes or other transient (but non-chirp) varities of non-stationary interferometer noise. Suppose that
a chirp filter is triggered by some kind of transient event in the IFO output. At what time did this transient
event ocurr? The answer to this question can be seen by examining the impulse response of the “periodic
filter” scheme, as shown in the following figures. Thus, by searching for maxima in the filter output over
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Figure 20: A chirp starting at initial time ¢ = 0 and ending at time ¢ = 13500 is processed through a chirp
filter, whose output peaks at time 7 = 0. Notice that because of wraparound, the (non-causal) filter output
begins “earlier” than ¢ = 0.

the range ¢ = 0,---, N — m — 1 we can detect either true chirps in the data stream, starting in the time
interval i = 0, ---, N — m — 1 and coalescing (roughly speaking) in the time inverval 4 = m,---, N — 1,
or we can detect transient impulse-like events in the data stream, which take place in the time interval
i=m,--,N — 1, In the GRASP optimal filtering code, after examining the stretch of IV data points, we
then shift the data points i = N —m, ---, N — 1 into the range ¢ = 0, - - -, m — 1 and aquire a new additional
set of N — m data points covering remaining (new) time interval.

Note that in practice, because the chirp signal has to be convolved with the response function R(f) of
the detector, the impulse response of the filter is typically a few points longer than the actual chirp signal.
For this reason it is smart to assume that the impulse response of your optimal filter is slightly longer (say a
hundred points longer) than the actual time-domain length of the corresponding chirp. This safety margin is
set with the #define SAFETY statement in the optimal filtering example. You lose a tiny bit of efficiency
but reduce the likelihood that boundary effects from the data discontinuity at the start/end of the rectangular
window will significantly stimulate the optimal filter output for ¢ = 0,---, N — m — 1. (See Figs. 23 and
26 to see an illustration of how this windowing discontinuity will corrupt the filter’s output.)

We have demonstrated explicitly that with no windowing (or rather, rectangular windowing) of the data,
one can find the appropriate correlation between the signal and a filter exactly: the rectangular window has
the same effect on the signal as it does on the template (shifting energy into sidelobes in identical fashion).
The only complication was that because of the periodic nature of the FFT one has to be caseful about
wrap-around errors in relating the output of a filter to the time of occurence of a signal or impulse.

There is one remaining ugly question. The optimal filter Q depends upon the noise power spectrum
of the detector. In real-world filtering, should this noise power spectrum be calculated with windowed,
or non-windowed data? We can determine the correlation between signal and template exactly, with only
rectangular windowing, because energy in either of these functions is shifted into sidelobes in identical
fashion. However a “quiet” part of the [FO spectrum can be corrupted by sidelobes of a nearby noisy region.
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Figure 21: A chirp starting at initial time ¢ = 15, 000 and ending at time ¢ = 28, 500 is processed through a
chirp filter, whose output peaks at time ¢ = 15, 000.

The effect of this is that the signal get rather less weight from this region of frequency space than it ought, in
theory, to receive. This would argue for using only properly-windowed data to find the noise power spectrum
to use in determing an optimal filter.

In fact, in our experience, it does not make any difference, at least not when you are searching for binary
inspiral chirps. The reason is that the SNR obtained in an optimal filter is only sensitive at second order
to errors in the optimal filter function. Thus, the errors due to noise sidelobes which appear if you fail to
window the data to calculate an optimal filter are typically not large.
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Figure 22: A chirp starting at initial time ¢ = 52, 035.
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Figure 23: An impulse shortly after ¢ = 0.
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Figure 24: An impulse at ¢ = 15, 000.
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Figure 25: An impulse at ¢ = 28, 500.
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5.19 Function: find._chirp()

void find.chirp(float* htilde, float* chOtilde, float* ch90tilde, float*
twice.invnoise, float n0, float n90, float* outputl, £float* outputd90, int
n, int chirplen, int* offset, float* snr.max, float* c0, float* c90, float

*var)
This routine filters the gravity-wave strain through a pair of optimal filters corresponding to the two phases

of a binary chirp, then finds the time at which the SNR peaks.
The arguments are:

htilde: Input. The FFT of the gravity-wave strain.
chOtilde: Input. The FFT of the O-degree chirp.
ch90tilde: Input. The FFT of the 90-degree chirp (assumed orthogonal to the 0-degree chirp).

twice_inv_noise: Input. Twice the inverse noise power spectrum, used for optimal filtering. The array

element twice._inv_noise[0] contains the DC value, and the array element twice_invnoise[n/2]

contains the value at the Nyquist frequency.
n0: Input. Normalization of the 0-degree chirp.
n90: Input. Normalization of the 90-degree chirp.

output0: Output. A storage array. Upon return, contains the filter output of the 0-degree phase optimal
filter.

output90: Output. A storage array. Upon return, contains the filter output of the 90-degree phase
optimal filter.

n: Input. Defines the lengths of the various arrays: chOtilde[0..n~1],ch90tilde[0..n-1],
output0[0..n-1],output90[0..n-1],and twice.invnoise[0..n/2].

chirplen: Input. The number of bins in the time domain occupied by the chirp that you are searching
for. This is necessary in order to untangle the wrap-around ambiguity explained earlier.

offset: Output. The offset, from 0 to n-chirplen-1, at which the signal output (for an arbitrary
linear combination of the two filters) peaks.

snr_max: Output. The maximum signal-to-noise ratio (SNR) found.
c0: Output. The coefficient of the 0-phase template which achieved the highest SNR.

c90: Output. The coefficient of the 90°-phase template which achieved the highest SNR. Note that
c3 + c, should be 1.

var : Output. The variance of the filter output. Would be 1 if the input to the filter were colored Gaussian
noise with a spectrum defined by S.

Author: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: None.
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5.20 Function: freg_inject_chirp ()

void freqg.inject_chirp(float c0, float c90, int offset, float invMpc, float*
chOtilde, float* ch90tilde, float* htilde, int n)
The bottom-line test of any optimal filtering code or searching routines is: can you inject “fake” signals into
the data stream, and properly detecting them, while properly rejecting all other signatures of instrumental
effects, etc. This routine injects artificial signals into the frequency-domain strain A(f). The plane of the
binary system is assumed to be normal to the line to the detector.

The arguments are:

c0: Input. The coefficient of the O-phase template to inject.

c90: Input. The coefficient of the 90°-phase to inject. Note that cZ + cZ, should be 1.

offset: Input. The offset number of samples at which the injected chirp starts, in the time domain.
invMpc: Input. The inverse of the distance to the system (measured in Mpc).

chOtilde: Input. The FFT of the phase-0 chirp (strain units) at a distance of 1 Mpc.
ch90tilde: Input. The FFT of the phase-90 chirp (strain units) at a distance of 1 Mpc.

htilde: Output. The FFT of the gravity-wave strain. Note that this routine adds into and increments
this array, so that if it contains another “signal” like IFO noise, the chirp is simply super-posed onto
it.

n: Input. Defines the lengths of the various arrays chOtilde[0..n-1],ch90tilde[0..n-1],and
htilde([0..n-1].

Note that in making use of this injection routine, you must determine the level of the quantization noise
of the ADC, and be careful to inject a properly dithered version of this signal when its amplitude is small
compared to the ADC quantization step size.

Author: Bruce Allen, ballen @dirac.phys.uwm.edu

Comments: See the comments for time_inject_chirp, particularly with respect to the digital quanti-
zation noise.
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5.21 Function: time_inject.chirp()

void time_inject_chirp(float c0, float c90, int offset, float invMpc, float*
chirp0, float* chirp90, float* data, float *response, float *work, int n)
This is a time-domain version of the previous function freq_inject_chirp () which injects chirps in
the time-domain (after deconvolving them with the detector’s response function). This routine injects artifi-
cial signals into the time-domain strain h(t). The plane of the binary system is assumed to be normal to the
line to the detector.
The arguments are:

c0: Input. The coefficient of the O-phase template to inject.

c90: Input. The coefficient of the 90°-phase to inject. Note that ¢3 + c2, should be 1.

of fset : Input. The offset number of samples at which the injected chirp starts, in the time domain.

invMpc : Input. The inverse of the distance to the system (measured in Mpc).

chirp0: Input. The time-domain phase-0 chirp (strain units) at a distance of 1 Mpc.

chirp90: Input. The time-domain phase-90 chirp (strain units) at a distance of 1 Mpc.

data: Output. The detector response in time that would be produced by the specified binary inspiral.
Note that this routine adds info and increments this array, so that if it contains another “signal” like
IFO noise, the chirp is simply super-posed onto it. '

response: Input. The function R(f) that specifies the response function of the IFO. This is produced
by the routine normalize gw().

work: Output. A working array.

n: Input. Defines the lengths of the various arrays chirp0{0..n-1],chirp90[0..n-1],data{0..n-1],
work[0..n-1},and response[0. .n+1] (note that this "+ sign is not a typo!).

Note that in making use of this injection routine, you must determine the level of the quantization noise
of the ADC, and be careful to inject a properly dithered version of this signal when its amplitude is small
compared to the ADC quantization step size.

Author: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: A short look at the time-domain signal which is injected shows that it has a low-amplitude
spike at the very start. This may be an un-avoidable Gibbs phenomenon associated with the turn-on
of the waveform. A second interesting point is that for many interesting signals, the amplitude of
the injected signal in the time domain is below the level of the quantization noise. Thus, a sensible
injection scheme would be to add it into an appropriately dithered (float) version of the integer signal
stream, then cast that back into an integer. This should be tried.
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5.22 Vetoing techniques

In an ideal world, the output of an interferometer would be a stationary signal described by Gaussian statis-
tics (with very rare superposed binary inspiral chirps and other gravitational-wave signals). This is unfortu-
nately not the case, as can be quickly determined by simply listening to the raw (whitened) interferometer
output. Typically the output is a stationary-sounding hiss, interupted every few minutes by an obvious irreg-
ularity in the data stream. These are typically “pops”, “bumps”, “clicks”, “howlers”, “scrapers” and other
recognizable categories of noises. In at least some cases, there are “suspects” for these events. For exam-
ple the pops and bumps might be problems in any of the hundreds of BNC cable connectors used in the
instrument.

It is an unfortunate fact that the output of an optimal filter strongly reflects these events. As you have
seen in the previous section, a delta-function-like impulse signal in the IFO ouput can cause a large signal
in the optimal filter. And in practice, this happens all of the time - the outputs of optimal chirp filters are
frequently triggered by identifiable events in the IFO data stream that are clearly not binary inspiral chirps.
Distinguishing these events from real inspiral chirps is called vetoing. We have found that two vetoing
techniques work particularly well.

The first technique operates in the time domain, and is documented in the routine is_gaussian().
The idea is straightforward: if a chirp detector (optimal filter) is triggered, then we look in the data stream for
an impulse event that might be responsible. Such events can be found by looking at the statistical distribution
of the points in the time domain. If this distribution is significantly non-Gaussian then it indicates that some
large transient event caused the filter to trigger, and the event is rejected.

The second technique is described here, and operates in the frequency domain. It is a very stringent test,
which determines if the hypothetical chirp which has been found in the data stream is consistent with a true
binary inspiral chirp summed with Gaussian interferometer noise. If this is true, it should be possible to
subtract the (best fit) chirp from the signal, and be left with a signal stream that is consistent with Gaussian
IFO noise. One of the nice features of this technique is that it can be statistically characterized in a rigorous
way.

Suppose that one of our optimal chirp filters Qis triggered with a large SNR at time £o. We will denote
the signal value at this time by S:

Iy BATHS) om
= df et 2 g~ 2mifto, (5.22.1)
/—fNy Sr(lf1)
(Here, fny denotes the Nygist frequency, one-half of the sampling rate.) The chirp template 7" is normalized
so that the expected value (N?) = 1: '
fos o ITCHP
d =1 5222
L Sam 6222

We are going to investigate if this signal is “really” due to a chirp by investigating the way in which S gets its
contribution from different ranges of frequencies. To do this, break up the integration region in this integral
into a set of p disjoint subintervals Afy, - --, A f, whose union is the entire range of frequencies from DC
to Nyquist. Here p is a small integer (for example, p = 8). This splitup can be performed using the GRASP
function splitup (). The frequency intervals:

Afi = {f|0<f<fi}
Afy = {flA<f<f}

Afp = {flfomr <F<fwyh (5.22.3)
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are defined by the condition that the expected signal contributions in each frequency band from a chirp are

equal:
ITHE _ 1 /fNy IT(f)?
Jud ST =2k ¢ S 6229
Because the filter is optimal, this also means that the expected noise contributions in each band from the
chirp is the same. The frequency subintervals A f; are fairly narrow in regions of frequency space where the
interferometer is quiet, and they are fairly wide in regions where the IFO is noisy.
Now, define a set of p signal values, one for each frequency interval:

RAT*(F) —omise .
Si= df —5= ° fori=1,---,p. 5.22.
/—AfiuAfi Sallf) € ore p- (5.22.5)

We have included both the positive and negative frequency subintervals to ensure that the S; are real. If the
detector output is Gaussian noise plus a true chirp, then the expected value of each of these signal values is
(S;) = S/p. In this case the values of AS; = S; — S/p are independent normal random variables with a
mean value of zero and a variance o determined by the expected value of the noise-squared. Because of our
choice of template normalization this is:

o =(AS}) = (N*)/p=1/p. (5.22.6)

Hence, in the presence of a true chirp and interferometer noise, the probability distribution of the AS; is
given by
P
P(ASy, -+, AS,) = [[ (2m0) 2e™ 252 = (270) 7P/ 2™ (ASEH+AS) 20, (5.22.7)
i=1

Thus, if our optimal chirp filter is triggered by an event, we can check the contributions to the signal in
each of p frequency subintervals, to determine if the distribution of frequency and the arrival times in the p
distinct subintervals is consistent with “chirp + Gaussian noise”.

Because the AS; are independent random variables with zero mean and variance 1/p, the sum of their
squares is described by a x? probability distribution. Define the statistic

P
r? = "(AS) (5.22.8)

i=1

Then one can easily compute the probability distribution of r. The probability that r > R in the presence of
a true chirp signal is

oG
P(r>R) = (2r0)P2Q,, / pN-le=r?/20 g (5.22.9)
R
= ..._I'_ = xP/Q"le_zdm (5 22 10)
F(p/2) R2/2¢0 » ..
= Q(p/2, R*/20), (5.22.11)

where ), is the p—volume of a unit-radius p—sphere S?. The incomplete gamma function @ is the same
function that describes the likelihood function in the traditional x? test.

In practice (based on CIT 40-meter data) breaking up the frequency range into p = 8 intervals provides
a very reliable veto for rejecting events that trigger an optimal filter, but which are not themselves chirps.
The value of Q(4,10.0) = 0.0103--- so if 72 > 2.5 then one can conclude that the likelihood that a given
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trigger is actually due to a chirp is less than 1%; rejecting or vetoing such events will only reduce the “true
event” rate by 1%. However in practice it eliminates almost all other events that trigger an optimal ﬁlter a
noisy event that stimulates a binary chirp filter typically has r? =~ 100 or larger!

Note that this technique is probably a computationally-efficient and simple version of the maximum-
likelihood statistical test. This test is probably obtained in the limit where the number of frequency bins
equals p.
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5.23 Function: splitup ()

void splitup(float *working, float template, float *r, int n, float total,
int p, int *indices)
This routine takes as inputs a template and a noise-power spectrum, and splits up the frequency spectrum
into a set of sub-intervals to use with the vetoing technique just described.

The arguments are:

~ working: Input:"Anarray working [ 0. .n=1] used for working space.

template: Input. The array template{0..n-1] contains the positive frequency (f > 0) part of
the complex function T( f)- The packing of T into this array follows the scheme used by the Nu-
merical Recipes routine realft (), which is described between equations (12.3.5) and (12.3.6) of
[1]. The DC component 7(0) is real, and located in template [0]. The Nyquist-frequency compo-
nent T( fNqust) is also real, and is located in template[1]. The array elements template[2]
and template[3] contain the real and imaginary parts, respectively, of T(Af) where Af =
2 fuyquist/n = (nAt)” L Array elements template[ZJ] and template[2j+1] contain the
real and imaginary parts of T'(j Af) forj = 1,---,n/2 — L.

r: Input. The array r [0 . .1n/2] contains the values of the real function 7 which is twice the inverse of the
receiver noise, as in equation (5.14.13), so that 7(f) = 2/5(| f]). The array elements are arranged in
order of increasing frequency, from the DC value at subscript 0, to the Nyquist frequency at subscript
1/2. Thus, the j’th array element r [ ] contains the real value 7(j Af), forj = 0,1,---,n/2. Again
it is assumed that 7(—f) = 7(f) = 7(f).

n: Input. The total length of the complex arrays template and working, and the number of points in
the output array s. Note that the array r contains n/2 + 1 points. n must be even.

total: Input. This is the total value of the integrated template squared over Sj; the frequency subinter-
vals are choose so that each of the p subintervals contains 1/p of this total.

p: Input. The number of frequency bands into which you want to divide the range from DC to fNyquist-

indices: Ouput. The frequency bins of the first frequency band are i=0. .indices[0]. The next

frequency bandis i=indices[0]+1. .indices[1]. Thep’thfrequency bandis i=indices[p-2]+1. . i

Note that indices[p-1]=n-1.

Author: Bruce Allen, ballen @dirac.phys.uwm.edu

Comments: None.
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5.24 Function: splitup.freqg()

float splitup-freg(float c0, float c90, float *chirp0, float *chirp90, float
norm, float* twice_invmnoise, int n, int offset, int p, int* indices, float*
stats, float* working, float* htilde)
This routine returns the value of the statistic 72 = Y°?_, (AS;)2. This is a less-efficient version, which
internally constructs filters for each of the different frequency subintervals, and then filters the metric per-
turbation through those filters. It is useful to understand how the different frequency components behave in
the time domain, after filtering. ' ’ o

The arguments are:

c0: Input. The coefficient of the O-phase template.

c90: Input. The coefficient of the 90°-phase template. Note that cZ + cZ, should be 1.
chirpO: Input. Anarray chirp0[0..n-1] containing the FFT of the 0-phase chirp.
chirp90: Input. An array chirp90{0. .n-1] containing the FFT of the 90°-phase chirp.
norm: Input. The normalization of the O-phase chirp.

twice_inv.mnoise: Input. The array twice_ inv.noise[0..n/2] contains 2/S,(f), as described
previously. The array element twice_invnoise[0] contains the DC value, and the array element
twice_inv.mnoise[n/2] contains the value at the Nyquist frequency.

n: Input. Defines the lengths of the previous arrays.
offset: Input. The offset of the moment of maximum signal in the filter output.
p: Input. The number of frequency bands p for the vetoing test.

indices: Output. Anarray indices[0. .p-1] used for internal storage of the frequency subintervals
(see splitup (). '

stats: Output. Anarray stats[0..p-1] containing the values of the S; fori =1,---,p.
working: Output. An array working [0. .n-1] used for internal storage.

htilde: Input. Anarray htilde[0. .n-1] containing the positive frequency part of fz( f)-

Author: Bruce Allen, ballen @dirac.phys.uwm.edu

Comments: None.
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5.25 Function: splitup_freg2 ()

float splitup.freqg2(float c0, float c90, float *chirp0, float *chirp90, float
norm, float* twice_invmnoise, int n, int offset, int p, int* indices, float*
stats, float* working, float* htilde)

This routine returns the value of the statistic 72 = le(AS’i)Z. This is a more computationally-efficient
version, which does not filter A through each of the p independent time domain filters. The arguments are
identical to those of splitup_freqg().

~ The arguments are:

c0: Input. The coefficient of the O-phase template.

<90 : Input. The coefficient of the 90°-phase template. Note that c3 + c, should be 1.
chirp0: Input. An array chirp0{0..n-1] containing the FFT of the 0-phase chirp.
chirp90: Input. Anarray chirp90[0..n-1] containing the FFT of the 90°-phase chirp.
norm: Input. The normalization of the 0-phase chirp.

twice_invnoise: Input. The array twice._invnoise[0..n/2] contains 2/S,(f), as described
previously. The array element twice_inv.noise[0] contains the DC value, and the array element
twice_invnoise[n/2] contains the value at the Nyquist frequency.

n: Input. Defines the lengths of the previous arrays.
offset: Input. The offset of the moment of maximum signal in the filter output.
p: Input. The number of frequency bands p for the vetoing test.

indices: Output. Anarray indices [0..p-1] used for internal storage of the frequency subintervals
(see splitup ().

stats: Output. An array stats [0. .p-1] containing the values of the S; forz =1,---,p.
working: Output. An array working [0. .n-1] used for internal storage.

htilde: Input. Anarray htilde[0. .n-1] containing the positive frequency part of l~z( -

Author: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: None.
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5.26 Example: optimal program

This program reads the 40-meter data stream, and then filters it though a chirp template corresponding to a
pair of inspiraling 1.4M neutron stars.

The correspondence between different arrays in this program, and the quantities discussed previously
in this section, is given below. In these equations, At = 1/srate is the sample time in seconds, and
Af = (nAt)~! = srate/npoint is the size of a frequency bin, in Hz. Here n = npoint is the number of
points in the data stream which are being optimally filtered in one pass.

Chirp templates (in frequency space) for the two polarizations are related to the arrays chirp0[ ] and
chirpl[ 1 by

~ At
= i 5.26.
To(f) HSCALE chirp0[] ( 1)
~ At
Too(f) = HSCALE chirpi] (5.26.2)

where the elements chirp0[25] and chirp0[2j+1] are the real and imaginary parts at frequency
f = jAf (with the exception of the Nyquist frequency, stored in chirp0[1]). Note that to ensure that
quantities within the code remain within the dynamic range of floating point numbers, we have scaled up the
template strain by a constant factor HSCALE; we also scale up the interferometer output by the same factor,
so that all program output (such as signal-to-noise ratios) is independent of the value of HSCALE. If you’re
not comfortable with this, go ahead and change HSCALE to 1. It won’t change anything, provided that
you don’t overflow the dynamic range of the floating point variables! The scaled interferometer response

function is
response[ | = HSCALE/ARMLENGTH x R(f), (5.26.3)

where the function R(f) is defined by equation (3.12.3). The Fourier transform h of the dimensionless
strain is obtained by multiplying At and the FFT of channel .0 by response[ ], yielding

R(f) = sooprghtilde]). (5.26.4)

The one-sided noise power spectrum Sp,( f) is the average of

. 2 (AW oAt
S(f) = nAtl (AP = nAtHSCALEthtllde[“ 7 HSCALE?

The power spectrum Sy (f) is averaged using the same exponential averaging technique described for the
routine avg.spec () . This average is stored as

280 headde(]?) = ——o
_ At . At
n HSCALEZ ' o0t 7 HSCALE?

Twice the inverse of this average is stored in the array twice_inv.noise[ ], so that

Ihtilde[]}%. (5.26.5)

Sp(f) = mean_pow.spec| | (5.26.6)

2 mHSCALE?
Sn(f) At

The expected noise-squared for the plus polarization is given by equation (5.14.8):

twice.inv noise[]. (5:26.7)

Lo |T
2 _ = 0
Vo = 3@ 2/ P50
11 1] (AY) , nHSCALE? 1
= sam T [m'chmo“'z“—&—it tee-inv-noisel]
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1
= EFFTO’1 |chirp0[][2%twice_inv_noise[]

1
— —correlate(---,chirp0[], chirp0[ ], twice_inv.noise[],npoint).  (5.26.8)

where the subscript on the inverse FFT means “at zero lag”, and “— f” means “returned by the call to the
function f”. We have chosen a distance for the system producing the “chirp” T( f) so that the expected value
of (N?) = L.

In similar fashion; thesignal S at lag ¢y is given by =

‘ .
S = ('S_’;':Q)
o RNTES) —om
— df 220V 7, 7t fto
—00 f Sh(f)
1 1| At ) At ) LnHSCALEZ 1 = i
= WFFT; [HSCALEhtllde[]HSCALE (chirpO[]) 0 §tw1ce_1nv._no:Lse[]
= FFT ! [htilde[] chirpOf] %twice_inv_noise[]
— correlate(:--,htilde[], chirpO[],twice_inv noise[ ], npoint), (5.26.9)

where now the subscript on the FFT means “at lag ¢t = 7 A¢”.

You might wonder why we have been so careful — after all, both the signal and the noise, as we’ve
defined them, are dimensionless, so it’s not surprising that all of the factors of At drop out of the final
formulae for the signal and the expected noise-squared. The main reason we’ve been so long winded is
to show exactly how the units cancel out, and to demonstrate that there aren’t any missing dimensionless
constants, like npoint, left out of the program. Some sample output from this program is shown in the
next section.
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/* GRASP: Copyright 1997, Bruce Allen */
#include "grasp.h"

#define NPOINT 131072 /= The size of our segments of data (13.1 secs) =/

#define FLO 120.0 /= The low frequency cutoff for filtering */

#define ARMLENGTH 40.0 /* Armlength of the IFO, in meters */ p=
#define HSCALE 1l.e21 /* A convenient scaling factor; results independent of it */

#define MIN_INTO_LOCK 3.0 /x Number of minutes to skip into each locked section x/

#define SAFETY 1000 /* Padding safety factor to avoid wraparound errors */

int main() {
void realft(float*,unsigned long, int);
int i,code,npoint,remain=0,maxi,chirplen,needed,diff, impulseoff,chirppoints,indices(8];
float distance, snr_max,srate=9868.4208984375, tstart, xmean_pow_spec, timeoff, timestart;
float xdata,xhtilde, *output90, xoutputl,*chirp0,*chirp90,*ch0tilde,*ch90tilde;
float n0,n9%0, inverse_distance_scale,decaytime, xtwice_inv_noise,datastart, tc;
float 1in0,1in9%0, invMpc.inject,varsplit,stats([8],gammg(£float, float),var,xresponse;
double decay,norm,prob;
short xdatas;
FILE xfpifo,*fpss,*fplock;

/* open the IFO output file, lock file, and swept-sine file */
fpifo=grasp.open ("GRASP_DATAPATH", "channel.0");
fplock=grasp_-open ("GRASP_DATAPATH", "channel.10") ;
fpss=grasp-.open{"GRASP_DATAPATH", "swept-sine.ascii");

/* number of points to sample and fft (power of 2) */
needed=npoint=NPOINT;

/» stores ADC data as short integers */
datas=(shortx)malloc(sizeof (short)*npoint);

/* stores ADC data in time & freq domain, as fioats */
data=(float *)malloc(sizeof (float)=*npoint);

/= The phase 0 and phase pi/2 chirps, in time domain */
chirpO=(£float *)malloc(sizeof (float)x*npoint);
chirp90=(float *)malloc (sizeof(float)*npoint);

/* Orthogonalized phase 0 and phase pi/2 chirps, in frequency domain */
chOtilde=(float x)malloc(sizeof (float)x*npoint):;
ch90tilde=(float *)malloc(sizeof (float)*npoint);

/* The response function (transfer function) of the interferometer */
response=(float x)malloc(sizeof(float)=*(npoint+2)};

/* The gravity wave signal, in the frequency domain */
htilde=(float x)malloc(sizeof (float)*npoint);

/= The autoregressive-mean averaged noise power spectrum */
mean_pow.spec=(float *)malloc(sizeof (float)*(npoint/2+1));

/* Twice the inverse of the mean noise power spectrum */
twice.inv_.noise=(float *)malloc(sizeof (float)x(npoint/2+1)});

/* Ouput of matched filters for phase0 and phase pi/2, in time domain, and temp storage =/
outputO=(float *)malloc(sizeof(float)x*npoint);

output90=(float *)malloc(sizeof (float)*npoint);

/* get the response function, and put in scaling factor =/
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7 ¢hOtilde{i]l=chirpOlil*=inverse:distance_scale;"

normalize_gw(fpss,npoint,srate, response) ;
for (i=0;i<npoint+2;i++)
response [i]*=HSCALE/ARMLENGTH;

/* manufacture two chirps (dimensionless strain at 1 Mpc distance) */
make_filters(l.4,1.4,chirp0,chirp90,FLO,npoint, srate, &chirppoints,&tc,0,4);
/* normalization of next line comes from GRASP (5.6.3) and (5.6.4) =/
inverse_distance_scale=2.0*HSCALEx (TSOLAR*C_LIGHT/MPC) ;

for (i=0;i<chirppoints;i++){

ch90tilde[i]l=chirp90[i]l*=inverse_distance._scale;

}

/* zero out the unused elements of the tilde arrays =/
for (i=chirppoints;i<npoint;i++)
ch0tilde[i]l=ch90tilde([1]=0.0;

/* and FFT the chirps */
realft(chOtilde—1,npoint,1);
realft(ch90tilde-1,npoint,1);

/* set lengih of template including a safety margin */
chirplen=chirppoints+SAFETY;
if (chirplen>npoint) abort();

/* This is the main program loop, which aquires data, then filters it */
while (1) {

/* Seek MIN_INTO_LOCK minutes into a locked stretch of data x/
while (remain<needed) ({
code=get_data(fpifo, fplock, &tstart,MIN_INTO.LOCK*60xsrate,
datas, &remain, &srate, 1) ;
if (code==0) return 0;

}

/* if just entering a new locked stretch, reset averaging over power spectrum s/
if (code==1) ({

norm=0.0;

clear (mean_pow_spec, npoint/2+1,1);

/* decay time for spectrum, in sec. Set to 15x length of npoint sample */
decaytime=15.0%npoint/srate;
decay=exp (—1.0*npoint/ (sratexdecaytime));

}

/* Get the next needed samples of data */

diff=npoint—needed;

code=get_data (fpifo, fplock,&tstart,needed,datas+diff,&remain, &srate, 0);
datastart=tstart—diff/srate;

/* copy integer data into floats =/
for (i=0;i<npoint;i++) datal[i]=datas([i];

/* inject signal in time domain (note outputQ[ ] used as temp storage only) %/
invMpc.inject=0.0; /* To inject a signal at 10 kpc, set this to 100.0 %/
time_inject_chirp(1.0,0.0,12345,invMpc.inject, chixp0, chirp90,data,

response,outputl,npoint);

/* find the FFT of datax/
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realft(data-1,npoint,1l);

/* normalized delta-L/L tilde =/
product (htilde, data, response,npoint/2};

/* update the inverse of the auto-regressive-mean power-spectrum */
avg.inv_spec (FLO, srate,npoint, decay, &norm, htilde, mean_pow_spec, twice_inv_noise) ;

/* inject a signal in frequency domain, if desired %/

invMpc_inject=0.0;  /* Toinject asignal at 10 kpc, set this to 100.0 =/
freg.inject.chirp(—0.406,0.9135,23456,invMpc_inject,ch0tilde,ch90tilde, htilde,
npoint) ;

/* orthogonalize the chirps: we never modify chOtilde, only ch90tilde */
orthonormalize (chOtilde,ch90tilde, twice.inv_noise,npoint, &no, &no0) ;

/* distance scale Mpc for SNR=1 =/
distance=sqgrt(1.0/(n0*n0)+1.0/(n90xn30));

/* find the moment at which SNR is a2 maximum %/
find_chirp(htilde,ch0tilde,ch90tilde, twice_inv_noise,n0,n90,outputld, outputs0,
npoint,chirplen, &maxi, &snr_max,&1in0,&1ing0, &var);

/* identify when an impulse would have caused observed filter output /
impulseoff=(maxi+chirppoints)%npoint;
timeoff=datastart+impulsecff/srate;
timestart=datastart+maxi/srate;

/* if SNR greater than 5, then print details, else just short message */
if (snr_max<5.0)
printf ("max snr: %.2f offset: %d data start: %.2f sec. variance: ‘%.5f\n",
snr_max,maxi,datastart,var);
else {
/* See if the nominal chirp can pass a frequency-space veto test */
varsplit:splitup_frqu(linO*nO/sqrt(Z.O),lin90*n90/sqrt(2.0),chOtilde,
ch90tilde, 2.0/ (n0*n0), twice-inv_noise,npoint,maxi, 8,
indices,stats,output0,htilde);
prob=gammg(4.0,4.0xvarsplit);
printf (“\nMax SNR: %.2f (offset %d) variance %f\n", snr_max,maxi,var);
printf (" If impulsive event, offset %d or time %.2f\n",impulseocff, timeoff):
printf (* If inspiral, template start offset %d (time %.2f) ",maxi,timestart);
printf(*coalescence time %.2f\n",timestart+tc);
printf(" Normalization: S/N=1 at %.2f kpec\n",1000.0xdistance);
printf (" Lin combination of max SNR: %.4f x phase_0 + %.4f x phase_pi/2\n",
1in0,1in%0);
1f (prob<0.01)
printf (" Less than 1%% probability that this is a chirp (p=%f).\n",prob);
else
printf (" POSSIBLE CHIRP! with > 1%% probability (p=%f).\n",prob);

/* See if the time-domain statistics are unusual or appears Gaussian =/
if (is_gaussian(datas,npoint,—2048,2047,1))

printf (" Distribution does not appear to have outliers...\n\n");
else
printf (" Distribution has outliers! Reject\n\n*);

}

/* shift ends of buffer to the start =/
needed=npoint—chirplen+1;
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for (i=0;i<chirplen—1;i++)
datas[i}=datas[i+needed];

/* reset if not enough points remain to fill the buffer %/

if (remain<needed)
needed=npoint;

137




5.27 Some output from the optimal program

Some output from the optimal program follows:

max snr: 3.11 offset: 23623 data start: 180.00 sec. variance: 0.94044
max snr: 2.91 offset: 3311 data start: 185.17 sec. variance: 0.84484

max snr: 2.53 offset: 19041 data start: 309.26 sec. variance: 0.70333
max snr: 2.98 offset: 35711 data start: 314.43 sec. variance: 0.67523

Max SNR: 8.71 (offset 42109) variance 0.805030"
If impulsive event, offset 55624 or time 325.23
If inspiral, template start offset 42109 (time 323.86) coalescence time 325.7
Normalization: S/N=1 at 116.75 kpc
Linear combination of max SNR: 0.9315 x phase_0 + 0.3638 x phase_pi/2
Less than 1% probability that this is a chirp (p=0.000000).
Distribution: s= 23, N>3s= 12 (expect 176), N>5s= 0 (expect 0)
Distribution does not appear to have outliers...

max snr: 2.51 offset: 31183 data start: 324.77 sec. variance: 0.63028
max snr: 2.56 offset: 49909 data start: 329.94 sec. variance: 0.66853
max snr: 2.82 offset: 35080 data start: 3002.03 sec. variance: 0.77306
max snr: 2.61 offset: 33141 data start: 3007.20 sec. variance: 0.74268

Max SNR: 89.75 (offset 16678) variance 82.547005
If impulsive event, offset 30193 or time 3015.43
If inspiral, template start offset 16678 (time 3014.06) coalescence time 301~=
Normalization: S/N=1 at 128.49 kpc i
Linear combination of max SNR: -0.3955 x phase_0 + 0.9185 x phase_pi/2
Less than 1% probability that this is a chirp (p=0.000000).
Distribution: s= 29, N>3s= 157 (expect 176), N>5s= 30 (expect 0)
Distribution has outliers! Reject

max snr: 3.24 offset: 22412 data start: 3017.54 sec. variance: 0.99474
max snr: 2.73 offset: 37777 data start: 3022.71 sec. variance: 0.75325

max snr: 2.80 offset: 5893 data start: 4140.89 sec. variance: 0.73240
max snr: 2.75 offset: 46932 data start: 4146.06 sec. variance: 0.69654

Max SNR: 6.08 (offset 30002) variance 0.883380
If impulsive event, offset 43517 or time 4155.64
If inspiral, template start offset 30002 (time 4154.27) coalescence time 415F
Normalization: S/N=1 at 113.04 kpc
Linear combination of max SNR: -0.4773 x phase_0 + 0.8787 x phase_pi/2
POSSIBLE CHIRP! with > 1% probability (p=0.024142).
Distribution: s= 31, N>3s= 399 (expect 176), N>5s= 53 (expect 0)
Distribution has outliers! Reject
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max snr: 2.77 offset: 15985 data start: 4156.40 sec. variance: 0.72095
max snr: 2.69 offset: 47338 data start: 4161.57 sec. variance: 0.69708

This output shows three events that triggered an optimal filtering routine. The first and second of these
events were rejected for different reasons. The first was rejected because if failed the frequency-distribution
test. The second was rejected because it had 30 outlier points. The third failed for the same reason: it had
53 outlier points. B R e ,

Next, we show some output when a fake chirp signal is injected into the data stream. This can be done
for example by modifying opt imal to read:

invMpc_inject=100.0; /* To inject a signal at 10 kpc, set this to 100.0 */
time_inject_chirp(1.0,0.0,12345,invMpc_inject,chirp0, chirp90,data, response, outpu

This produces the following output:

Max SNR: 9.96 (offset 12345) variance 0.872624
If impulsive event, offset 25860 or time 187.79
If inspiral, template start offset 12345 (time 186.42) coalescence time 187.7
Normalization: S/N=1 at 152.17 kpc
Linear combination of max SNR: 0.9995 x phase_0 + -0.0304 x phase_pi/2
POSSIBLE CHIRP! with > 1% probability (p=0.4212%4).
Distribution: s= 23, N>3s= 12 (expect 176), N>5s= 0 (expect 0)
Distribution does not appear to have outliers...

Max SNR: 12.84 (offset 12345) variance 0.834527
If impulsive event, offset 25860 or time 192.96
If inspiral, template start offset 12345 (time 191.59) coalescence time 192.9
Normalization: S/N=1 at 132.47 kpc
Linear combination of max SNR: 0.9953 x phase_0 + 0.0973 x phase_pi/2
POSSIBLE CHIRP! with > 1% probability (p=0.949737).
Distribution: s= 22, N>3s= 28 (expect 176), N>5s= 0 (expect 0)
Distribution does not appear to have outliers...

Max SNR: 14.86 (offset 12345) variance 0.801640
If impulsive event, offset 25860 or time 198.13
If inspiral, template start offset 12345 (time 196.76) coalescence time 198.1

Normalization: S/N=1 at 127.90 kpc

Linear combination of max SNR: 0.9993 x phase_0 + -0.0372 x phase_pi/2
POSSIBLE CHIRP! with > 1% probability (p=0.999236).

Distribution: s= 22, N>3s= 35 (expect 176), N>5s= 0 (expect 0)
Distribution does not appear to have outliers...

The code is correctly finding the chirps, getting the distance and phase and time location of the chirps about
as accurately as one would expect given the level of the IFO noise.
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Figure 27: This shows the event that triggered the 2 x 1.4 solar mass binary inspiral filter with a SNR of
8.71 (see the first set of sample output from the optimal filtering code above, at time 325.23). This same
“event” can also be seen in Figure 7. The horizontal axis is sample number, with samples =~ 10~ seconds
apart; the vertical axis is the raw (whitened) IFO output. The event labeled “drip” can be heard in the data
(it sounds like a faucet drip) and is picked up by the optimal filtering technique, but it is NOT visible to the
naked eye. This event is vetoed by the splitup technique described earlier - it has extremely low probability

of being a chirp plus stationary noise.

There are several interesting lessons that one can learn from this optimal filtering experience. The first
is that (roughly speaking) the events that trigger an optimal filter (driving the output to a value much larger
than would be expected for a colored-noise Gaussian input) can be broken into two classes: those which can
be seen in the raw data stream, and those which can not. Here, by “seen in the raw data stream”, we mean
“visible to the naked eye upon examination of a graph”. Shown in the following two figures are examples

of each type of spurious event.
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Figure 28: This another event that triggered the 2 x 1.4 solar mass binary inspiral filter with a SNR of 17.33.
This event sounds like 2 “bump™; it is probably due to a bad cable connection. It can be easily seen (and

vetoed) in the time domain. A close-up of this is shown in the next figure.
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Figure 29: A close-up of the previous graph, showing the structure of the “bump”.
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Figure 30: This another event that triggered the 2 x 1.4 solar mass binary inspiral filter with 2 SNR of 32.77.
This event sounds like a shovel scraping on the ground; its origin is unknown. It can be easily seen (and
vetoed) in the time domain.
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Figure 31: A close-up of the previous graph, showing the structure of the “scrape”.
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5.28 Structure: struct Template

The structure used to describe the “chirp” signals from coalescing binary systems is: struct Template

{

int num: In order to deal with templates “wholesale” it is useful to number them. The numbering
system is up to you; we typically give each template a number, starting from 0 and going up to the
number of templates minus one!

float f_lo: This is the starting (low) frequency fo of template, in units of sec™L.
float f£_hi: This is the ending (high) frequency of the template, in units of sec™!

float tau0: The Newtonian time 7 to coalescence, in seconds, starting from the moment when the
frequency of the waveform is f_lo.

float taul: First post-Newtonian correction 71 to 7.

float taul5: 3/2 PN correction

float tau20: second order PN correction

float phal: Newtonian phase to coalescence, radians

float phal: First post-Newtonian correction to pha0

float phal5: 3/2 PN correction

float pha20: second order PN correction

float mtotal: total mass mj + mg, in solar masses

float mchirp: chirp mass un~2/5, in solar masses

float mred: the reduced mass u = myms/(m1 + m2), in solar masses
float eta: reduced mass/total mass 7 = myma/(m; + m2)? , dimensionless
float ml: the smaller of the two masses, in solar masses.

float m2: the larger of the two masses, in solar masses.

b

One may use the technique of matched filtering to search for chirps. The (noisy) signal is compared
with templates, each formed from a chirp with a particular values of mq, mo, and a “stdrt frequency” fo of
the waveform at the time that it enters the bandpass of the gravitational wave detector. Several theoretical
studies [4, 5] have shown how the template filtering technique performs when the detector is not ideal, but
is contaminated by instrument noise.

In the presence of detector noise, one can never be entirely certain that a given chirp (determined by
my, ms) will be detected by a particular template, even one with the exact same mass parameters. However
one can make statistical statements about a template, such as “if the masses m; and my of the chirp lie in
region R of parameter space, then with 97% probability, they will be detected if their amplitude exceeds
value k”. Thus, associated with each chirp, and a specified level of uncertainty, is a region of parameter

space.
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It turns out that if we use the correct choice of coordinates on the parameter space (mj, my) then these
regions R are quite simple. If we demand that the uncertainty associated with each template be fairly small,
then these regions are ellipses. Moreover, to a good approximation, the shape of the ellipses is determined
only by the noise power spectrum of the detector, and does not change significantly as we move about in the
parameter space. These “nice” coordinates (79, 71) have units of time, and are defined by

5 (GM\™3 -8/3
no= g (S) R (5.28.1)
5 (MN\ _, 8/3-—5/3
= — | — B THET
256 <M®> n~ " (nfo) o)
and
5 c 743 11 9
= — — 4 = - 5.28.
no= = (GnM) (355 + 77) (=) 628
= —|—=}|—= — 5"
102 (M) (33677 +g ) T
The symbol .
M=m; +ms (5.28.3)
denotes the total mass of the binary system, and
mims
= 5284
7=t + ma)? ( )

is the ratio of the reduced mass to M. Notice that 7 is always (by definition) less than or equal to 1/4.

We are generally interested in a region of parameter space corresponding to binary systems, each of
whose masses lie in some given range, say from 1/2 to 3 solar masses. The region of parameter space is
determined by a minimum and maximum mass; we show an example of this in Figure 32. Since we may

0.5 1 1.5 2 2.5 3™

Figure 32: The set of binary stars with masses lying between set minimum and maximum values defines the
interior of a triangle in parameter space

take mo < my without loss of generality, the region of interest is triangular rather than rectangular. The
three lines on this diagram are:
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(1) The equal mass line. Along this line n = 1/4.

(2) The minimum mass line. Along this line, one of the masses has its smallest value.
(3) The maximum mass line. Along this line, one of the masses has its largest value.

This triangular region is mapped into the (7, 71) plane as shown in Figure 33 In this diagram, the lower
curve 7p 73 /5 is the equal mass line (1). The upper curve, to the right of the “kink™ is the minimum mass
line (2). The upper curve; to the left of the “kink™ is the maximum mass line (3).————

taul

taul

1 2 3 4 5 6 7

Figure 33: The triangular region of the previous figure is mapped into a distorted triangle in the (7o, 1)
plane. Here f is 120 Hz.
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5.29 Structure: struct Scope

The set of templates is described by a structure struct Scope. This structure specifies a set of templates
covering the mass range in parameter space described above and shown in Figure 33. The fields of this

structure are:
struct Scope {

int n_tmplt: This integer is the total number of templates needed to cover the region in parameter
space. This is typically computed or set by template.grid(). ,

float m.mn: The minimum mass of an object in the binary system, as described above, in solar masses.

float mmx: The maximum mass of an object in the binary system, as described above, in solar masses.
Together with the m_mn, this describes the region in parameter space covered by the set of templates.

float theta: The angle to the axis of the constant ambiguity ellipse whose axis has diameter dp. The
angle is measured in radians counterclockwise from the 79 axis. The range is 8 € (—7/2,7/2).

float dp: The diameter along the ellipse (in sec). This is twice the radius r; given in Table 7. The
angle 4 is measured to this axis.

float dq: The diameter along the ellipse (in sec). This is twice the radius r given in Table 7.

float f_start: The frequency fo used in the definitions of 7 and 7 (5.28.1,5.28.2); this is typically
the frequency at which a binary chirp first enters the usable bandpass of the detector.

struct Template* templates: Pointer to the array of templates. This pointer is typically set by
template_grid(), when it allocates the memory necessary to store the templates, and creates the

necessary templates.

&
Note that a given constant ambiguity ellipse can be specified in either of two equivalent ways. For
example the elllipse defined by

f = x/4,dp = 1 msec,dq = 5 msec (5.29.1)
is completely equivalent to the ellipse
6 = 57/4,dp = 5 msec,dq = 1 msec. (5.29.2)

Either of these is acceptable. The literature frequently uses the second convention (angle measured to the
major axis).
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5.30 Function: tau_of mass ()

void tau.ofmass(double ml, double m2, double pf, double *taul, double *taul)
This function calculates the coordinates (7q, 71) associated with particular values of the masses of the objects
in the binary system, and a particular value of frequency fo.

The arguments are:

ml: Ihput. The first mass (in solar masses).

Cm2: Input The second mass (in”sol'a'r' masses).

pf: Input. The value 7fy. Here fo is the frequency used in defining the 7 coordinates (see below). It
is often chosen to be at (or below) the frequency at which the chirp first enters the bandpass of the
gravitational wave detector.

tau0: Output. Pointer to 7 (in seconds).
taul: Output. Pointer to.7; (in seconds).

Although one can think of 79 and 7 as coordinates in the parameter space defined by (5.28.1) and
(5.28.2) they have simple physical meanings. 7y is the time to coalescence of the binary system, measured
from the time that the waveform passes through frequency fo, in the zeroth post-Newtonian approximation.
71 is the first-order post-Newtonian correction to this quantity, so that to this order the time to coalescence
iIsTg+ 7.

Author: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments; None.
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5.31 Function: m_and_eta ()

int m_and_eta(double taul, double taul, double *M, double *eta, double Mmin,
double Mmax, double pf)
This function takes as inputs the coordinates (7o, 71). If these correspond to individual masses m; and mo
each lying in the range from Mpn to M.y then the function sets the total mass M = mj + m2 and sets
n = myma/(m1 + mo)? and returns the value 1. Otherwise, the function returns 0 and does not change the
values of mass M or 7.

The arguments are:

tauo Input. The value of 7y (positive, sec).
taul Input. The value of 7 (positive, sec).

M Output. The total mass M (solar masses). Unaltered if no physical mass values are found in the desired
range.

eta Output. The value of 7 (dimensionless). Unaltered if no physical mass values are found in the desired
range.”

Mmin Input. Minimum mass of one object in the binary pair, in solar masses (positive).
Mmax Input. Maximum mass of one object in the binary pair, in solar masses (positive).

pf: Input. The value 7fy. Here f; is the frequency at which the chirp first enters the bandpass of the
gravitational wave detector.

The algorithm followed by m_and_eta () is as follows. Eliminate 7 from the equations defining 7¢ (5.28.1)
and 7; (5.28.2) to obtain the following relation:

MNP M
— - — | = 5.31.1
c1+c2 (M@> €3 (M@> 0, ( )
with the constants given by:
a = 115571, e
co = 47552 (7 fole)¥ *n ' (5.31.2)

cs = 16128 (zfoTln)’m.

Given (79, 71) our goal is to find the roots of equation (5.31.1). It is easy to see that the function on the lhs
of (5.31.1) has at most two roots. The function is positive at M = 0 but decreasing for small positive M.
However it is positive and increasing again as M — oo. Hence the function on the ths of (5.31.1) has at
most a single minimum for M > Q. Setting the derivative equal to zero and solving, this minimum lies at a
value of the total mass M, which satisfies

. 3/2
Aﬁgt = (g %) (5.31.3)

Hence the lhs of (5.31.1) has no roots if its value is positive at M = M, or it has two roots if that value is
negative. (The “set of measure zero” possibility is a single root at Mcrit.)

If 2Mpin < Merie < 2Mmax then m_and_eta () searches for roots 2Mpyin < M < Mepic and My <
M < 2Mmax separately, else it looks for a root M in the range 2Mpyin < M < 2Mpax. If the Ths of (5.31.1)
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changes sign at the upper and lower boundaries of the interval, then a double-precision routine, similar to
the Numerical Recipes routine rtsafe (), is used to obtain the root with a combination of “safe” bisection
and “rapid” Newton-Raphson.

If a root M is found in the desired range, then 7 is determined by (5.28.1) to be

5 M\ 3 8/3To
= [ — —8/3_9 : 314
n= 5 (Mo) (mfoTs) - (5.31.4)

If n<1l/4 then the smaller and lafgér masses are calculated from

M M
m = (1 -VI=4n) my= = (1+vi-m). (5.31.5)
(If both roots for M correspond to n < 1/4 then an error message is generated and the routine aborts.) If
both m; and mo are in the desired range My, < mi, Mo < Mpax then m_and_eta () returns 1 and sets
M and 7 appropriately, else it returns 0, leaving M and n unaffected.

Author: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: Although the arguments to this function are double precision floats, the values of m; and mg
that may be inferred from them can generally only be determined to single precision, particulary in
the neighborhood of m; = my. The reason is that in the vicinity of n ~ 1/4, a fractional error € is
the value of 7 produces a fractional error ,/7 in the masses.
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5.32 Function: tauspace_area ()

float tauspace.area(struct Scope *Grid)
This function computes the area of the enclosed region of parameter space shown in Figure 33.
The arguments are:

Grid: Input. This function uses only the minimum mass, maximum mass and the cut-off frequency fo
fields of Grid.

2. See the example in the following

The function returns the numerical value of the area in units of sec
subsection.

The function uses an analytic expression for the area obtained by integration of formulae (5.28.1,5.28.2)
for 79 and 7y given earlier. For example, to obtain the area of the trapezoidal region bounded above by the

maximum-mass curve and below by the 7y axis, we integrate

A = / e T1(Mmin, M) —'—-—dTO(n;min’ m) dm
TMimax m
- 4, |:mmin:I8/3 { ~[3+2(4 + 2a)u + (5 + 9a)u?]
Mo 2u2(1 + u)2/3
+ Qa\/—_—gl arctan [ﬂlv_;ﬂf}
n 9(1—11 {1+(1+u)1/3+(1+u)2/3]}u=1
6 1-201+ ’u.)l/3 +(1+ u)2/3 U=Thmin/Mmax

Here o = 924/743 and A is a quantity with dimensions sec? given by

18575 M3 (c3) 8/

A0 = 15545216 ("M fo)¥3 \ G

The area A, under the minimum-mass curve can be obtained from the formula above by interchanging
Mmin a0d Mmax. (If you wish to use geomtrized units in which the solar mass is 4.92 x 10~% sec simply set
G = ¢ = 1.) The area under the equal-mass curve A3 can be obtained by performing a similar integration
along the equal-mass curve

TMmin d
As = / Tl(m,m)—miiim’@dm

Mmax
B 60875 M(% ( Mg )8/3_ ( Mg )8/3 Ei 8/3
T 2064384 (7 foMo) /3 |\ mumin Mmax G '

These three results can be combined to give the total area enclosed

Atotal = A1 + Ay — A3z (5.32.1)

Equation (5.32.1) is the basis of tauspace_area () ; the next example shows an application of this func-
tion.

Author: Alan Wiseman, agw @tapir.caltech.edu

Comments: None.
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5.33 Example: area program

This example uses the function tauspace_area () described in the previous section to compute the area
of the specified parameter space. The parameters specifying the region are set: the minimum and maximum
mass in solar masses and the cut off frequency in seconds~!. The numerical value of the area is returned
and printed.

/* GRASP: Copyright 1997, Bruce Allen x/
#include "grasp:h" -

int main() {
struct Scope Grid;
float area;
float template_area(struct Scope x*);

/* Specify the parameter space x/
Grid.m mn=0.8;
Grid.m.mx=50.0;
Grid.f_start=140.0;

/* find area of parameter space =/
area=template_area (&Grid) ;

/* and print it %/

printf ("The area in parameter space is %f seconds”2.\n",area);
return 0;
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5.34 The match between two templates

When one performs a search for a gravitational wave signal in noisy instrumental data, one lays a grid of
templates out in parameter space. For instance, if one uses 7o and 71 [see Egs. (5.28.1) and (5.28.2)] as
parameter space coordinates, then one’s templates can be described as a set of points (78, T4) (with 4 ranging
from 1 to the total number of templates). One requires these points to be spaced such that no more than
some a priori fraction of SNR is lost due to the discreteness of the template family.

Suppose one has decided that a set templates can lose no more than 3% SNR in a search. This means
that if some arbitrary signal b(t) is dropped onto the template grid, there must exist a template, a(t), such

that
BAE(F) ~2mifto a1
max “oodf S 97[/ deh(f)] [/ &G f)] (5.34.1)

(“max to” indicates the integral on the left hand side is to be maximized over all possible values of ¢5.) The
integral on the left is the SNR obtained when the signal b(t) is measured using the Wiener optimal filter
corresponding to the template a(t). The first integral on the right is the SNR obtained when b(t) is measured
with the Wiener optimal filter corresponding to a template b(t); the second when the signal and template are
both a(t). (The integrals on the right hand side, in other words, describe the situation in which the template
exactly matches the signal). For a detailed discussion of Wiener filtering, see Section 5.14.

To simplify this discussion, let us introduce the following inner product:

a(f)b(f) =2rifto.
(a,b)s, = / df 2=~ AC) g (5.34.2)

[Note: this inner product is not to be confused with the inner product (a,b) defined in Eq. (5.14.9).] We
will use the convention that not including the to subscript on the angle bracket is equivalent to {o = 0.
Eq. (5.34.1) can now be rewritten

max {a,b)s, = .974/(a,a){b,b). (5.34.3)

to

This motivates the definition of the match between a(t) and b(t):

(a7b>to
= — . 34.
PR V)b OHD

The match can be thought of as a distance measure between a(t) and b(t) (it is in fact one of the starting
points for the metric that Owen defines in [5]). One uses the match function as a means of determining how
one must space templates on the parameter space. If one requires that no more than 3% of possible SNR be
lost due to template discreteness, then one must require adjacent templates to have a match p = .97.

The next few functions described in this manual are tools that can be used for calculating the match
function and understanding how it varies over one’s parameter space.

152




seor iy

5.35 Function: computematch ()

float computematch(float ml, float m2, float choOtilde[]l, float ch90tildel],.
float inverse. distance.scale, float twice.invnoise[], float flo, float sn0,
float s.n90, int npoint, float srate, int err.cd.sprs, int order)

This function computes and returns the match function between a binary inspiral template that is stored in

the arrays chOtilde[] and ch90tilde and the binary inspiral template that corresponds to the binary
system whose bodies have masses m1 and m2.

The two phases of the “reference chirp”, ch0tilde[] and ch90tilde[],are assumed to have been
precomputed and run through the function orthonormalize (). (The parameters s n0 and s.n90 are
assumed to have been found when the reference chirp was orthonormalized.) This allows efficient
computation of the match of many different templates with the reference chirp.

The arguments to the function are:

ml: Input. Mass of body 1 in the template that is cross-correlated with the reference chirp, solar masses.
m2: Input. Mass of Body 2 in the template, solar masses.

chOtilde: Input. The FFT of the 0°-phase reference chirp.

ch90tilde: Input. The FFT of the 90°-phase reference chirp.

inverse distance_scale: Input. The inverse distance to the binary system, in 1/Mpc. Because the
match is a normalized correlation, this parameter isn’t physically relevant: moving the binary twice
as far from the earth has no effect on the match. However, it may be computationally convenient to
scale the inner products that go into the match defintion by some amount to prevent numerical error.

twice_inv.noise: Input. Twice the inverse noise power spectrum, used for optimal filtering. For a
more detailed description, see the routine £ind chirp () (which is used within computematch()).

flo: Input. The low-frequency cutoff to impose, in Hz. Within the code, this is used as the starting
frequency of the templates; see make filters ().

sn0: Input. The normalization of chOtilde[], found using orthonormalize ().

s1n90: Input. The normalization of ch90tilde[], found using orthonormalize (). Note that
only the ratio s .n0/sn90 is physically relevant, because the match is normalized; if both s n0 and
s.n90 are multiplied by some constant, the match is unaffected.

npoint: Input. Defines the lengths of the various arrays: chOtilde[0. .npoint-1],
ch90tilde[0..npoint-1], twice inversemnoisel0. .npoint/2]}.

srate: Input. The sampling rate, in Hz. Used to convert between integer array time-domain subscripts
and frequency subscripts. For example this is the sample rate of the 0°- and 90°-phase reference
chirps, before they are FFI'd.

err_cd_sprs: Input. The error suppression code to be passed to the chirp generator; see chirp filters().

order: Input. Twice the post-Newtonian order; i.e., the power of (v/c) used in the expansion. See
chirp-filters().

Author: Scott Hughes, hughes @tapir.caltech.edu
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5.36 Function: match_parab ()

int matchparab(float mlref, float m2ref, float matchcont, int order, float
srate, float flo, float ftau, char *noisefile, float *semimajor, float *semimino.
float *theta, float mcoef(]) {;
This function attempts to find a parabolic fit to the match function near a reference template with masses
(mlref,m2ref). It works in (79, 71) coordinates, and can can use any noise curve listed in detectors.dat
for its inner products when computing the match.

- Let the coordinates of the reference chirp be (73, 77), and define = 19 — 75, y = 7 — 7J. Then, the fit
to the match is of the form

g = 1+az?+2bzy+cy®
a b z
= 1+(z y)-(b c)-(y). (5.36.1)

Written in the form on the second line, it is easy to show that, if the match is in fact parabolic, it has surfaces
of constant value that are ellipses. The (unnormalized) eigenvectors of this matrix are given by

) (:c) (a—0)/2b+1/[(a— /25> + 1
Vo = =
/] 1 /
(z) (a—c)/2b—+/l(a—e)/20)> + 1
5 o= = , (5.36.2)
y 1

and the eigenvalues are

- ! N 2
Ao = 2(a+c)+ 4(a c)?2+b
Al = %(a +c)— 4/ i(a —c)2 4+ b2 (5.36.3)

(Note: because the match is maximal at z = y = 0 and falls off as z and y increase, the matrix is negative
definite. The eigenvalues are therefore negative, and so |A\;| > |Ag|.) From these values, it is simple to
construct the equimatch ellipse. If the value of the match on the contour is zont, then the semimajor axis of

the ellipse has length
Tmajor = H ll'c%o“l’ (5.36.4)
Heont — 1
Tminor = ‘” —)\ . (5.36.5)

The counterclockwise angle between the semimajor axis and the 7y axis is easily found from ¥p:

and the semiminor axis has length

= atan2(vgy, voy) = arctan (1/ [(a —c)/2b+ \/[(a —c)/2b* + IJ) . (5.36.6)

(Here, atan2 () is the C math library function; using atan2 () insures that the computer points 8 to the
correct quadrant of the 7o, 71 plane.) If we now define normalized eigenvectors &g = ¥p/|o|, €1 = U1 /|01,
the ellipses are then easily constructed using the parametric curve

(;’) = Tmajor COS ¢ € + Tminor SN & €1, (5.36.7)
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with ¢ varying from O to 27.
The arguments to the function are:

mlref: Input. Mass of body 1 for the reference chirp (solar masses).
m2ref: Input. Mass of body 2 for the reference chirp (solar masses).
matchcont: Input. The value of the match contour.

order: Input. Twice the post-Newtonian order to be used in computing the templates; i.e., the power of
(v/c) used in the post-Newtonian expansion.

srate: Input. The sample rate, in Hz. Used to convert between integer array time-domain subscripts and
frequency subscripts. For example this is the sample rate of the 0°- and 90°-phase reference chirps,
before they are FFT’d.

flo: Input. The low-frequency cutoff to impose, in Hz. Within the code, this is used as the starting
frequency of the templates; see make_filters().

ftau: Input. The frequency used to find 7y and 7p; see Egs. (5.28.1) and (5.28.2). Different authors use
different conventions for this frequency—for example, Sathyaprakash uses the seismic wall frequency,
whereas Owen uses the frequency at which the noise power is minimum. ftau is arbitrary, but should
be used consistently: pick a value and stick with it.

noisefile: Input. A character string that specifies the name of a data file containing information about
the noise power spectrum P(f) of a dectector. See noise_power () for extended discussion.

semimajoxr: Output. The semimajor axis of the ellipse along which the match has the valuematchcont.
semiminor: Output. The semiminor axis of the ellipse.
theta: Output. The counterclockwise angle, in radians, between semimajozxr and the 79 axis.

mcoef: Output. The array mcoef [0. .2] contains the coefficients of the parabolic fit to the match:
pst = 1 +mcoef [0]122 + mcoef [1]zy + mcoef [2]y2

The function works by sampling many templates in (9, 71) coordinates that are close to the template
with masses (mlref, m2ref). Periodically, it computes the best parabolic fit to the data it has gathered so
far and constructs the elliptical contour corresponding to that fit. It then takes Ng) steps around this ellipse
and compares the value of the match predicted by the fit with the actual match value at each point. It then
computes the following “x“-like” statistic:

N, . . 2
1 = u;ctual - /‘L%t
£= Factual — Ffit | (5.36.8)
Nep = ( 10-3

If & = 1, then each fit point differs from the match by 10~3. A “good” fit will have ¢ of order 1.

This function returns O if a good fit is not found (e is greater than 5 yet more than 250 templates have
been used to generate fit data), and 1 otherwise. If a good fit is not found, then the match is not parabolic
in the vicinity of the template (m1lref, m2ref) down to u = matchcont. This is typically the case if the
masses are large (so that there are few cycles measured, and relativistic effects are very important), and if the
value of matchcont is too far from 1. For instance, with the LIGO 40-meter prototype, match _parab ()
cannot find a parabolic fit to the .97 match contour for a binary with m; = 1.2Mg, my = 1.6Mg; but it
does find a parabolic fit for this binary at the .99 match contour.

Author: Scott Hughes, hughes @tapir.caltech.edu
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5.37 Function: match_cubic ()

int match._cubic(float mlref, float m2ref, float matchcont, int order, float

srate, float flo, float ftau, char *noisefile, float *semimajor, float *semimineo:

float *theta, float mcoefl[])
This function is almost identical to match parab (), except that it attempts to fit the match to a cubic
form:

m =1+ az®+ 2bzy + cy? + dz® +ey® + friy + gzy? (5.37.1)
The arguments to the function are:
mlref: Input. Mass of body 1 for the reference chirp (solar masses).
m2ref: Input. Mass of body 2 for the reference chirp (solar masses).
matchcont: Input. The value of the match contour.

order: Input. Twice the post-Newtonian order to be used in computing the templates; i.e., the power of
(v/c) used in the post-Newtonian expansion.

srate: Input. The sample rate, in Hz. Used to determine the spacing of frequency bins for the templates.

flo: Input. The low-frequency cutoff to impose, in Hz. Within the code, this is used as the starting
frequency of the templates; sece make_filters ().

ftau: Input. The frequency used to find 7o and 71; see Egs. (5.28.1) and (5.28.2). Different authors use
different conventions for this frequency—for example, Sathyaprakash uses the seismic wall frequency,
whereas Owen uses the frequency at which the noise power is minimum. ftauis arbitrary, but should
be used consistently: pick a value and stick with it.

noisefile: Input. A character string that specifies the name of a data file containing information about
the noise power spectrum P(f) of a dectector. See noise power () for extended discussion.

semimajor: Output. The semimajor axis of the ellipse along which the match has the value matchcont.
semiminox: Output. The semiminor axis of the ellipse.
theta: Output. The counterclockwise angle, in radians, between semimajor and the 79 axis.

mcoef: Output. The array mcoef [0..6) contains the coefficients of the parabolic fit to the match:
par = 1+ mcoef[0]z% 4+ mcoef [1]zy + mcoef [21y? + mcoef 3123 + mcoef [4]y% +
mcoef [5]:1:2y + mcoef [6] :z:yQ.

The function works in almost exactly the same manner as match parab (). In particular, it constructs
an ellipse using the parabolic piece of the cubic fit, and checks the goodness of the fit along that ellipse.
Because the ellipse is not made from the full functional form of the fit, the fit does not have constant
value along the ellipse. Thus, match_cubic () does not really find contours with constant match value
matchcont. The ellipses it finds, however, generally have match values fairly close to matchcont; and,
more importantly, the match values along the ellipse are never less than matchcont.

Author: Scott Hughes, hughes @tapir.caltech.edu
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5.38 Example: match_fit program

This program will try to find the fit to the match function about some template. It is called with four
arguments: the mass of body 1 (in solar masses), the mass of body 2 (in solar masses), the value of the
match for which it tries to fit, and (twice) the order of the post-Newtonian expansion used to compute the
templates. For example, match_fit 1.2 1.8 .98 4 will try to find a fit to the .98 match contour near
the template for the 1.2 M — 1.8 Mg using post-2-Newtonian templates.

The program first attempts to find a parabolic fit; if it is unable to do so, it then tries a cubic. If the cubic
fails, you are in a region of parameter space where the match is badly behaved. This is typically the case
if you ask for masses that are too large—for example, no fit can be found near a 5 Mg — 5 M, solar mass
binary with the LIGO 40-meter prototype noise curve. When the masses are large, the system radiates very
few gravitational-wave cycles in the instrument’s frequency band; and, those cycles typically correspond to
a strongly relativistic regime of inspiral. If you find yourself in this circumstance, either give up on the large
mass binaries, or try to find a fit at a match level closer to 1.

#include "grasp.h"

#define DETECTOR_NUM 15 /* Smooth fit to Caltech 40m prototype */
#define FLO 120. /* Hz - low frequency cut off for filtering */
#define FTAU 140. /* Hz - frequency used in definitions of

tau0, taul. =/
/*#define DETECTOR_NUM 8 /* Caltech 40m prototype */
/*#define DETECTOR_NUM 1 /* LIGO initial interferometer */
/+#define DETECTOR.NUM 12 /* LIGO Advanced interferometer %/

int main(int argc,char *xargv)
{
float *pfit,*cfit,semimajor, semiminor, theta;
float ml,m2,matchcont;
float srate=50000;
float site_parameters[9];
char noise.file[128],whiten_file([128],sitename[l128];
int order, tstp, tstc;

/* Check that the program is called with the correct number of
arguments; print out argument information if it’s not. x/
if(arge 1= 5) {

fprintf (stderr, "4 Arguments: 1. Mass of body 1 (solar masses)\n");
fprintf (stdexrx, " 2. Mass of body 2 (solar masses)\n");
fprintf (stderr, " 3. Match contour match value;\n");
fprintf (stdexrr, " 4. Waveform order [power of (v/c)i\n");
fprintf (stderr, "\nExample: match_fit 1.2 1.6 .87 4\n");

exit (0);
}
/* Assign arguments to variables */
ml=atof (argv{l]);
m2=atof (argvi2]);
matchcont=atof (argv[31]);
order=atoi(argv(4]});

/* Get the file names for the desired noise curve x/
detector_site("detectors.dat",DETECTORNUM, site_parameters,
site_name,noise_file,whiten._file);

printf (*\nEvaluating templates for detector: %$s using data from file: \"%s\"\n\n\n",
site.name,noise_file);
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/* Allocate memory for the coefficients used in the parabolic fits */
pfit=(float *)malloc(sizeof (float)=*3);
cfit=(float *x)malloc(sizeof (float)*7);

/= Try to find a parabolic fit x/
tstp=match_parab (ml,m2,matchcont, order, srate, FLO, FTAU,noise_file,
&semimajor, &semiminor, &theta,pfit);

if(tstp) {
printf ("Found a parabolic fit to the match around template with\n");
printf ("ml=%f, m2=%f.\n\n",mi,m2);

printf("Semimajor axis of best fit ellipse: %e ms\n"*,
semimajorxl.e3);
printf ("Semiminor axis of best fit ellipse: %e ms\n",

semiminorxl.e3);
printf ("Angle between semimajor and taul axis: %f rad\n",theta);
printf ("Fitt m = 1 + %e x"2 + %e xy + %e y~2\n",
pfit[0],pfit[1]),pfit[2]);
printf (* [where x=dtaul, y=dtaul]\n");
} else
printf ("Unable to find parabolic fit. Attempting cubic fit.\n");

/= If the parabola failed, try to find a cubic fit x/
if(lestp) {
tstc=match_cubic(ml,m2,matchcont, order,srate, FLO,FTAU,noise_file,
&semimajor, &semiminor, &theta, cfit);
if(tste) { :
printf ("Found a cubic fit to the match around template with\n®"); i
printf ("ml=%f, m2=%£.\n\n",ml,m2);
printf("Using ellipse constructed from parabolic part of cubic.\n"};

printf ("Semimajor axis of best fit ellipse: %e ms\n", i
semimajorxl.e3); 1
printf("Semiminor axis of best fit ellipse: %e ms\n",

semiminor*l.e3);

printf(“Angle between semimajor and tau0 axis: %f rad\n",theta)};

printf("Fit: m = 1 + %e x"2 + %e Xy + %e y"2\n",
cfit[0),cfit([1],cfit[2]);

printf (" + %e xX"3 + %e y™3 + %e X2 y + %e xy“2\n",
cfit[3]1,cfit[4],cfit[5],cfit[6]));

printf (" {[where x=dtaul, y=dtaul]\n");

} else {

printf("Unable to £find a cubic fit. Try looking for a match\n");

printf ("contour at smaller match value; or, give up on this\n"};

printf(*mass regime.\n");

}
}

return 0;

}

Author: Scott Hughes, hughes @tapir.caltech.edu
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5.39 Function: template_grid()

void template_grid(struct Scope *Grid)
This function evolved from grid4. £, a FORTRAN routine written by Sathyaprakash. This function lays
down a grid of templates that cover a particular mass range (the region inside the distorted triangle shown
in Figure 33).

The arguments are:

_ Grid: Input/Output. This function uses as input all of the fields of Grid except for Grid.n tmplt

and Grid.templates. On return from template grid these latter two fields are set. The
function uses malloc () to allocate storage space and creates in this space an array containing

Grid.n_tmplt objects of type Template. If you wish to free the memory, call free (Grid.templates).

It is easy to cover the parameter space shown in Figure 33 with ellipses. However each ellipse represents
a filter, and filtering takes computer time and memory, so the real problem is to cover the parameter space
completely, using the smallest possible number of templates. This is a non-trivial packing problem; while
our solution is certainly not optimal, it is quite close.

The algorithm used to place the templates works in coordinates (zo, 1) which are rotated versions of
(70, 71), aligned along the minor and major (or major and minor) axes of the template ellipses. The input
angle Grid. theta,in the range (-, 7), is the counterclockwise angle through which the (zo,z;) axes
need to be rotated to bring them into alignment with the principal axis of the template ellipses.

Although each template is an ellipse, the problem of packing templates onto the parameter space can be
more easily described in terms of a more familiar packing problem: packing pennies on the plane. One can
always transform an ellipse into a circle by merely scaling one coordinate uniformly while leaving the other
coordinate unchanged. So we introduce coordinates z; along the major diameter and z, along the minor
diameter of the ellipse, and then “shrinking” the z; coordinate by the ratio of major to minor diameters. In
this way the ellipses are transformed into circles.

Figure 34: Covering a plane with a square lattice of pennies (or templates) leaves 21% of the area exposed

First, a template is laid down at the point where the equal mass line intersects the maximum mass line.
Then additional templates are placed along the equal mass line, at increasing values of zo. These templates
are staggered up and down in the z; direction. After laying down this set of templates, the remaining
part of parameter space is covered with additional templates, in columns starting at each of the previously
determined template locations. These columns have the same value of zg as the previously determined
templates but increasing values of z;. The columns are continued until the “leading edge” of the final
template lies outside the parameter space.

We can describe the packing (and the “efficiency”) of the packing in terms of the penny-packing prob-
lem. Suppose we start by setting pennies of radius 1/2 on all points in the plane with integer coordinates,
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as shown in Figure 34. It is easy to show that the fraction of the plane (i.e., parameter space!) which is not
covered by any pennies is € = 1 — /4 = 0.214 - - - or about 21%.

Figure 35: Staggering the pennies (or templates) decreases the uncovered fraction of the plane to 9.3%

Now suppose that we “stagger” the pennies as shown in Figure 35. In this case, the fraction of area not

covered is € = 1 — 51’\/—5 = 0.093--- or about 9.3%. If we wish to completely cover the missing bits of

the plane, then we can do so by increasing the radius of each penny by /574 (or, equivalently, by moving
the points at which the pennies lie closer together by that same factor). The resulting diagram is shown in
Figure 36. By increasing the number-density of pennies on the plane by 25% we have successfully covered
up the remaining 9.3% of the area.

Figure 36: Decreasing the spacings of the pennies (or templates) by a factor of (5 /4)H? = 1.118-- - then
covers the entire plane.

Now it is not possible to implement this algorithm exactly, because we are not attempting to cover the
entire plane, but rather only a finite region of it. You might think that we could just start laying down
templates in the same was as for Figure 36 and stick in a few extra ones for any parts of the parameter space
which were not covered, but unfortunately this would then lead us to place templates centered at points in
(70, T1) space that do not correspond to 77 < 1/4, and for which the very meaning of a “chirp” is ill-defined.

The code in template_grid() thus uses a heuristic method to place templates, trying whenever
possible to stagger them in the same way as Figure 36 but then shifting the center locations when necessary
to ensure that the template corresponds to physical values of the mass parameters m; and mo. This is often
referred to as “hexagonal packing”. In practice, to see if this placement has been successful or not, the
function plot_template () can be used to visually examine the template map.

Table 7 gives information about the appropriate template sizes, spacings and orientations as found in
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Author Detector fo/Hz 6/rad  radius r; (msec) radius 7o (msec)

Sathyaprakash Caltech 40m (Nov 94) 140 0.307 8.0 0.6
Owen Initial LIGO 200 0.5066 2.109 0.162
Owen Advanced LIGO 70 0.4524 3.970 0.352

Table 7: Orientation and dimensions of 0.97 ambiguity templates.

the recent literature; and using the match_£it example program.- The angle-8-is-the angle to the axis of
the ellipse whose radius is 7, measured counterclockwise from the 7y axis. The other radius (semi-axis)
of the ellipse has length 5. Equation (3.16-18) of reference [S] do not appear to agree with Table 7, but
that is because the r; = dz; of [5] are defined by (dz;)owen = dl;/v/Ei. The dl; are the edge lengths of
a hypercube in dimension N, chosen so that if templates are centered on its vertices, then the templates
touch in the center of the cube, so that (dz;)owen = dli/VEi. In our N = 2 dimensional case, this gives
r; = dz; = (dz;)Owen/ v/2. Note also that in this table, Owen and Sathyaprakash use different definitions
of fo, so that their results may not be directly compared. In Owen’s case, fy refers to the frequency of
maximum sensitivity of the detector, whereas in Sathyaprakash’s case it refers to the frequency at which
the chirp first enters the bandpass of the detector. In the case of the November 1994 data set, we quote two
different sizes an orientations for the ellipses, depending upon the choice of fj.

Author: Bruce Allen, ballen @dirac.phys.uwm.edu

Comments: This routine evolved from grid4 . £, which was written by Sathyaprakash. The method used
to stagger templates is heuristic, and could perhaps be improved. Very small regions of the parameter
space along the equal-mass line (7 = 1/4) may not be covered by any templates.
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5.40 Function: plot_template ()

void plot_template(char *filename, struct Scope Grid, int npages, int number)

This function generates a PostScript (tm) file that draws a set of templates on top of the region of parameter
space which they cover.
The arguments are:

filename: Input. Pointer to a character string. This is used as the name of the output file, into which
postscript output is written. We suggest that you use “.ps” as the final three characters of the file-
name. These files are best viewed using GhostView.

Grid: Input. The mass range specified by Grid is used to draw an outline of the region in (79, 71)
parameter space covered by the mass range, and an ellipse for each template included in Gridis then
drawn on top of this outline.

 npages: Input. If there are more than a few templates (and there can be thousands, or more) it is impossi-

ble to view this graphical output unless it is spread across many pages. npages specifies the number
of pages to spread the output across. We suggest at least one page per hundred templates.

number: Input. Each templaté specified in Grid is numbered by the field Grid.n tmplt. If number
is set to 1, then when each ellipse is drawn in parameter space, the number of the template is placed
inside the ellipse so that the particular template associated with each ellipse may be easily identified.
If number is set to 0, then the templates are not identified in this way; each template is simply drawn
as an empty ellipse.

Figure 37: Part of some sample output from plot_template ().

Note that the output postscript file is designed to be edited if needed to enable clear viewing of details. Each
file is broken into pages. At the beginning of each page are commands that set the magnification scale of
each page, and determine if the page will be clipped at the boundaries of the paper or not. You can edit these
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lines in the postscript file to enable you to “zoom in” on part of the parameter space, if desired. By turning
off the clipping, you can easily move off the boundaries of a given page, if desired. Some sample output
from plot_template () is shown in Figure 37. (In fact, this is part of the output file produced by the
example program, showing a small number of the total of 1001 templates required).

Author: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: Another option should be added, to print out at the center of each template, the mass parameters

™ and mgy associated with the template.
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5.41 Example: template program

This example lays down an optimal grid of templates covering parameter space. It also outputs a postscript
file (best viewed with GhostView) which shows the elliptical region of parameter space covered by each
template.

/* GRASP: Copyright 1997, Bruce Allen */
#include "grasp.h"

int main() {
struct Scope Grid;

/* Set parameters for the inspiral search in CIT 40 meter =/
Grid.mmn=0.9;

Grid.mmx=3.0;

Grid.theta=0.307;

Grid.dp=2x0.008;

Grid.dg=2%0.0006;

Grid.f_start=140.0;

/* construct template set covering parameter space */
template_grid (&Grid);

/* create a postscript file showing locations of templates x/
plot_template(“templates_40meter.ps",Grid,15,1);
return 0;

Part of a typical picture contained in the output file temp-list.ps is shown in Figure 37 (though for
different parameters than those shown above).
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542 Example: multifilter program

This example implements optimal filtering by a bank of properly-spaced templates. One could do this
with trivial modifications of the example optimal program given earlier. Here we have shown something
slightly more ambitious. The multifilter program is an MPI-based parallel-processing code, designed
to run on either a network of workstations or on a dedicated parallel machine. It is intended to illustrate a
particularly simple division of labor among computing nodes. Each segment of data (of length NPOINT)
is broadcast to the next available node. That node is responsible for filtering the data through a bank of

“templates, chosen to cover the mass range from MMIN to MMAX. The output of each one of these filtersisa

set of 11 signals, which measure the following quantities:

1. The largest signal-to-noise ratio (SNR) at the output of the filter, for the given segment of data,
. The distance for an optimally-oriented source, in Mpc, at which the SNR would be unity.
. The amplitude « of the zero-degree phase chirp matching the observed signal.

. The amplitude [ of the ninety-degree phase chirp matching the observed signal.

. The offset of the impulse into the given segment of data, which would produce the observed output.

2

3

4

5. The offset of the best-fit chirp into the given segment of data

6

7. The time of that impulse, measured in seconds from the start of the data segment,
8

. The time (in seconds, measured from the start of the data segment) at which an inspiral, best fitting
the observed filter output, would have passed through the start frequency FLO.

9. The time (in seconds, measured from the start of the data segment) at which an inspiral, best fitting
the observed filter output, would have passed through coalescence.

10. The observed average value of the output SNR (should be approximately unity).

11. The probability, using the splitup technique described earlier, that the observed filter output is consis-
tent with a chirp plus stationary detector noise.

For completeness, we give this code in its entirety here. We also show some typical graphs produced by
the MPE utility nupshot which illustrates the pattern of communication and computation for an analysis
run. For these graphs, the analysis run lasted only about four minutes, and analyzed about three minutes of
IFO data. We have performed an identical, but longer run, which analyzed about five hours of IFO ouput
in just over three hours, running on a network of eight SUN workstations. The data is analyzed in 6.5
second segments, each of which is processed through a set of 66 filter templates completely covering the
mass range from 1.2 to 1.6 solar masses. For the run that we have profiled here, STORE_TEMPLATES is
set to 1. This means that each slave allocates memory internally for storing the Fourier-transformed chirp
signals; the slaves only compute these once. However this does place demands on the internal storage
space required - in the run illustrated here each individual process allocated about 34 Mbytes of internal
memory. Another version of the code has also been tested; in this version the slave nodes compute the
filters and Fourier transform them each time they are needed, for each new segment of data. This code
has STORE_TEMPLATES set to 0. This is less efficient computationally, but requires only a small amount
of internal storage. For a given hardware configuration, the optimal balance between these extremes, and
between the amount of redundant broadcasting of data, depends upon the relative costs of communication
and computation, and the amount of internal storage space available.

Based on'these figures, it is possible to provide a rough table of computation times. These are given in
tabular form in Table 8.
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Figure 38: Output of the nupshot profiling tool, showing the behavior of the multifilter program
running on a workstation network of 8 machines (the fastest of these are Sparc-20 class processors). This
shows the first 8 seconds of operation (time on the horizontal axis). The gray segments show the slave pro-
cesses receiving the template list. During the orange segments, the slave processes are waiting for data; the
blue segments show the master transmitting data to each slave. During the light gray segments, the slaves are
computing the templates, during the green segments they are computing the FFT’s of those templates, and
during the purple segments they are correlating the data against the templates. During the brown segment,
the master is waiting to receive data back from the slaves.

Task Color Approximate time Processing done

data — slaves dark blue 350 msec transfer 384 kbytes

data — master yellow 1 msec transfer 3 kbytes

correlate purple 500 msec 2 ffts of 64k floats, and search
splitup (likelihood) light blue 330 msec several runs through 64k floats
real FFT (one phase) green 150 msec 1 fft of 64k floats

compute template gray 350 msec compute 2 arrays of ~ 18k floats
orthonormalize templates wheat 25 msec several runs through 64k floats

Table 8: Approximate computation times for different elements of the optimal-filtering process.
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Figure 39: This is a continutation of the previous figure. Slave number 1 has completed its computation
of the templates, and during the orange segment, waits to make a connection with the master. This is
followed by a (very small) yellow segment, during which the slave transmits data back to the master, and a
blue segment during which the master transmits new data to slave number 1. Immediately after this, slave
number 1 begins a new (purple) sequence of correlation calculations on the newly received block of data.
Notice that because slave 1 has already computed the templates, the light gray and green operations are no

longer needed.

Figure 40: This is a continutation of the previous figure, and represents the “long-term” or “steady-state”
behavior of the multiprocessing system. In this state, the different processors are spending all of their time
doing correlation measurements of the data, as indicated by the purple segments, and the master is waiting
for the results of the analysis (brown segments).
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Figure 41: This is a continuation of the previous figure, and shows the termination of some of the slave
processes (all the data has been analyzed, and there is no new data remaining). The blue segments (data
being sent to slaves) are actually termination messages being sent to the different processes 2,3,4 and 6.
Processes 5 and 7 are still computing. In the case of process 7, the data being analyzed contains a non-
stationary “spurion” which triggered most of the filters beyond a pre-set threshold level. As a result, process
7 is performing some additional computations (the split-up likelihood test, shown as light blue segments) on
the data.
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Author: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: There are many other ways in which this optimal filtering code could be parallelized. This pro-
gram illustrates one of the possibilities. Other possibilities include: maintaining different templates on
different processes, and broadcasting identical IFO data to these different processes, or parallelizing
across both data and templates.
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/+ GRASP: Copyright 1997, Bruce Allen x/

/+ multifilter.c

This code is intended for machines where computation is cheap,

and communication is expensive. The processsing is organized as
master/slaves (or manager/workers!). The master process sends out data
chunks to individual slave processes. These slave processes analyze

the data against all templates, then return the largest signal values

obtained for each template, along with other parameters like the time of
coalescense and the phase of coalescence. They then get a new data chunk.
If STORE_TEMPLATES is set to 1, then the filters are computed once,
then stored internally by each slave. This is the correct choice if each

slave has lots of fast memory available to it. If STORE_TEMPLATES is set
to 0, then the slaves recompute the templates each time they use them.
This is the correct choice if each slave has only small amounts of fast
memory available.

*/

#include "mpi.h"
#include "mpe.h"
#include "grasp.h"

#define NPOINT 65536 /* The size of our segments of data (6.5 secs) */
#define FLO 120.0 /* The low frequency cutoff for filtering =/

#define ARMLENGTE 40.0 /* Armlength of the IFO, in meters */

#define HSCALE 1l.e21 /* A convenient scaling factor; results independent of it */
#define MIN_INTO_LOCK 3.0 /= Number of minutes to skip into each locked section /
#define SAFETY 200 /* Padding safety factor to avoid wraparound errors */
#define CHIRPLEN 18000 /* length of longest allowed chirp =/

#define MMIN 1.2 /* min mass object, solar masses */

#define MMAX 1.6 /* max mass object, solar masses */

#define DATA_SEGMENTS 25 /* largest number of data segments to process */
#define NSIGNALS 11 /* number of signal values computed for each template */

#define STORE.TEMPLATES 1 /x0: slaves recompute templates. 1: slaves save templates. */

void shiftdata();
void realft (float*,unsigned long, int);

struct Saved {
float tstart;
int gauss;

};

short *xdatas;

int npoint,remain=0,needed,diff,gauss_test,num sent=0,fill buffer();
float *twice_inv_noise,xhtilde, *xdata, smean_pow_spec, tstart;

float srate=9868.4208984375,decaytime, datastart,xresponse;

double norm,decay;

FILE xfpifo,*fpss,*fplock;

int main(int argc,char xargvl])

{

int xlchirppoints,num stored;

float xltc,xlchOtilde,*1lch90tilde;

int myid,numprocs,i,j,maxi, impulseoff, *chirppoints, indices([8],num_templates;

int slave,more_data, temp.no,num.recv=0,namelen, completed=0,longest_template=0;
float *tc,ml,m2,*template_list,*sig.buffer,distance, snrmax,var,timeoff, timestart;
float n0,n90, inverse_distance_scale,xoutput90, xoutput0, *chOtilde, *ch90tilde;

float 1in0,1in90,varsplit,stats([8],gammg(float, float);

170




= double prob;
; FILE xfpout;
MPI_Status status;
char processor.name [MPI_MAX_PROCESSOR.NAME], logfile.name[64],name([64];
r struct Scope Grid:
I struct Saved xsaveme;

) /* start MPI, find number of processes, find process number */

| MPI_Init(&argc,&argv);

‘ MPI_Comm size (MPI_COMM_WORLD, &numprocs) ;
MPI_Comm rank (MPI_COMM_WORLD, &myid) ;
MPI.Get_processor.name (processor_name,&namelen) ;
MPE_Init_log{();

e

/* number of points to sample and fft (power of 2) */
needed=npoint=NPOINT;

/* Gravity wave signal (frequency domain) & twice inverse noise power */
htilde=(float *)malloc(sizeof (float)*npoint+sizeof (float)*(npoint/2+1));
twice_inv_noise=htilde+npoint;

P S

/* Structure for saving information about data sent to slaves %/
saveme= (struct Saved x)malloc(sizeof (struct Saved)s*numprocs);

/* MASTER =/

if (myid==0) {
MPE_Describe_state(l,2, "Templates->Slaves", "red:vlines3");
MPE_Describe_state (3,4, "Data~>Slaves", "blue:gray3”);
MPE_Describe_state (5,6, "Master Receive", *brown:light_gray");

] MPE_Describe_state (7,8, "Data->Master", "vellow:dark_gray");

! MPE_Describe_state (9,10, "Slave Receive", "orange:white");

: MPE_Describe_state (13,14, "Slaves<-templates"”, "gray:black"};

MPE_Describe_state (15,16, “compute template”, "lavender:black");

MPE_Describe_state(17,18, *real fft","lawn green:black");

MPE._Describe.state(19,20, "correlate", "purple:black");

Lo MPE_Describe_state (21,22, "orthonormalize”, "wheat:black");

MPE_Describe_state (23,24, "likelyhood test","light sky blue:black"};

| /* Set parameters for the inspiral search %/
L Grid.m mn=MMIN;
Grid.m mx=MMAX;
Grid.theta=0.964;
Grid.dp=2x0.00213;
Grid.dg=2%0.0320;
Grid.f_start=140.0;

| / construct template set covering parameter space, m1 m2 storage */
template_grid(&Grid);

num_templates=Grid.n-tmplt;

printf ("The number of templates being used is %d\n", num.templates);
template.list=(float x)malloc (sizeof (float)*2*+num templates);

/* put mass values into an array */
| for (i=0;i<Grid.n-tmplt;i++) {
| template_list[2%1]=Grid.templates{i].ml;
| template.list([2%i+1]=Grid.templates([i].m2;
printf("Mass values are ml = 3f m2 = %$f\n",Grid.templates[i] .ml,Grid.templates[i].m2);

}

fflush(stdout);
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/* storage for returned signals (NSIGNALS per template) */
sig. buffer=(float *)malloc(sizeof (float)*num templates*NSIGNALS) ;

/* broadcast templates */

MPE_Log.event (1,myid, *send"); -

MPI_Bcast (&num templates,1,MPI_INT, 0, MPI_COMM WORLD) ;

MPI_Bcast (template_list,2xnum templates, MPI_FLOAT, 0,MPI_COMM.WORLD) ;
MPE_Log.event (2,myid, "sent");

/* number of points to sample and fft (power of 2) +/
needed=npoint=NPOINT;

/* stores ADC data as short integers */
datas={shortx)malloc (sizeof (short)*npoint);

/= stores ADC data in time & freq domain, as floats */
data=(float *)malloc(sizeof (float)s*npoint);

/* The response function (transfer function) of the interferometer */
response=(float *)malloc(sizeof (float)* (npoint+2));

/* The autoregressive-mean averaged noise power spectrum */
mean_pow_spec=(float *)malloc(sizeof (float)*(npoint/2+1));

/* Set up noise power spectrum and decay time */
norm=0.0;

clear (mean_pow_spec,npoint/2+1,1);
decaytime=10.0+npoint/srate;

decay=exp (—1.0+npoint/ (sratesdecaytime)) ;

/* open the IFO output file, lock file, and swept-sine file */
fpifo=grasp.open (*GRASP_DATAPATH", "channel.0");
fplock=grasp.open{"GRASP_DATAPATH", "channel.10");
fpss=grasp-open("GRASP_DATAPATH", “swept-sine.ascii”);

/* get the response function, and put in scaling factor */
normalize_gw(£fpss,npoint, srate, response) ;
for (i=0;i<npoint+2;i++)

response [1]+*=HSCALE/ARMLENGTH;

/* while not finished, loop over slaves x/
for (slave=l;slave<numprocs;slave++) {
if (get_calibrated-data()) {
/* if new data exists, then send it (nonblocking?) */
fprintf (stderr, "Master broadcasting data segment %d\n’,num sent+1);
MPE_Log-event (3,myid, "send") ;
MPI_Send(htilde, NPOINT+NPOINT/2+1,MPI_FLOAT, slave, ++num.sent, MPI_COMM _WORLD) ;
MPE_Log.event (4,myid, *sent") ;
saveme [slave~1] .gauss=gauss_test;
saveme [slave—1].tstart=datastart;
shiftdata();

}

else {
/* tell remaining processes to exit */
MPE_Log.event (3,myid, "send");
MPI-Send(htilde,NPOINT+NPOINT/2+1,MPI_FLOAT,Slave,O,MPI_COMELWORLD);
MPE_Log_event(4,myid,"sent");

}
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}

/* now loop, gathering answers, sending out more data */
while (num_sent!=num.recv) {
more.data=get.calibrated _datal() ;

/= listen for answer %/

MPE_Log-event (5,myid, "receiving. . .");

MPI_Recv(sig-buffer, NSIGNALS*num_templates, MPI_FLOAT, MPI.ANY_SOURCE,
MPI_ANY_TAG,MPI_COMM WORLD, &status) ;

MPE_Log.event (6, myid, "received");

NUM_Xrecv++;

/* store the answers. .. %/

sprintf (name, "signals.%05d", status.MPI_TAG—1);

fpout=fopen(name, "w") ;

if (fpout==NULL) {
fprintf (stderr, "Multifilter: can't open output file %s\n",name);
MPI_Finalize();
return 1;

}

fprintf (fpout, "# Gaussian %d\n",saveme[status.MPI_SOURCE-1].gauss);
fprintf (fpout, "# tstart %f\n", saveme([status.MPI.SOURCE-1].tstart);
fprintf (fpout, "# snr distance phase0 phase90 maxi\
impulsecff impulsetime startinspiral coalesce variance prob\n*);
for (i=0;i<num templates;i++) {

for (j=0; 3 <NSIGNALS—1;j++)

fprintf (fpout, "$g\t",sig.buffer [i*NSIGNALS+j]);
fprintf (fpout, "%£\n",sig buffer [1*NSIGNALS+j]);

/= if data stream has no obvious outliers, and chirp prob is high, print »/
if (sig-buffer [i*NSIGNALS+101>0.03 && saveme[status.MPI_SOURCE-1].gauss) {

printf (*POSSIBLE CHIRP: signal file %d, template %d, SNR = %f, prob = %f\n",
status.MPI_TAG-1,1i,sig.buffer [i*NSIGNALS],sig-buffer [i*NSIGNALS+10]);

fflush(stdout) ;

}

fclose(fpout);

/* if there is more data, send it off */
if (more_data) {
fprintf (stderr, "Master broadcasting data segment %d\n",num.sent+1);
MPE_Log.event (3,myid, "send");
MPI_Send(htilde, NPOINT+NPOINT/2 +1,MPI_FLOAT, status.MPI_SOURCE, ++num._sent , MPI_COMM.WORLD) ;
MPE_Log_event (4, myid, *sent");
saveme [status.MPI_SOURCE-1] .gauss=gauss_-test;
saveme [status .MPI_SOURCE—1].tstart=datastart;

shiftdata();
}
/* or else tell the process that it can pack up and go home */
else {
printf ("Shutting down slave process %d\n",status.MPI_SOURCE) ;
MPE.Log.event (3,myid, “send");
MPI.Send(htilde, NPOINT+NPOINT/2 +1,MPI_FLOAT,status.MPI_SOURCE, 0,MPI_COMM_WORLD) ;
MPE_Log_event (4, myid, "sent");
}
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}

/* SLAVES =/
else {

/= when all the answers are in, print results =/
printf("This is the master - all answers are in'\n");

printf("Slave %d (%s) just got started.. .An",myid, processor.name) ;
fflush(stdout);

/* allocate storage space */

/* Ouput of matched filters for phase0 and phase pi/2, in time domain, and temp storage */
outputl=(£float *)malloc(sizeof (float)xnpoint);

output90=(float *)malloc(sizeof (float)*npoint);

/* get the list of templates to use */

MPE_Log.event (13, myid, "receiving. . .");

MPI_Bcast (&num_templates, 1,MPI_INT, 0, MPI_COMM_WORLD) ;

sig.buffer=(float *)malloc(sizeof (float)*num templates*xNSIGNALS) ;
template_list=(float *)malloc (sizeof (float)*2*xnum_templates});

MPI_Bcast (template.list,2xnum_templates, MPI_FLOAT, 0, MPI_COMM WORLD) ;
MPE_Log.event (14, myid, "received");

printf({*Slave %d (%s) just got template list.. .\n",myid,processor_name) ;
fflush(stdout);

/* Orthogonalized phase 0 and phase pi/2 chirps, in frequency domain */

num.stored=STORE_.TEMPLATES* (num._templates—1)+1;

lchOtilde=(float *)malloc(sizeof (float)s*npointxnum stored); :
lch90tilde=(float *)malloc(sizeof {(float)*npointxnum_stored) ; ,
lchirppoints=(int *)malloc(sizeof (float)*num_stored) ; '
ltc=(float *)malloc(sizeof (float)xnum.stored);

if (lchOtilde==NULL || lch90tilde==NULL || lchirppoints==NULL |] ltc==NULL) {
fprintf (stderr, "Node %$d on machine %s: could not malloc() memory!\n",
myid,processor_name) ;
abort () ;

}

/* now enter an infinite loop, waiting for new inputs */
while (1) {
/= listen for data, parameters from master */
MPE_Log-event (9, myid, "receiving. . .");
MPI_Recv(htilde, NPOINT+NPOIN'I‘/2+1 ,MPI_FLOAT, 0, MPI_ANY.TAG, MPI_COMM_WORLD, &status) ;
MPE_Log.event (10,myid, "received*);
printf("Slave %d (%s) got htilde (and noise spectrum) for segment %d \n*,
myid, processor.name, status .MPI_TAG) ;
fflush(stdout);

/= if this is a termination message, we are done! */
if (status.MPI_TAG==0) break;

/* compute signals x/
for (temp_no=0;temp_no<num.templates;temp_no++) {

chOtilde=1lchOtilde+npoint*temp.no*STORE_TEMPLATES;
ch90tilde=1ch90tilde+npoint*temp.no*STORE_TEMPLATES;
chirppoints=lchirppoints+temp no*STORE_TEMPLATES;
tc=ltc+temp noxSTORE.TEMPLATES;

/* Compute the template, and store it internally, if desired */
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if (completed!=num templates) {
/* manufacture two chirps (dimensionless strain at 1 Mpc distance) */
ml=template_list[2xtemp_no];
m2=template_list[2+temp.no+l];

MPE_Log-event (15, myid, "computing");
make_filters (ml,m2,chOtilde,ch90tilde,FLO,npoint,srate, chirppoints, tc,4000,4);
MPE_Log-event (16, myid, "computed”) ;

if (*chirppoints>longest.template) longestitemplate=sschirppoints;’

if (xchirppoints>CHIRPLEN) {
fprintf (stderx, "Chirp ml=%f m2=%f length %$d too long!\n",ml,m2,
*chirppoints);
fprintf (stderr, "Maximum allowed length is %d\n",CHIRPLEN) ;
fprintf (stderr, "Please recompile with larger CHIRPLEN valueln");
fflush(stderr) ;
abort();

}

~ /* normalize the chirp template */
/* normalization of next line comes from GRASP (5.6.3) and (5.6.4) =/
inverse_distance_scale=2.0xHSCALEx (TSOLAR*C_LIGHT/MPC) ;
for (i=0;i<xchirppoints;i++){
chOtilde[il*=inverse_distance_scale;
ch90tilde[i]*=inverse_distance_scale;

}

/= and FFT the chirps */

MPE_Log_event (17, myid, "starting £ft*);
realft (chOtilde~1,npoint,1);
MPE_Log.event (18, myid, "ending ££ft");
MPE_Log-event (17, myid, “starting fft");
realft (ch90tilde—1,npoint,1);
MPE._Log.event (18, myid, *ending fft");

if (STORE_TEMPLATES) completed++;

/* print out the length of the longest template */
if (completed==num_templates)
printf("Slave %d: templates completed. Longest is %d points\n*,
myid, longest_template);
fflush (stdout) ;
} /= done computing the template */

/* orthogonalize the chirps: we never modify chOtilde, only ch90tilde »/

MPE_Log.-event (21,myid, "starting");

orthonormalize (chOtilde,ch90tilde, twice.inv.noise,npoint,&nd,&n90);
MPE_Log_-event (22 ,myid, "done") ;

/x distance scale Mpc for SNR=1 %/
distance=sqgrt(1.0/(n0*n0)+1.0/(n%0%n%0)) ;

/* find the moment at which SNR is a maximum %/

MPE.Log.event (19,myid, "searching") ;

find.chirp(htilde,chOtilde,ch90tilde, twice_inv.noise,n0,n90, outputld, outputsl,
npoint, CHIRPLEN, &maxi, &snr_max, &1in0,&1in90, &var) ;

MPE_Log_event (20, myid, "done") ;
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/* identify when an impulse would have caused observed filter output */
impulseoff=(maxi+*chirppoints) $npoint;
timeoff=impulseoff/srate;

timestart=maxi/srate;

/* collect interesting signals to return =/
sig.-buffer(temp_ no*NSIGNALS]=snr._max;
sig-buffer[temp_no*NSIGNALS+1]=distance;
sig.buffer[temp.no*NSIGNALS+2]}=1in0;
sig.buffer[temp_noxNSIGNALS+3]=1in9%0;
sig_-buffer|temp no*NSIGNALS+4]=maxi;
sig_-buffer|temp no*NSIGNALS+5)=impulseocff;
sig_-buffer[temp noxNSIGNALS+6]=timeoff;
sig-buffer[temp_no*NSIGNALS+7]=timestart;
sig-buffer[temp no*NSIGNALS+8]=timestart+x*tc;
sig.-buffer[temp noxNSIGNALS+9]=var;

prob=0.0;
if (snrmax>5.0) {
MPE_Log-event (23 ,myid, "testing*);
varsplit=splitup.freg2 (1in0*n0/sqgrt(2.0),1in%0*n9%0/sqrt(2.0),chOtilde,
ch90tilde, 2.0/ (n0*n0) , twice_inv_noise,npoint,maxi, 8,
indices, stats, output0,htilde);
prob=gammg(4.0,4.0xvarsplit);
MPE_Log-_event (24 ,myid, "done”) ;

}

sig-buffer[temp.noxNSIGNALS+10]=prob;
} /xend of loop over the templates */

/* return signals to master %/

MPE_Log.event (7,myid, "send") ;

MPI_Send (sig -buffer, NSIGNALS*xnum_templates, MPI_FLOAT, 0, status.MPI_TAG, MPI_COMM_WORLD) ;
MPE_Log-event (8,myid, "sent");

} /* end of loop over the data */

/# both slaves and master exit here x/

printf("%s preparing to shut down (process %d)\n",processor_name,myid);
sprintf(logfile_name, "multifilter.%d.%d.log", numprocs, DATA_SEGMENTS) ;
MPE_Finish_log(logfile.name) ;

MPI_Finalize();

printf ("%$s shutting down (process %d)\n",processor_name,myid);

return 0;

}

/* This routine gets the data set, overlapping the data buffer as needed */
int get._calibrated._data() {
int i,code;

if (num_sent>=DATA_SEGMENTS)
return 0;

while (remain<needed) {
code=get_data (fpifo, fplock, &tstart, MIN_.INTO.LOCK*60*srate,
datas, &remain, &srate, 1) ;
if (code==0) return 0;
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/* Get the next needed samples of data x/

diff=npoint—needed;

code=get.data (fpifo, fplock, &tstart,needed, datas+diff, &remain, &srate,0);
datastart=tstart—diff/srate;

-
i
L /* copy integer data into floats */

for (i=0;i<npoint;i++) datali)=datas[il; ~
P © /% find the FFT of datax/
) realft (data—1,npoint,1);
- /* normalized delta-L/L tilde %/
product (htilde, data, response,npoint/2);
— /#* update the inverse of the auto-regressive-mean power-spectrum %/
\ avg-inv_spec (FLO, srate,npoint, decay, &norm, htilde, mean_pow._spec, twice_.inv_noise) ;

/* see if the data has any obvious outliers =/
i gauss_test=is_gaussian(datas,npoint,—2048,2047,0);

return 1;

} »
{
é - /= this function shifts data by CHIRPLEN points in buffer */
' void shiftdata() {
int i;

N

/* shift ends of buffer to the start */
needed=npoint—CHIRPLEN+1; )
ro for (i=0;i<CHIRPLEN-1;i++) datas[i]=datas[i+needed];

/* reset if not enough points remain to fill the buffer */
| if (remain<needed) needed=npoint;

return;
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5.43 Optimization and computation-speed considerations

The previous subsection describes the multifilter program, which filters data through a bank of tem-
plates. We have experimented with the optimization of this code on several platforms, and here recount
some of that experience.

The first comment is that the Numerical Recipes routine realft () is not as efficient as possible. In
order to produce a production version of the GRASP code, we suggest replacing this function with a more-
optimal version. For example, on the Intel Paragon, the CLASSPACK library provides optimized real-FFT
functions. To replace the realft () routine, we provide a replacement routine by the same name, which
calls the CLASSPACK library. This routine may be found in the src/optimization/paragon direc-
tory of GRASP. By including the object file for this routine in the linking path, before the Numerical Recipes
library, it replaces the realft () routine. (Note: GRASP currently contains optimized replacement rou-
tines for the FFT on SGI/Cray, Sun, Paragon and Intel Linux machines; see the src/optimization/*
directories of GRASP).

The second comment is related to inspiral-chirp template generation. The binary inspiral chirps may be
saved in the multifilter program, but one is then limited by the available memory space, as well as incurring
the overhead of frequent disk accesses if that memory space is swapped onto and off the disk. To avoid
this, it is attractive to generate templates “on the fly”, then dispose of them after each segment of data is
analyzed. This corresponds to setting STORE.TEMPLATES to 0 inmultifilter. In this instance, the
computational cost of computing binary chirp templates may become quite high, relative to the cost of the
remaining computation (FFT’s, orthogonalization, searching for the maximum SNR).

To cite a specific example, on the Intel Paragon, we found that the template generation was almost a
factor of ten more time-consuming than the rest of the searching procedure. Some profiling revealed that
the two culprits were the cube-root operation and the calculations of sines and cosines. Because the floating
point hardware on the Paragon only does add, subtract and multiply, these operations required expensive
library calls. In both cases, a small amount of work serves to eliminate most of this computation time.
In the case of the cube root function, we have provided (through an ifdef INLINE_CUBEROOT in the
code) an inline computation of cuberoot in 15 FLOPS, which only uses add, subtract and multiply. This
routine shifts  into the range from 1 — 2, then uses a fifth-order Chebyshev approximation of 2~%/% then
make one pass of Newton-Raphson to clean up to float precision, and returns £l/3 = £72/3z. In the case
of the trig functions we have provided (through an 1fdef INLINE_TRIGS in the code) inline routines to
calculate the sine and cosine as well.After reducing the range of the argument to z € [—, 7], these use a 6th
order Chebyshev polynomial to approximate the sine and cosine. These techniques speed up the template
generation to the point where it is approximately as expensive as the remaining computations. While there
is some small loss of computational accuracy, we have not found it to be significant. Shown in Figure 42 is
a timing diagram illustrating the relative computational costs of these operations.
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Figure 42: This shows the performance of an “on the fly” template search on the Intel Paragon, with dif-
ferent levels of optimization. The top diagram uses the Numerical Recipes FFT routine realft (), and
takes about 4.2 seconds to process 6 seconds of data. The middle diagram shows identical code using the
CLASSPACK optimized FFT routine, and takes about 2.1 seconds. Note that the template generation process
is now becoming expensive. The bottom diagram shows identical code which includes inline functions for
cube-root and sine/cosine functions to speed up the template generation process. The template generation
takes about 325 msec, and the entire search procedure (including template generation) takes 780 msec per
template per processor per 6-second streich of data. Relative to the top diagram, this represents a speed-up
factor of more than 5. Running on 256 nodes, it is possible to filter 5 hours of data through 66 templates
(representing the mass range from 1.2 to 1.6 solar masses) in 5x3600x66x(0.780)/(256x6) seconds = 10.1
minutes.
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6 GRASP Routines: Black hole ringdown

Stellar-sized black hole binaries are an important source of gravitational radiation for ground-based inter-
ferometric detectors. The radiation arises from three phases: the inspiral of the two black hole companions,
the merger of these two companions to form a single black hole, and the ringdown of this initially distorted
black hole to become a stationary Kerr black hole. The gravitational radiation of the black hole inspiral has
been discussed in section 5; calculations of the late stages of inspiral, the merger, and the early stages of the
- ringdown have not yet been completed; the radiation produced in the late stages of black hole ringdown is
the topic of this section.

At late times, the distorted black hole will be sufficiently “similar to” a stationary Kerr black hole that
the distortion can be expanded in terms of “resonant modes” of the Kerr black hole. By “resonant modes”
we refer to the eigenfunctions of the Teukolsky equation—which describes linear perturbations of the Kerr
spacetime—with boundary conditions corresponding to purely ingoing radiation at the event horizon and
purely outgoing radiation at large distances. These resonant modes are also called the quasinormal modes;
they are described in the next subsection.
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6.1 Quasinormal modes of black holes

Gravitational perturbations of the curvature of Kerr black holes can be described by two components of
the Weyl tensor: ¥y and ¥4. Because these are components of the curvature tensor, they have dimensions
of [L~2). Of particular interest is the quantity ¥4 since it is this term that is suitable for the study of
outgoing waves in the radiative zone. The formalism for the study of perturbations of rotating black holes
was developed originally by Teukolsky [18] who was able to separate the differential equation to obtain

(r—ipa)* Wy = ™ Y Rom (F) 2Sem(u)e™ (611

where _o Ry, (7) is a solution to a radial differential equation, and —5Spm (1) is a spin-weighted spheroidal
wave function (see [18], equations (4.9) and (4.10)). The black hole has mass M and specific angular
momentum a = cJ /M (which has dimensions of length) where J is the angular momentum of the spinning
black hole. We shall often refer to the dimensionless angular momentum parameter, & = c2a/GM =
SJ /GM 2. For a Kerr black hole, & must be between zero (Schwarzschild limit) and one (extreme Kerr
limit). The observer of the perturbation is located at radius r, inclination p = cost, and azimuth § (see
figure 43). The perturbation itself has the spheroidal eigenvalues £ and m, and has a (complex) frequency w.
The constants G and ¢ are Newton’s gravitational constant and the speed of light.

to observer

spin axis

black hole

axis of \__/\

perturbation B

Figure 43: The polar angle, ¢, and the azimuthal angle, 3, of the observer relative to the spin axis of a black
hole and the (somewhat arbitrary) axis of perturbation.

The important physical quantities for the study of the gravitational waves arising from black hole per-
turbations can be recovered from the field ¥,. In particular, the “+” and “x” polarizations of the strain
induced by the gravity waves are found by {18]

2c?
|w]?

hy —thy = Wy . (6.1.2)
The quantity h, = h;; is the metric perturbation that represents the linear polarization state along e; and e L
while the quantity hy = h,; represents the linear polarization state along e; + e5. The power radiated
towards the observer (per unit solid angle) is

A’E cr?

—— = lim — 2. 1.3
didQy 1o 47 Glw|? 4] 6.13)
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Thus, in order to compute the relevant information about gravitational waves emitted as perturbations to
rotating black hole spacetimes, one needs to calculate the value of ¥, at large radii from the black hole.

The quasinormal modes are resonant modes of the Teukolsky equation that describe purely outgoing
radiation in the wave-zone and purely ingoing radiation at the event horizon. The quasi-normal modes are
described by a spectrum of complex eigenvalues (which include the spectrum of eigenfrequencies wy), and
eigenfunctions _o R (7) and —2Spm (1) for each value spheroidal mode £ and m. These eigenvalues and
functions also depend on the mass and angular momentum of the black hole. We shall only consider the
fundamental (n = 0) mode since the harmonics of this mode have shorter lifetimes. For the same reason,
we are most interested in the quadrupole (£ = 2 and m = 2) mode. The observer is assumed to be at a large
distance; in this case, one can approximate the perturbation as follows:

A .
Wy~ = e'Wt'et_gsem(y)ezmﬁ. 6.1.9)

Here tye; = t — 7*/c represents the retarded time, where r* is a “tortoise” radial parameter. For large radii,
the tortoise radius behaves as r — . log(r /r;) where r is the “radius” of the black hole event horizon.
Thus, we see that the tortoise radius is nearly equal to the distance of the objects surrounding the black hole,
and we shall view it as the “distance to the black hole.” The parameter A represents the amplitude of the-
perturbation, which has the dimensions of [L™1].

Given the asymptotic form of the perturbation in equation 6.1.4, we can integrate equation 6.1.3 over - the
entire sphere and the interval t.e; € [0, 00) to obtain an expression for the total energy radiated in terms of
the amplitude A of the perturbation. Thus, we can characterize the amplitude by the total amount of energy
emitted: A2 = 4G¢™7 E|w]?(—Imw). The gravitational waveform is found to be

) dc [ —Imw\ Y2 (GE\'? _, ;
h+ - ’th ~ —T(W> (——cs—) € Ithet_QSZm(/,L)Clmﬁ. (615)

In order to simulate the quasinormal ringing of a black hole, it is necessary to determine the complex
eigenvalues of the desired mode, and then to compute the spheroidal wave function Sem (). The routines to
perform these computations are discussed in the following sections.

Rather than computing the actual gravitational strain waveforms at the detector, the routines will calcu-
late the quantity Hy —iHy = (c?r/GMpg)(hs —ihx); the normalization of these waveforms to the correct
source distance is left to the calling routine. The distance normalization can be computed as follows:

C2T T T T
= = = 2.09 1019<-——). 6.1.6
GMg ~ Toc (1.4766km> 090 x Mpc (6.1.6)

where T = 4.925491 us is the mass of the sun expressed in seconds (see equation 5.0.2). It will be
convenient to write the time dependence of the strain as the complex function H(Urer) so that Hy —iHy =
H(Uret) —eSeg(p )]?88. The dimensionless eigenfrequency, @ = GMw /c3, depends only on the mode and
the dimensionless angular momentum of the black hole. In terms of this quantity, the function H(Uret) is

H(Uree) ~ —2e1€E IIT;T)” 2 < A’:‘@) exp {—)w(u};> (ﬁ%) _w} 6.1.7)

where ¢ is the fractional mass loss due to the radiation in the excited quasinormal mode.
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6.2 Function: gn_eigenvalues()

void gn_eigenvalues(float eigenvalues([], float a, int s, int 1, int m)

This routine computes the eigenvalues associated with the spheroidal and radial wave functions for a speci-
fied quasinormal mode. The arguments are:

eigenvalues: Output. An array, eigenvalues([0..3], which contains, on output, the real and
imaginary parts of the eigenvalues & and A (see below) as follows: eigenvalues(0] = Rew,
eigenvalues[1] =Im®, eigenvalues[2] = ReA, and eigenvalues (3] = ImA.

a: Input. The dimensionless angular momentum parameter of the Kerr black hole, |4| < 1, which is
negative if the black hole is spinning clockwise about the ¢ = 0 axis (see figure 43).

s: Input. The integer-valued spin-weight s, which should be set to 0 for a scalar perturbation (e.g., a scalar
field perturbation), %1 for a vector perturbation (e.g., an electromagnetic field perturbation), or £2
for a spin two perturbation (e.g., a gravitational perturbation).

1: Input. The mode integer 1 > |s|.

m: Input. The mode integer |m| < 1.

For a Kerr black hole of a given dimensionless angular momentum parameter, &, with a perturbation
of spin-weight s and mode £ and m, there is a spectrum of quasinormal modes which are specified by the
eigenvalues &, and A,. As discussed in the previous subsection, the eigenvalue w,, is associated with the
separation of the time dependence of the perturbation, and it specifies the frequency and damping time of
the radiation from the perturbation. The additional complex eigenvalue Ay, results from the separation of the
radial and azimuthal dependence into the spheroidal and radial wave functions. Both of these eigenvalues
will be necessary for the computation of the spheroidal wave function (below).

The routine qn_eigenvalues () can be used to compute the eigenvalues of the fundamental (n = 0)
mode. To convert the dimensionless eigenvalue & to the (complex) frequency of the ringdown of a Kerr
black hole of mass M, one simply computes w = c3w/GM. The eigenfrequency is computed using the
method of Leaver [15). Note that Leaver adopts units in which 2M = 1, so one finds that & = %wLem,
and & = 2ay...., in our notation. The eigenvalues satisfy the following symmetry: if pm = —10, and Ap,
are the eigenvalues for an azimuthal index m, then p_, = py,, and A_p, = Ay, are the eigenvalues for the
azimuthal index —m.

Author: Jolien Creighton, jolien@tapir.caltech.edu

Comment: For simplicity, we require that the spin-weight number, s, be an integer. Thus, the spinor
perturbations o and x;, associated with s = i% respectively [18], are not allowed.
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6.3 Example: eigenvalues program

This example uses the function gn_eigenvalues () to compute the eigenvalues s@em and s Agr, for the
s spin-weighted quasinormal mode specified by £ and m, and for a range of values of the dimensionless
angular momentum parameter, &. To invoke the program, type:

eigenvaluessim

for the desired (integer) values of s, £, and m. Make sure that £ > |s| and 0 < m < /£ (the eigenvalues for
negative values of m can be inferred from the symmetries discussed in subsection 6.2). The output of the
program is five columns of data: the first column is the value of & running from just greater than —1 to just
less than 1 (or between 0 and 1 if m = 0), the second and third columns are the real and imaginary parts
of the eigenfrequency &, and the fourth and fifth columns are the real and imaginary parts of the angular
separation eigenvalue A. For the values of § < 0, the eigenvalues correspond to the mode with azimuthal
index —m so that the real part of the eigenfrequency is positive. A plot of the eigenfrequency output of the
program eigenvalues for several runs with s = —2 is shown in figure 44, The blue curves in figure 44
can be compared to figure 5 of reference [16] keeping in mind the conversion factors between Leaver’s
convention (which is also used in [16]) and the convention used here (see subsection 6.2).

-0.10 . . - ;
-0.09 + 1
L
:_?Z: -0.08 | 1
-0.07 |
0983 o4 o6 o8 _ﬁ

Re(o)

Figure 44: The real and imaginary parts of the eigenfrequencies, w, as computed by the program
eigenvalues with s = —2. Each curve corresponds to a range of values of 4 from —0.9 (left) to +0.9
(right) for a single mode £ and |m|. The open circles are placed at the values & = —0.9, —0.6, —0.3, 0,
+0.3, +0.6, and 0.9 except when m = 0 in which case there are no negative values of 4 plotted. The blue
curves correspond to the £ = 2 modes and the red curves correspond to the £ = 3 modes.
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/* GRASP: Copyright 1997, Bruce Allen */
#include *grasp.h"

main(int argc,const char xargvi])
{

float a,da=0.1,eigen(4];

int s,1,m;

/* process the command line arguments */
if (arge==4) { /# correct number of arguments */
s = atoi(argv(1l]);
1 = atoi(argv([2]);
m = atoi(argv(3]);
} else { /xincorrect number of arguments */ ‘
fprintf (stderr, "usage: gn_eigen_values s 1 m\n"):;
return 1;

}

/* scan through the range of a */
for (a=l-da;a>-1;a-=da) {
/* compute the eigenvalues x/
if (a<0) {
if (m==0) break;
an-eigenvalues (eigen,a,s,1l, —m);
} else {
gn-eigenvalues(eigen,a,s,1l,m);
}
/= print the eigenvalues x/
printf ("$SENERENLBENLSENLSE\n",a,eigen[0],eigen([l],eigen(2]. .eigenl[3]);

}

return 0;

Author: Jolien Creighton, jolien@tapir.caltech.edu
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6.4 Function: sw_spheroid()

void sw_spheroid(float *re, float *im, float mu, int reset,
’ float a, int s, int 1, int m, float eigenvalues(])

This routine computes the spin-weighted spheroidal wave function ;Sgm,(1). The arguments are:
re: Output. The real part of the spin-weighted spheroidal wave function.
im: Output. The imaginary part of the spin-weighted spheroidal wave function.

mu: Input. The independent variable, i = cos ¢ with ¢ being a polar angle, of the spin-weighted spheroidal
wave function; —1 < mu < 1.

reset: Input. A flag that indicates that the function should reset (reset = 1) the internally stored
normalization of the spin-weighted spheroidal wave function. The reset flag should be set if any of
the following five arguments are changed between calls; otherwise, set reset = 0 so that the routine
does not recompute the normalization.

a: Input. The dimensionless angular momentum parameter, —1 < a < 1, of the Kerr black hole for which
the spin-weighted spheroidal wave function is associated. ’

s: Input. The integer-valued spin-weight s, which should be set to O for a scalar perturbation (e.g., a scalar
field perturbation), £1 for a vector perturbation (e.g., an electromagnetic field perturbation), or +2
for a spin two perturbation (e.g., a gravitational perturbation).

1: Input. The mode integer 1 > |s|.
m: Input. The mode integer jm| < 1.

eigenvalues: Input. An array, eigenvalues[0..3], which contains the real and imaginary parts
of the eigenvalues & and A (see below) as follows: eigenvalues[0] = Rew, eigenvalues[1]
Im®, eigenvalues[2] = ReA, and eigenvalues[3] = Im A. These may be calculated for
a quasinormal mode using the routine gn_eigenvalues ().

The spin-weighted spheroidal wave function is also computed using the method of Leaver [15]. We
have adopted the following normalization criteria for the spin-weighted spheroidal wave functions Sem (1)
First, the angle-averaged value of the squared modulus of Sgm, () is unity: [, |sSem(1)|2dp = 1. Second,
the complex phase is partially fixed by the requirement that ;S¢,(0) is real. Finally, the sign is set to be
(—)é‘max(m’s) for the real part in the limit that u — —1 in order to agree with the sign of the spin-weighted

spherical harmonics ¢Yp, (1, 0) (see [14]).
It is sufficient to compute the spin-weighted spheroidal wave functions with s < 0 and aw = aw > 0
because of the following symmetries [17]:

_Sng(u,aw) = Sng(—/,L, aw) with _SEgm(aw) = SEgm(aw) (6.4.1)

and
sSem(pt, —aw) = §Sp —m(—p,aw) with  Egp(—aw) = sEg _m(aw) (6.4.2)

where sEpm = sApm + (s + 1).

Author: Jolien Creighton, jolien@tapir.caltech.edu
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6.5 Example: spherical program

The program spherical is an example implementation of the routine sw_spheroid () to compute
the standard spin-weighted spherical harmonics [14]. The program also computes these functions using
equation (3.1) of [14] for comparison. According to the normalization convention stated in subsection 6.4,
the relationship between the spin-weighted spheroidal harmonics and the spin-weighted spherical harmonics

182
 o¥em(6,6) = (2m) /2 Sym(cos )™

withaw =0and A = ({ —s)(£+ s +1).
To invoke the program, type:

sphericalsfm

for the desired (integer) values of s, £, and m (¢ > |s| and |m| < £). The output is three columns of
data: the first column is the independent variable p between —1 and +1, the second column is the value
of (2m)~Y2,8,, (1), and the third column is the value of (Y, (u,0) as computed from equation (3.1)
of [14]. A comparison of the results produced by the program spherical for £ = m = —s = 2 with the
exact values of _oY50(u,0) = (5/64%)1/2(1 + 11)? is shown in table 9.

BCERN

| » Goldberg sw_spheroid () exact |
—0.99 1.576955 x 10~° 1.576955 x 10~>  1.576958 x 10>
—0.95 3.942387 x 107% 3.942387 x 10™*  3.942395 x 10~
—0.75 9.855968 x 10™%  9.855967 x 10~  9.855986 x 10~3
—0.55 3.193334 x 1072 3.193333 x 10~2  3.193340 x 102
—0.35 6.662639 x 1072  6.662639 x 10~2  6.663647 x 102
—0.15 1.139351 x 10! 1.139351 x 10~! 1.139352 x 10!
+0.15 2.085525 x 10~ 2.085525 x 10~1  2.085527 x 10~}
+0.35 2.874004 x 10~  2.874005 x 10~!  2.874006 x 10~1
+0.55 3.788640 x 10~! 3.788639 x 10~!  3.788641 x 107!
+0.75 4.820430 x 10!  4.829430 x 10™!  4.829433 x 107!
+0.95 5.996378 x 10~!  5.996379 x 10!  5.996382 x 1071
+0.99 6.244906 x 10!  6.244906 x 10~1  6.244911 x 10!

Table 9: A comparison of the values of the spin-weighted spherical harmonic _Y22(u,0) calculated by
equation (3.1) of Goldberg [14], the values of (2)~1/2_,859 (1) using routine sw_spheroid (), and the
values of the exact result (5/64m)'/2(1 + 1)2. The three methods give excellent agreement.
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/* GRASP: Copyright 1997, Bruce Allen */
#include "grasp.h"

#define TWOPI 6.28318530718

#define FOURPI 12.5663706144

static int imaxargl, imaxarg2;

#define IMAX(a,b) (imaxargl=(a),imaxarg2=(b), (imaxargl) > (imaxarg2) ?\
(imaxargl) : (imaxarg2))

static int iminargl,iminarg2;

#define IMIN(a,b) (iminargl=(a),iminarg2=(b), (iminargl) < (iminarg2) ?\
(iminargl) : (iminarg2))

float sw_spherical(float mu, int s, int 1, int m)
/* Computes the spin-weighted spherical harmonic (with phi=0) using
equation (3.1) of Goldberg et al (1967). */

float factrl(int);
float bico(int, int);
float sum, coef,x;
int sign,r,rmin,rmax;

if (mu==-1.0) {
fprintf (stderr, "error in sw_spherical(): division by zero");
return 0;

} else {
x = (1 + mu)/(1 — mu);

}

coef = factrl(l+m)xfactrl(l-m)=*(2x1+1)/(factrl(l—-s)*factrl(l+s)*FOURPI);

rnin = IMAX(0,m-s);
rmax = IMIN(l-—s,l+m);
sum = 0;
for (r=rmin;r<=rmax;r++) {
({((l-r+s)%2)==0) ? (sign = 1) : (sign = -1);

sum += sign*bico{l—s,r)*bico(l+s,r+s—m)+*pow(x,0.5%(2*xxr+s—m});

}

sum *= sqgrt{coef)*pow(0.5%(1-mu),1l);

return sum;

main(int argec, char xargv[])

{
float Sre,Sim,Y,norm=1.0/sqrt(TWOPI),mu=0,dmu=0.02;
float eigenvalues|[4];
int s,1,m;

/* process arguments */
if (argc==4) { /= correct number of arguments %/
s = atoi(argv([l]):
1 atoi(argv([21);
m = atoif{argv([3]);
} else { /incorrect number of arguments */
fprintf (stderr, "usage: spherical s 1 m\n");
return 1;

}

/* set the eigenvalues to produce spin-weighted spherical harmonics */

188




eigenvalues(l] = eigenvalues([3] = 0;
(1 — s)*x(l + s + 1);

eigenvalues([0]
eigenvalues([2]

/* reset the normalization */
sw_spheroid (&Sre, &Sim,mu,1,0.0,s,1,m, eigenvalues) ;

for (mu=-—1+0.5xdmu;mu<l;mu+=dmu) {
/* compute the spin-weighted spheroidal harmonic */
sw_spheroid(&Sre,&Sim,mu,0,0.0,s,1/m, eigenvalues) ;
/* compute the spin-weighted spherical harmonic */
Y = sw_spherical(mu,s,l,m); 7
/= print results with correct normalization for the spheroidal harmonic */
printf (“$e\t%e\t%e\n", mu, norm«Sre,Y);

}

return O;

Author: Jolien Creighton, jolien@tapir.caltech.edu
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6.6 Example: spheroid program

This is a second implementation of the function sw_spheroid() which is used to compute the spin-
weighted spheroidal wave function associated with a quasinormal ringdown mode of a Kerr black hole with
a certain (specified in the code) dimensionless angular momentum parameter. To invoke the program, type:

spheroidsim

for the desired (integer) values of s, £, and m (£ > |s| and {m/| < £) of the desired mode. The output is three
columns of data: the first column is the independent variable i between ~1 and +1, the second column is
the value of the real part of ;S¢n(u), and the third column is the value of the imaginary part of sSem(u).
Figure 45 depicts the output for the spin-weighted spheroidal wave function _2S22().
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Figure 45: A plot of the real and imaginary parts of the £ = m = —s = 2 spin-weighted spheroidal wave

function, _o.S2(u), associated with a black hole with dimensionless angular momentum parameter 4 =
0.98. The imaginary part is scaled by a factor of ten.
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/* GRASP: Copyright 1997, Bruce Allen */
#include "grasp.h"
#define SPIN 0.98 /* the dimensionless angular momentum parameter /

main(int argc, char xargv(])
{
float re, im,mu=Qfd;nu=0 .02, a=SPIN; ,
float eigenvalues{4];
int s,1,m;

/* process arguments */
if (argc==4) { /xcorrect number of arguments */
s = atoi(argv[l]);
1 = atoi(argvi2]);
m = atoi(argv(3]);
} else { /xincorrect number of arguments */
fprintf (stderr, "usage: spheroid s 1 m\n");
return 1;

}

/* get the eigenvalues for the appropriate quasinormal mode * /
an.eigenvalues (eigenvalues,a,s,l,m);

/* reset the normalization */
sw_spheroid(&re,&im,mu,1,a,s,1l,m, eigenvalues);

for (mu=-1+0.5%dmu;mu<l;mu+=dmu) {
/* compute the spin-weighted spheroidal harmonic */
sw.spheroid(&re,&im,mu,0,0.0,s,1,m, eigenvalues) ;
/* print results =/
printf("%e\t%e\t%e\n",mu,re,im);

}

return 0;

Author: Jolien Creighton, jolien @tapir.caltech.edu
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6.7 Function: qn_ring()

int gqn_ring(float iota, float beta,
float eps, float M, flcat a, int 1, int m,
float dt, float atten, int max,
float **plusPtr, float **crossPtr)

This routine is used to compute the “+” and “x” polarizations of the gravitational waveform, H (fret),
produced by a black hole ringdown at a distance GM/c? = Tgc ~ 1.4766 km. To obtain the waveforms
at a distance 7, multiply the result by GMg /c?r = Tc/r. The arguments are:

iota: Input. The polar angle (inclination), ¢ (in radians), of the sky position of the observer with respect
to the (positive) spin axis of the black hole, 0 < iota < .

beta: Input. The azimuth, 8 (in radians), of the sky position of the observer with respect to the axis of
the perturbation at the start time. (0 < beta < 27.)

eps: Input. The fraction of the total mass lost in gravitational radiation from the particular mode. (0 <
eps K 1))

M: Input. The mass of the black hole in solar masses.

a: Input. The dimensionless angular momentum parameter of the Kerr black hole, |a| < 1, which is
negative if the black hole is spinning clockwise about the « = 0 axis (see figure 43).

1: Input. The mode integer £. (1 > 2)
m: Input. The mode integer m. (jm| < 1)
dt: Input. The time interval, in seconds, between successive data points in the returned waveforms.

atten: Input. The attenuation level, in dB, at which the routine will terminate calculation of the wave-
forms. Le., the routine will terminate when the amplitude, A = Agexp(—Imwt,et), falls below the
level Acutot = Ao alog;o(—0.1 x atten).

max: Input. The maximum number of data points to be returned in the waveforms.

plusPtr: Input/Output. A pointer to an array which, on return, contains the waveform A sampled at
intervals dt. If the array has the value NULL on input, the routine allocates an amount of memory to
*plusPtr to hold max elements.

crossPtr: Input/Output. A pointer to an array which, on return, contains the waveform Hy sampled at
intervals dt. If the array has the value NULL on input, the routine allocates an amount of memory to
*crossPtr to hold max elements.

The routine gqn_ring () returns the number of data points that were written to the arrays (*plusPtxr) []
and (*crossPtr) []; this is either the number specified by the input parameter max or the number of
points computed when the waveform was attenuated by the threshold atten. The eigenvalues are ob-
tained from the function qn_eigenvalues (). The waveform is then computed using H; — tHy =
H(uret)_ESgﬁ(u)])ﬁﬁ with H(Uiret) given by equation (6.1.7). The spheroidal wave function is obtained
from the function sw_spheroid ().

Author: Jolien Creighton, jolien @tapir.caltech.edu
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6.8 Example: ringdown program

This example uses the function gn.ring () to compute the black hole quasinormal ringdown waveform
for a preset mode and inclination. The waveform as a function of time is written to standard output in three
columns: the time, the plus polarization, and the cross polarization. A Plot of the quasinormal ringdown
waveform data is shown in figure 46.

20 v T T

— plus

_20 . ] L I} 1
0 10 20 30

time {ms)

Figure 46: A plot of the plus and cross polarizations of the gravitational wave strain, at a (unphysical!)
distance GMg/c? = Tc ~ 1.4766 km, for the fundamental £ = m = 2 mode of a black hole with mass
M = 50Mg, dimensionless angular momentum parameter 0.98, and fractional mass loss € = 0.03, with
inclination and azimuth ; = 0 and 8 = 0. The data was produced by the program ringdown.
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/* GRASP: Copyright 1997, Bruce Allen %/

#include “grasp.h"

#define IOTA 0.0 /* inclination (radians) */
#define BETA 0.0 /* azimuth (radians) =/
#define EPS 0.03 /* fractional mass loss */
#define MASS 50.0 /* mass (solar masses) %/
#define SPIN 0.98 /* specific angular momentum s/
#define MODE.L 2 /* mode integer | */

#define MODE._M 2 /* mode integer m */

#define SRATE 16000.0 /+ sampling rate (Hz) =/
#define ATTEN 20.0 /* attenuation leven (dB) */
#define MAX 1024 /+ max number of points in waveform */
main ()

{

float *plus,*cross,t,dt=1/SRATE;
int i,n;

/* set arrays to NULL so that memory is allocated in called routines * /
plus = cross = NULL;

/* generate the waveform function data %/
n = gn.ring(IOTA, BETA,EPS,MASS, SPIN, MODE.L, MODE.}M, dt,ATTEN, MAX, &plus, &cross) ;

/* output the data =/
for (i=0,t=0;i<n;i++,t+=dt) printf ("%e\t%e\t%e\n", t,plus [i],cross(il);

return 0;

Author: Jolien Creighton, jolien @tapir.caltech.edu

194

bt




6.9 Function: qn_gring()

int gqn_gring(float psiO, float eps, float M, float a,
float dt, float atten, int max, float **strainPtr)

The routine gn_gring () is a quick ringdown generator which constructs a damped sinusoid with a fre-
quency and quality approximately equal to that of the £ = m = 2 quasinormal mode of a Kerr black
I hole and an amplitude approximately equal to angle-averaged strain expected for black hole radiation at
e a distance GMg/c® = Tpe ~ 1.4766km. To obtain the waveforms at a distance r, multiply the result
by GM¢,/c*r = Tgc/r. The arguments to the routine are:

| psi0: Input. The initial phase (in radians) of the waveform (see below).
eps: Input. The fractional mass loss in quadrupolar (¢ = m = 2) radiation. (0 < eps < 1.)
> M: Input. The mass of the black hole in solar masses.

; a: Input. The dimensionless angular momentum parameter of the Kerr black hole, |&¢| < 1, which is
negative if the black hole is spinning clockwise about the « = 0 axis (see figure 43).

dt: Input. The time interval, in seconds, between successive data points in the returned waveform.

atten: Input: The attenuation level, in dB, at which the routine will terminate calculation of the wave-
forms. '

" max: Input. The maximum number of data points to be returned in the waveforms.

strainPtr: Input/Output. A pointer to an array which, on return, contains the angle-averaged waveform
sampled at intervals dt. If the array has the value NULL on input, the routine allocates an amount of
memory to *strainPtr to hold max elements.

The routine gn_ring () returns the number of data points that were written to the array (*strainPtx) [];
this is either the number specified by the input parameter max or the number of points computed when the
waveform was attenuated by the threshold atten. The array contains the angle averaged waveform

Have(tret) = —\;_S-Re [H(uret)])w’L (6.9.1)
o where H(Uret) is given by equation (6.1.7), sampled at time intervals dt. The constant 1 defines the initial
; phase of the waveform. The amplitude factor is set by the following argument: The gravitational strain (at a
distance GMg/c? = Tpe ~ 1.4766 km) that would be observed by an interferometer is given by H (tret) =
F.(0,0,0)Hy(tret, L, B) + Fx (8,6, %)Hx (tret, t, ) where F and Fy represent the antenna patterns of
the interferometer. When averaged over 6, ¢, and <, one finds (F2) = (F2) = £ and (F, Fy) = 0. Thus,

(Hz(tret)>9,¢,¢,L,ﬁ = %(H—%-(trety L B) + H>2< (treh L, ﬁ))b,ﬁ
= %(I(HT —in)(tret:L75)l2>L,ﬁ
= 15IH(Urer)|®
~ HZ, (6.9.2)

ave

o where the overbar indicates a time average over a single cycle; approximate equality becomes exact in
‘ the limit of & high quality ringdown. It is in this sense that the quantity Have(tret) can be viewed as an
angle-averaged waveform.
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Rather than compute the eigenfrequency using the routine gn_eigenvalues (), this routine uses the
analytic fits to the eigenfrequency found by Echeverria [13]. These expressions are:

& =~ f(a)(1 - 3i9(a)) (6.9.3)

with
Ff@ = 1-0.63(1—a)’0° (6.9.4)
9@ = (1-a)¥%. (6.9.5)

Author: Jolien Creighton, jolien @tapir.caltech.edu

Comments: Since this routine does not need to compute the spheroidal wave function and uses an analytic
approximation to the eigenfrequency, it is much simpler than the routine gn_ring (). The approxi-
mate eigenfrequencies are typically accurate to within ~ 5%, so this routine is to be preferred when
computing quadrupolar (¢ = m = 2) quasinormal waveforms unless accuracy is critical.
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6.10 Function: gqn_filter ()

int gn_filter(float freq, float qual,
float dt, float atten, int max, float **filterPtr)

Quasinormal ringdown waveforms are characterized by two parameters: the central frequency of the wave-
form, and the guality of the waveform. The parameter space is most easily described in terms of these
variables (rather than the mass and the angular momentum of the corresponding black hole), so it is useful

‘to construct filters for quasinormal ringdown waveform searches in terms of the frequency and quality of the

waveform. This routine constructs such a filter, with a specified frequency and quality. The routine returns
the number of filter elements computed before a specified attenuation level was reached. The arguments are:

freq: Input. The central frequency, in Hertz, of the ringdown filter.
qual: Input. The quality of the ringdown filter.
dt: Input. The time interval, in seconds, between successive data points in the returned waveform.

atten: Input: The attenuation level, in dB, at which the routine will terminaté calculation of the wave-
forms. '

max: Input. The maximum number of data points to be returned in the waveforms.

filterPtr: Input/Output. A pointer to an array which, on return, contains the filter sampled at inter-
vals dt. If the array has the value NULL on input, the routine allocates an amount of memory to
*filterPtr to hold max elements.

The constructed filter, g(t), is the function
q(t) = e~ "t Q cos(27 ft) (6.10.1)

where f is the central frequency and Q is the quality. The routine qn-filter () performs no normal-
ization, nor does it account for different possible starting phases. The latter is not important for detection
template construction. Normalization is achieved using the function annormalize (), whichis described

later.

Author: Jolien Creighton, jolien@tapir.caltech.edu
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6.11 Function: gn_normalize ()

void gn_normalize(float *u, float *q, float *r, int n, float *norm)

Given a filter, ¢(f), and twice the inverse power spectrum, r(f), this routine generates a normalized tem-
plate 4(f) for which 1 = (N?) — %correlate( ....u,u,r,n). The arguments are:

u: Output. The array u[0..n~1] contains the positive frequency part of the complex template func-
-tion 4( f), packed as described in the Numerical Recipes routine realft (). -

q: Input. The array gq[0. .n~1] contains the positive frequency part of the complex filter function ¢(f),
also packed as described in the Numerical Recipes routine realft ().

r: Input. The array r[0..n/2] contains the values of the real function r(f) = 2/Sx(|f]) used as a
weight in the normalization. The array elements are arranged in order of increasing frequency from
the DC component at subscript 0 to the Nyquist frequency at subscript n/2.

n: Input. The total length of the arrays u and q. Must be even.
norm: Output. The normalization constant, ¢, defined below.

Given a filter, ¢(t), this routine computes a template, u(t) = ag(t), which is normalized so that (u, u) =
2, where (-, -) is the inner product defined by equation (5.14.9). Thus, the normalization constant is given

by
1 1
— =(q,q). 11,
o2 =359 (6.11.1)

Author: Jolien Creighton, jolien @tapir.caltech.edu
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6.12 Function: £ind ring()

void find_ring(float *h, float *u, float *r, float *o,
int n, int len, int safe, int *off,
float *snr, float *mean, float *var)

This optimally filters the strain data using an input template and then finds the time at which the SNR peaks.
The arguments are:

h: Input. T};e FFT o% the strain data i—z(f)

u: Input. The normalized template % (f).

r: Input. Twice the inverse power spectrum 2/Sy (| f])-
o: Output. Upon return, contains the filter output.

n: Input. Defines the lengths of the arrays h{0. .n-1],u[0..n-1],0[0. .n-1],and r{0..n/2].

len: Input. The number of time domain bins for which the filter u(t) is non-zero. Needed in order to
eliminate the wrap-around ambiguity described in subsection 5.18.

safe: Input. The additional number of time domain bins to use as a safety margin. This number of
points are ignored at the beginning of the filter output and, along with the number of points len, at
the ending of the filter output. Needed in order to eliminate the wrap-around ambiguity described in
subsection 5.18.

of £: Output. The offset, in the range safe ton-len-safe-1,for which the filter output is a maximum.
snr: Output. The maximum SNR in the domain specified above.
mean: Output. The mean value of the filter output over the domain specified above.

var: Output. The variance of the filter output over the domain specified above. Would be unity if the input
to the filter were Gaussian noise with a spectrum defined by Sj.

Author: Jolien Creighton, jolien @tapir.caltech.edu
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6.13 Function: gn_inject ()

void gn_inject(float *strain, float *signal, float *response, float *work,
float invMpc, int off, int n, int len)

This routine injects a signal s(t), normalized to a specified distance, into the strain data h(t), with some
specified time offset. The arguments to the routine are:

strain: Input/Output. The array strain[0..n-1] containing the strain data on input, and the strain
data plus the input signal on output.

signal: Input. The array signal [0. . len-1] containing the signal, in strain units at 1 Mpc distance,
to be input into the strain data stream.

response: Input. The array response [0. .n+1] containing the response function R(f) of the IFO.
work: Output. A working array work [0. .n-1].

invMpc: Input. The inverse distance of the system, measured in 1/Mpc, to be used in normalizing the
signal.

off: Input. The offset number of samples (in the time domain) at which the injected signal starts.
n: Input. Defines the length of the arrays strain[0. .n-1],work[0. .n-1],and response[0. .n+1].

len: Input. Defines the length of the array signal[0..len-1].

Author: Jolien Creighton, jolien@tapir.caltech.edu

Comments: See the description of the routine time._inject ().




6.14 Vetoing techniques for ringdown waveforms

Vetoing techniques for binary inspirals have already been described in subsection 5.22; these techniques are
equally applicable to searches for ringdown waveforms. However, since ringdown waveforms are short lived
and have a narrow frequency band, it is much more difficult to distinguish between a ringdown waveform and
a purely impulsive event. Furthermore, since the ringdown waveform will be preceded by some unknown
waveform corresponding to a black hole merger, one should not be too selective as to which events should
be vetoed.

" Nevertheless, the Caltech 40 meter interferometer data has many spurious events that will trigger a
ringdown filter, and we would expect that other instruments will have similar properties. These spurious
events will (hopefully) not be too common, and most will be able to be rejected if they are not reported
by other detectors. At present, however, we have only the Caltech 40 meter data to analyze, so we must
consider every event that is detected by the optimal filter. The single vetoing technique that we will use at
present is to look for non-Gaussian events in the detector output using the routine is_gaussian (). Since
the expected ringdown waveforms will be only barely discernible in the raw data, such a test has no chance
of accidentally vetoing an actual ringdown, but it will veto the obvious irregularities in the data.




6.15 Example: gn_optimal program

This program is a reworking of the program optimal to be run on simulated 40-meter data. Instead
of searching for binary inspiral, qn-optimal searches for an injected quasinormal ringdown waveform.
Refer to the sections on optimal filtering and the optimal program for a detailed discussion. :

The program is setup to inject a quasinormal ringdown, produced by the routine qn_gring (), due to
a black hole of mass M = 50M, dimensionless angular momentum parameter & = 0.98, and fractional
mass loss of € = 0.03. The injection occurs at a time of 500 s and the source distance is set to 100 kpc. The
filter is constructed from the same waveform.

The following is some sample output from qn_optimal:

max snr: 3.74 (offset 30469) data start: 466.77 variance: 0.72159
max snr: 4.03 (offset 50156) data start: 479.80 variance: 0.78550

Max SNR: 9.26 (offset 70785) variance 0.796263
If ringdown, estimated distance: 0.114364 Mpc, start time: 499.999968
Distribution: s= 40, N>3s= 0 (expect 353), N>5s= 0 (expect 0)
POSSIBLE RINGDOWN: Distribution does not appear to have outliers

max snr: 3.58 (offset 70974) data start: 505.86 variance: 0.77432
max snr: 3.62 (offset 123006) data start: 1339.81 variance: 0.70885

Max SNR: 67.01 (offset 126129) variance 4.637304
If ringdown, estimated distance: 0.009777 Mpc, start time: 1365.618108
Distribution: s= 40, N>3s= 320 (expect 353), N>5s= 780 (expect 0)
Distribution has outliers! Reject

Max SNR: 93.03 (offset 1295) variance 4.444335
If ringdown, estimated distance: 0.005834 Mpc, start time: 1365.998780
Distribution: s= 40, N>3s= 109 (expect 353), N>5s= 280 (expect 0)
Distribution has outliers! Reject

max snr: 2.71 (offset 127389) data start: 1378.90 variance: 0.29810
max snr: 4.85 (offset 118137) data start: 2152.18 wvariance: 0.91870

Max SNR: 12.74 (offset 69426) variance 1.332324
If ringdown, estimated distance: 0.081144 Mpc, start time: 2172.249524
Distribution: s= 39, N>3s= 0 (expect 353), N>5s= 0 (expect 0)
POSSIBLE RINGDOWN: Distribution does not appear to have outliers

max snr: 3.65 (offset 35976) data start: 2178.24 variance: 0.77820
max snr: 3.76 (offset 122854) data start: 2191.28 variance: 0.67849

As can be seen, gn.optimal is able to find the ringdown and correctly estimates its distance and time
of arrival.
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Author: Jolien Creighton, jolien@tapir.caltech.edu
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/* GRASP: Copyright 1997, Bruce Allen */

#include “"grasp.h"

#define NPOINT 131072 /* number of data points */ =
#define HSCALE 1.0e21 /* convenient scaling factor x/

#define ARMLENGTH 40.0 /* armlength (meters) */

#define FLO 120.0 /* low frequency cutoff for filtering */

#define MIN_INTO.LOCK 3.0 /*time (minutes) to skip into each locked section */

#define THRESHOLD 6.0 /* detection threshold SNR =/

#define ATTEN 30.0 /* attenuation cutoff for ringdown waveforms */

#define SAFETY 1000 /* padding safety to avoid wraparound errors */

#define DATA_SEGMENTS 3000 /# maximum number of data segments to filter */

double datastart;

float *response,srate=9868.4208984375;
short xdatas;

int needed=NPOINT;

main()

{

void realft(float *, unsigned long, int);

double norm;

float *data,xhtilde, xoutput;

float *mean_pow_spec,*twice_inv_noise;

float #ring,*ringtilde,*template;

float decaytime,decay,scale, snr,mean,var, tmpl.norm,dist;

float mass=50.0,spin=0.98,eps=0.03,psi0=0.0,invMpc=10.0,ringstart=500.0;
int i,code,len,safe=SAFETY,diff, off,n=NPOINT;

/* allocate memory for arrays =/

response= (float *)malloc(sizeof (float)*(NPOINT+2));
datas=(short *x)malloc(sizeof (short)*NPOINT) ;

data={float x)malloc(sizeof (float)xNPOINT) ;

htilde=(float *)malloc(sizeof (float)*NPOINT) ;

output=(float x)malloc(sizeof (float)*xNPOINT) ;
ringtilde=(float *)malloc(sizeof (float)*NPOINT) ;
template=(float *)malloc(sizeof (£loat)*NPOINT) ;
mean-pow-spec=(float *}malloc(sizeof (float)*(NPOINT/2+1));
twice.inv_noise=(float *)malloc(sizeof(float)=*(NPOINT/2+1));

/* manufacture quasinormal ring data; obtain length of signal */
ring = NULL;
len = gn-gring(psi0, eps,mass,spin,1l.0/srate,ATTEN,n, &ring);

/# normalize quasinormal ring to one megaparsec */
scale = HSCALE+#M_SOLAR/MPC;

for (i=0;i<len;i++) ringtildefi]
for (i=len;i<n;i++) ringtilde(i]

ring[i] *= scale:
ring{i] = 0;

/# FFT the guasinormal ring waveform =/
realft (ringtilde—-1,n,1);
if (n<len+2xsafe) abort();

while (1) {

/#* fill buffer with number of points needed */
code = fill_ buffer();
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{ /* if no points left, we are done! */
if (code==0) break;

I / if just entering a new locked stretch, reset averaging over power spectrum */
if (code==1) {
' norm = 0;

clear (mean_pow_spec,n/2+1,1);

/* decay time in seconds: set to 15 x length of NPOINT sample */
decaytime = 15.0%n/srate;
decay = exp(—1.0%n/(sratesdecaytime));

}

/* copy data into floats */
for (i=0;i<NPOINT;i++) datal[i] = datas([il];

J———

/* inject a time-domain signal before FFT (note output is used as temp storage only) * /
an-inject (data,ring, response, output, invMpc, (int) (sratex(ringstart—datastart)),n, len);

; /* compute the FFT of data */
' realft(data—1,n,1);

/* normalized dL/L tilde */
product (htilde,data, response,n/2);

/* update auto-regressive mean power spectrum x/
avg_inv_spec (FLO, srate,n, decay, &norm, htilde, mean_pow.spec, twice.inv.noise);

/* normalize the ring to produce a template */
gn-normalize (template,ringtilde, twice_inv_noise,n, &tmpl_norm) ;

/* calculate the filter output and find its maximum */
find ring(htilde, template, twice_inv.noise,output,n,len,safe, &off, &snr, &mean, &var) ;

/* perform diagnostics on filter output */
if (snr<THRESHOLD) { / threshold not exceeded: print a short message */
printf("max snr: %.2f (offset %6d) ",snr,off);
printf("data start: %.2f variance: %.5f\n",datastart,var};
} else { /xthreshold exceeded %/
/* estimate distance to signal (template distance [Mpc] = 1 / tmpl..norm) */
dist = 2/(tmplnormssnr);
printf ("\nMax SNR: %.2f (offset %d) variance %f\n",snr,off,var);
printf (" If ringdown, estimated distance: %f Mpc, ".dist);
printf ("start time: %f\n"',datastart+off/srate);
/* See if time domain statistics are non-Gaussian x/
if (is_gaussian(datas,n,—2048,2047,1))
printf (* POSSIBLE RINGDOWN: Distribution does not appear to have outliers\n\n"):
else
printf (" Distribution has outliers! Reject\n\n");
}

/* shift ends of buffer to the start */

diff = len + 2xsafe; /* safetyisapplied at beginning and end of buffer /
needed = NPOINT — d4diff;

for (i=0;i<diff;i++) datas[i] = datas[i+needed];

}

return 0;
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}

/* this routine gets the data, overlapping the data buffer as needed */
int fill_buffer()
{

static FILE xfpifo,*fplock;

static int first=1,remain=0,num sent=0;

float tstart;

int i, temp,code=2,diff=NPOINT~needed;

if (first) { /*onfirstcall only x/

FILE xfpss;
first = 0;
diff = 0;

/* open the IFO output file, lock file, and swept-sine file */

fpifo = grasp-open("GRASP_DATAPATH", "channel.0");
fplock = grasp.open("GRASP_DATAPATH", "channel.10");
fpss = grasp_open("GRASP_DATAPATH", "swept-sine.ascii");
/* get the response function and put in scaling factor */
normalize._gw(fpss, NPOINT, srate, response) ;

for (i=0;i<NPOINT;i++) response[i] #= HSCALE/ARMLENGTH;
fclose(fpss);

}

if (num_sent==DATA_SEGMENTS) return 0;

/* if new locked section, skip forward */

while (remain<needed) {
fprintf (stderr, "\nEntering new locked set of data\n");
temp = get.data(fpifo, fplock, &tstart, MIN_INTO.LOCK*x60*srate,datas,&remain, &srate, 1);
if (temp==0) return 0;

/* number of points needed will be full length */
needed = NPOINT;

diff = 0;

code = 1;

}

/* get the needed data and compute the start time of the buffer x/

temp = get.data(fpifo, fplock, &tstart,needed,datas+diff, &remain, &srate, 0} ;
if (temp==0) return 0;

datastart = tstart — diff/srate;

num_sent++;
return code;
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6.16 Structure: struct gnTemplate

The structure that will hold the filters for quasinormal ringdown waveforms is: struct anTemplate{
~— int num: The number of the particular filter.

float fregq: The central frequency of the filter template.

- float cual: The quality of the filter template.

};
The actual filter data that corresponds to the parameters set by the fields £req and qual is generated
by the routine gn_filter () above.
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6.17 Structure: struct gnScope

The structure struct gnScope specifies a domain of parameter space and contains a set of templates
that cover this domain. The fields of this structure are: struct gnScope{

int n_tmplt: The total number of templates required to cover the region in parameter space. This is
typically set by gn_template grid().

float fregmin: The minimum frequency of the region of parameter space.
float fregmax: The maximum frequency of the region of parameter space.
float gqual.min: The minimum quality of the region of parameter space.
float qual.max: The maximum quality of the region of parameter space.

struct gnTemplate *templates: Pointer to the array of templates. This pointer is usually set by
gn-template_grid() when it allocates the memory necessary to store the templates and creates
the necessary templates.

}: .

Although we are interested in the physical parameters, such as the mass and angular momentum, of the
black hole sources of gravitational radiation, it will be more convenient to work with the frequency and
quality parameters of damped sinusoids when creating detection templates. For the fundamental quadrupole
quasinormal mode, there is a one-to-one correspondence between the mass and angular momentum param-
eters and the frequency and quality parameters which is approximately given by Echeverria [13].




6.18 Function: qn_template_grid()

void gn_template_grid(float dl, struct gnScope *grid)

This function is responsible for allocating the memory for a grid of templates on the parameter space and
for choosing the location of the templates. The arguments are:

dl: Input. The length of the ‘sides’ of the square templates. This quantity should be set to d¢ =
V(2052 rechoiq) (se€ the discussion below).

grid: Input/Output. The grid of templates of type struct gnScope. On input, the fields that relate
to parameter ranges should be set. On output, the field n_tmplt is set to the number of templates
generated, and these templates are put into the array field templates[0. .n_tmplt-1] (whichis
allocated by the function).

The function gn-template_grid() attempts to create a set of templates, {u;(¢)}, which “cover”
parameter space finely enough that the distance between an arbitrary point on the parameter space and one
of the templates is small. A precise statement of this goal, and how it is achieved, can be found in the paper
by Owen [5]. We hilight the relevant parts of reference [5] here.

The templates {u;(t)} are damped sinusoids with a set of frequency and quality parameters {(f, Q):}.
They are normalized so that (u;|u;) = 1 where (-|-) is the inner product defined by Cutler and Flanagan [111.
Since we are most interested in the high quality region of parameter space, it is a good approximation that
the value of the one-sided noise power spectrum is approximately constant, Sp(f) ~ Sn(fi), over the
frequency band of the template. This approximation simplifies the form of the inner product as the noise
power spectrum appears in the inner product as a weighting function.

In order to estimate how close together the templates must be, we define the distance function dsfj =
1 — (us|u;) corresponding to the mismatch between the two templates u; and u;. This interval can be
expressed in terms of a metric as ds® = gagdxadxﬁ where z¢ = (f, @Q)* are coordinates on the two
dimensional parameter space. Such an expression is only valid for sufficiently close points on parameter
space. In the limit of a continuum of templates over parameter space, the metric can be evaluated by g5 =
—1(u|Bx8pu) wWhere 8, is a partial derivative with respect to the coordinate z. We find that the mismatch
between templates that differ in frequency by df and in quality by dQ is given by

2 }_ 3+16Q4 2 3+4Q2 3+8Q2 ,
i = A onriar i@ tpnrign @Y + TRt 618D
~ e -igy el (6.18.2)

8Q* 4Qf 2

In the approximate metric of equation (6.18.2), we have kept only the dominant term in the limit of high
quality. The minimum number of templates, N, required to span the parameter space such that there is no
point on parameter space that is a distance larger than ds2, ., .4 from the nearest template can be found by
integrating the volume element +/ det g, over the parameter space. Using the approximate metric and the
parameter ranges @ < Qmax and f € [fmin, fmax). we find that the number of templates required is

. )
N = 4_\/2-(dsghr85hold)—lQmax 10g( fmax/ frmin)

dssh hold - Qmax) { 1 [ fma.x fmin ] }
I€510 - —— .(6.18.3
2700 ( 0.03 > ( 100 1+ log 100 l0g<10 kHz) lOg(l()O Hz) C )

The issue of template placement is more difficult than computing the number of templates required.
Fortunately, for the problem of quasinormal ringdown template placement, the metric is reasonably simple.

1

209




By using the coordinate ¢ = log f rather than f, we see that the metric components depend on ) alone.
We can exploit this property for the task of template placement as follows: First, choose a “surface” of
constant Q = Qmin, and on this surface place templates at intervals in ¢ of d¢ = df/gpe for the entire
range of ¢. Here, df = v/(2ds .no1q)- Then choose the next surface of constant @ with dQ = d?/900
and repeat the placement of templates on this surface. This can be iterated until the entire range of Q has
been covered; the collection of templates should now cover the entire parameter region with no point in the
region being farther than ds? . ;.14 from the nearest template.

Author: Jolien Creighton, jolien@tapir.caltech.edu
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7 GRASP Routines: Stochastic background detection

7.1 DataFile: detectors.dat

This file contains site location and orientation information, a convenient name for the detector, and filenames
for the detector noise power spectrum and whitening filter, for 11 different detector sites. These site are:

N

(1) Hanford, Washington LIGO site,
(2) Livingston, Louisiana LIGO site,
b (3) VIRGO site,

. (4) GEO-600 site,

(5) Garching site,

(6) Glasgow site,

(7) MIT 5 meter interferometer,

(8) Caltech 40 meter interferometer,

(9) TAMA-300 site,

(10) TAMA-20 site,

! (11) ISAS-100 site.

As explained below, information for additional detector sites can be added to detectors. dat as needed.

The data contained within this file is formatted as follows: Any line beginning with a # is regarded as
a comment. All other lines are assumed to begin with an integer (which is the site identification number)
followed by five floating point numbers and three character strings, each separated by white space (i.e., one
or more spaces, which may include tabs). The first two floating point numbers specify the location of the
central station (the central vertex of the two detector arms) on the earth’s surface: The first number is the
latitude measured in degrees North of the equator; the second number is the longitude measured in degrees
West of Greenwich, England. The third floating point number specifies the orientation of the first arm of
the detector, measured in degrees counter-clockwise from true North. The fourth floating point number
specifies the orientation of the second arm of the detector, also measured in degrees counter-clockwise from
true North. The fifth floating point number is the arm length, in cm. The three character strings specify:
(1) a convenient name (e.g., VIRGO or GEO-600) for the detector site, (ii) the name of a data file that
contains information about the noise power spectrum of the detector, and (iii) the name of a data file that
% contains information about the spectrum of the whitening filter of the detector. (We will say more about
i the content and format of these two data files in Secs. 7.3 and 7.4.) The information currently contained in

detectors.dat is shown below:

Hanford, Washington LIGO Site (initial detector)
Fred Raab fjr@ligo.caltech.edu
46.45236 119.40753 36.8 126.8 4.e5 LIGO—WA_init noise_ligo_.init.dat whiten.ligo.init.dat

Livingston, Louisiana LIGO Site (initial detector)
Fred Raab fjr@ligo.caltech.edu
30.56277 90.77425 108.0 198.0 4.e5 LIGO—LA_init noise_ligo_-init.dat whiten.ligo_init.dat

VIRGO Site

Biplab Bhawal biplab@iucaa.iucaa.ernet.in

3 43.3 —-10.1 71.5 341.5

Raffaele Flaminio flaminio@lapphp0.in2p3.fr

Carlo Bradaschia BRADASCHIA@VAXPIA.PI.INFN.IT

Rosa Poggiani POGGIANI@pisa.infn.it

43.6333 —10.5 71.5 341.5 3.e5 VIRGO noise_virgo.dat whiten virgo.dat

W odk 3k 4k 4k 3k 3 3 DN 3 3k 3k - 9 4k 4k

211




GEO-600 as of April 1995
Albrecht Ruediger atr@mpg.mpg.de
52.2467 —9.82167 25.94 291.61 6.e4 GEO—600 noise_geo.dat whiten geo.dat

Garching 30 Meter Interferometer
Albrecht Ruediger atr@mpg.mpg.de
48.244 -11.675 329.0 239.0 3.e3 Garching—30 XXXXX XXXXX

Glasgow 10 Meter Interferometer

Albrecht Ruediger atr@mpg.mpg.de

6 55.86 4.23 77.0 167.0

Jim Hough hough@physics.gla.ac.uk

55.8667 4.28333 62.0 152.0 1l.e3 Glasgow—10 XXXXX XXXXX

MIT 5 Meter Interferometer
Gabriela Gonzalez gg@tristan.mit.edu
42.3667 71.1 34.5 304.5 5.e2 MIT-5 XXXXX XXXXX

Caltech 40 Meter Interferometer NEEDS CORRECTION
Fred Raab fjrRligo.caltech.edu
34.1667 118.133 180.0 270.0 4.e3 Caltech—40 noise_40.dat whiten.40.dat

TAMA 300 Meter
Masa-Katsu Fujimoto fujimoto@gravity.mtk.nao.ac.jp
35.6766 —139.536 90.0 180.0 3.0e4 TAMA-300 noise_tama.dat whiten._tama.dat

TAMA 20 Meter

Masa—Katsu Fujimoto fujimoto@gravity.mtk.nao.ac.jp

10 35.6751 —139.536 45.0 315.0 2.0e3 TAMA—20 XXXXX XXXXX
#

# ISAS 100 Meter delay line

# Hide Mizuno hide@pleiades.sci.isas.ac.jp

11 35.5678 --139.467 42.0 135.0 1.0ed ISAS—100 XXXXX XXXXX
#

I R SRR S G S I R B IR T S R VR

Site information for new (or hypothetical) detectors can be added to detectors.dat by simply ad-
hering to the above data format. For example, as the noise in the LIGO detectors improves, one can accom-
modate these changes in detectors.dat by adding additional lines that have the same site location and
orientation information as the “old” detectors, but refer to different noise power spectra and whitening filter
data files. The only other requirement is that the site identification numbers for these “new and improved”
detectors be different from the old site identification numbers, so as to avoid any ambiguity. Explicitly,
one could add the following lines to detectors.dat to include information about the advanced LIGO
detectors:

#

# Hanford, Washington LIGO Site (advanced detector)

# Fred Raab fjr@ligo.caltech.edu

12 46.45236 119.40753 36.8 126.8 4.e5 LIGO-WA_adv noise.ligo-adv.dat whiten.ligo.adv.dat
#

# Livingston, Louisiana LIGO Site (advanced detector)

# Fred Raab fijr@ligo.caltech.edu

13 30.56277 90.77425 108.0 198.0 4.e5 LIGO-~LA_adv noise_ligo_adv.dat whiten_ligo_adv.dat
#
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The file detectors.dat currently resides in the parameters subdirectory of GRASP. In order
for the stochastic background routines and example programs that are defined in the following sections
to be able to access the information contained in this file, the user must set the environment variable
GRASP_PARAMETERS to point to this directory. For example, a command like:
setenv GRASP_PARAMETERS /usr/local/GRASP/parameters
should do the trick. If, however, you want to modify this file (e.g., to add another detector or to add another
noise curve), then just copy the detectors.dat file to your own home directory, modify it, and set the

_GRASP_PARAMETERS environment variable to point to this directory.

Comment: If you happen to find an error in the detectors.dat file, please communicate it to the
caretakers of GRASP. :
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7.2 Function: detector_site()

void detector_site(char *detectors_file, int site_choice, float site parameters[!
char *sitename, char *noise_file, char *whiten file)

This function calculates the components of the position vector of the central station, and the components
of the two vectors that point along the directions of the detector arms (from the central station to each end
station), for a given choice of detector site, using information contained in an input data file. This function
also outputs three character strings that specify the site name, the name of a data file containing the detector
noise power information, and the name of a data file containing information about the detector whitening
| filter, respectively.

| The arguments of detector_site () are:

detectors.file: Input. A character string that specifies the name of a data file containing detector site
information. This file is most likely the detectors. dat data file described in Sec. 7.1. If the file
is different from detectors.dat, it must have the same data format as detectors.dat, and
it must reside in the directory pointed to by the GRASP_PARAMETERS environment variable (which
you may set as you wish). If you want to use the detectors. dat file distributed with GRASP, use
a command like:
setenv GRASP_PARAMETERS /usr/local/GRASP/parameters
to point to the directory containing this file. If you want to modify this file (e.g., to add another
detector or to add another noise curve), then just copy the detectors.dat file to your own home
directory, modify it, and set the GRASP_PARAMETERS environment variable to point to this directory.

site_choice: Input. Aninteger value used as an index into the input data file. The value of site_choice
should be chosen to match the site identification number for one of the detectors contained in this file.

site parameters: Output. site parameters[0. .8] is an array of nine floating point variables
that define the position of the central station of the detector site and the orientation of its two arms.
The three-vector site parameters[0..2] are the (z,y, 2) components (in cm) of the position
vector of the central station, as measured in a reference frame with the origin at the center of the
earth, the z-axis exiting the North pole, and the z-axis passing out the line of 0° longitude. The
three-vector site parameters[3..5] are the (z,y, z) components (in cm) of a vector pointing
along the direction of the first arm (from the central station to the end station). The three-vector
siteparameters([6..8] are the (z,y,z) components (in cm) of a vector pointing along the
direction of the second arm (from the central station to the end station).

sitemame: Output. A character string that specifies a convenient name (e.g., VIRGO or GEO-600) for
the chosen detector site.

noise_file: Output. A character string that specifies the name of a data file containing information
about the noise power spectrum of the detector. (See Sec. 7.3 for more details regarding the content
and format of this data file.)

whiten_file: Output. A character string that specifies the name of a data file containing information
about the spectrum of the whitening filter of the detector. (See Sec. 7.4 for more details regarding the
content and format of this data file.)

detector_site() reads input data from the file specified by detectors_file. This file is
searched (linearly from top to bottom) until the value of site_choice matches the site identification
number for one of the detectors contained in this file. The site location and orientation information for the
chosen detector site are then read into variables local to detector_site(). The values contained in

i
‘ 214
|



the array site_parameters (] are calculated from these input variables using standard equations from
spherical analytic geometry. (A correction is made, however, for the oblateness of the earth, using infor-
mation contained in Ref. [22].) The site name, noise_file, and whiten_file character strings are
= simply copied from input data file. If site_choice does not match any of the site identification numbers,
detector_site () prints out an error message and aborts execution.

Authors: Bruce Allen, ballen@dirac.phys.uwm.edu, and Joseph Romano, romano@csd.uwm.edu

“~Comments: None. —
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7.3 Function: noise_power ()

void noisepower (char *noise_file, int n, float delta.f, double *power)
This function calculates the noise power spectrum P(f) of a detector at a given set of discrete frequency
values, using information contained in a data file.

The arguments of noise_power () are:

noise._file: Input. A character string that specifies the name of a data file containing information about
the noise power spectrum P(f) of a detector. Like the detectors.dat file described in Sec. 7.1,
the noise power data file should reside in the directory pointed to by the GRASP_PARAMETERS envi-
ronment variable (which you may set as you wish). If you want to use the noise power spectrum data
files distributed with GRASP, use a command like:
setenv GRASP_PARAMETERS /usr/local/GRASP/parameters
to point to the directory containing these files. If you want to use your own noise power spectrum
data files, then simply set the GRASP_PARAMETERS environment variable to point to the directory
containing these files. Note, however, that if a program needs to access both detector site information
and noise power spectrum data, then all of the files containing this information should reside in the
same directory. (A similar remark applies for the whitening filter data files described in Sec. 7.4.)

n: Input. The number N of discrete frequency values at which the noise power spectrum P(f) is to be
evaluated.

delta_f: Input. The spacing Af (in Hz) between two adjacent discrete frequency values: Af :=
fiv1— fi.

power: Output. power [0..n-1] is an array of double precision variables containing the values of
the noise power spectrum P(f). These variables have units of strain? /Hz (or seconds). power [i]
contains the value of P(f) evaluated at the discrete frequency f; = ¢Af, where¢ = 0,1,---,N — 1.

The input data file specified by noise_file contains information about the noise power spectrum
P(f) of a detector. The data contained in this file is formatted as follows: Any line beginning with a # is
regarded as a comment. All other lines are assumed to consist of two floating point numbers separated by
white space. The first floating point number is a frequency f (in Hz); the second floating point number is
the square root of the one-sided noise power spectrum P(f), evaluated at f. P(f) is defined by equation
(3.18) of Ref. [21]:

(B (F)R) = 580 = 1) PP (131

Here ( ) denotes ensemble average, and 72( f) is the frequency spectrum (i.e., Fourier transform) of the strain
n(t) produced by the noise intrinsic to the detector. P(f) is a non-negative real function, having units of
strain?/Hz (or seconds). It is defined with a factor of 1/2 to agree with the standard definition used by
instrument builders. The total noise power is the integral of P(f) over all frequencies from 0 to co (not
from —oo to o0). Hence the name one-sided.

Since the frequency values contained in the input data file need not agree with the desired frequencies
fi = iAf, noise_power () must determine the desired values of the noise power spectrum by doing
an interpolation/extrapolation on the input data. noise_power () performs a cubic spline interpolation,
using the Numerical Recipes in C routines spline () and splint (). noise_power () assumes that
the length of the input data is < 65536, and it uses boundary conditions for a natural spline (i.e., with zero
second derivative on the two boundaries). noise power () also squares the output of the splint ()
routine, since the desired values are P(f)—and not their square roots (which are contained in the input data
file).




Authors: Bruce Allen, ballen@dirac.phys.uwm.edu, and Joseph Romano, romano@csd.uwm.edu

Comments: In order for the cubic spline interpolation routines to yield approximations to.P(f) that are not
contaminated by spurious DC or low frequency (e.g., approximately 1 Hz) components, it is important
that the input data file specified by noise_file contain noise power information down to, and
including, zero Hz. This information can be added in “by hand,” for example, if the experimental
data for the noise power spectrum only goes down to 1 Hz. In this case, setting the values of /P(f)

at 0.0,0.1,0.2, - - - ,0.9 Hz equal to its 1 Hz value seems to be sufficient. (See Sec. 7.4 for a similar

 comment regarding whiten().)
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7.4 Function: whiten ()

void whiten(char *whiten_file, int n, float delta.f, double *whiten_out)
This function calculates the real and imaginary parts of the spectrum W () of the whitening filter of a
detector at a given set of discrete frequency values, using information contained in a data file.

The arguments of whiten () are:

whiten file: Input. A character string that specifies the name of a data file containing information
about the spectrum W( f) of the whitening filter of a detector. Like the detectors.dat and noise
power spectrum data files described in Secs. 7.1 and 7.3, the whitening filter data file should reside in
the directory pointed to by the GRASP_PARAMETERS environment variable (which you may set as
you wish). If you want to use the whitening filter data files distributed with GRASP, use a command
like:
setenv GRASP_PARAMETERS /usr/local/GRASP/parameters
to point to the directory containing these files. If you want to use your own whitening filter data files,
then simply set the GRASP_PARAMETERS environment variable to point to the directory containing
these files. Note, however; that if a program also needs to access either detector site information or
noise power spectrum data, then all of the files containing this information should reside in the same
directory.

n: Input. The number N of discrete frequency values at which the real and imaginary parts of the spectrum
W (f) of the whitening filter are to be evaluated.

delta_f: Input. The spacing Af (in Hz) between two adjacent discrete frequency values: Af :=
fiv1— fi

whiten_out: Output. whiten out [0..2*n-1] is an array of double precision variables containing
the values of the real and imaginary parts of the spectrum W (f) of the whitening filter. These variables
have units rHz /strain (or sec™1/2), which are inverse to the units of the square root of the noise
power spectrum P(f). whiten out[2*i] and whiten out [2*i+1] contain, respectively, the
values of the real and imaginary parts of W (f) evaluated at the discrete frequency f; = A f, where
i=01,---,N—1.

The input data file specified by whiten_file contains information about the spectrum W( f) of the
whitening filter of a detector. The data contained in this file is formatted as follows: Any line beginning
with a # is regarded as a comment. All other lines are assumed to consist of three floating point numbers,
each separated by white space. The first floating point number is a frequency f (in Hz). The second and
third floating point numbers are, respectively, the real and imaginary parts of the spectrum W( f), evaluated
at f. These last two numbers have units of rHz/strain (or sec™2/2). This is because the whitening filter is,
effectively, the inverse of the amplitude /P(f) of the noise power spectrum.

Since the frequency values contained in the input data file need not agree with the desired frequencies
fi = iAf, whiten () must determine the desired values of the real and imaginary parts of the spectrum of
the whitening filter by doing an interpolation/extrapolation on the input data. Similar to noise power ()
(see Sec. 7.3), whiten () performs a cubic spline interpolation, using the spline () and splint ()
routines from Numerical Recipes in C. Like noise.power (), whiten () assumes that the length of the
input data is < 65536, and it uses boundary conditions for a natural spline. Unlike noise power (),
whiten () does not have to square the output of the splint () routine, since the data contained in the
input file and the desired output data both have the same form (i.e., both involve just the real and imaginary

parts of W (f)).

Authors: Bruce Allen, ballen@dirac.phys.uwm.edu, and Joseph Romano, romano@csd.uwm.edu
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Comments: In order for the cubic spline interpolation routines to yield approximations to W (f) that are not

contaminated by spurious DC or low frequency (e.g., approximately 1 Hz) components, it is important
that the input data file specified by whiten file contain information about the whitening filter
down to, and including, zero Hz. This information can be added in “by hand,” for example, if the
experimental data for the spectrum of the whitening filter only goes down to 1 Hz. In this case, setting
the values of W (f) at 0.0,0.1,0.2, - - -, 0.9 Hz equal to their 1 Hz values seems to be sufficient. (See
Sec. 7.3 for a similar comment regarding noise power ().)

“"Also, for the initial and advanced LIGO detector noise models; the spectra W () of the whitening

filters contained in the input data files were constructed by simply inverting the square roots of the
corresponding noise power spectra P(f). The spectra of the whitening filters thus constructed are
real. Although this method of obtaining information about the spectra of the whitening filters is
fine for simulation purposes, the data contained in the actual whitening filter input data files will
be obtained independently from that contained in the noise power spectra data files, and the spectra
W (f) will in general be complex. The function whiten () described above—and all other stochastic
background routines—allow for this more general form of whitening filter data.
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7.5 Function: overlap ()

void overlap(float *sitel parameters, float *site2_parameters, int n, float
delta_f, double *gammal2l)
This function calculates the values of the overlap reduction function ~y(f), which is the averaged product
of the response of a pair of detectors to an isotropic and unpolarized stochastic background of gravitational
radiation.

The arguments of overlap () are:

N

sitel parameters: Input. sitel parameters[0. .8] isan array of nine floating point variables
that define the position of the central station of the first detector site and the orientation of its two
arms. The three-vector sitel parameters[0..2] are the (z,y, z) components (in cm) of the
position vector of the central station of the first site, as measured in a reference frame with the origin
at the center of the earth, the z-axis exiting the North pole, and the z-axis passing out the line of 0°
longitude. The three-vector sitel parameters([3..5] are the (z,y, z) components (in cm) of a
vector pointing along the direction of the first arm of the first detector (from the central station to the
end station). The three-vector sitel parameters([6..8] are the (z,y, z) components (in cm)
of a vector pointing along the direction of the second arm of the first detector (from the central station
to the end station).

site2 parameters: Input. site2 parameters[0. .8] isan array of nine floating point variables

that define the position of the central station of the second detector site and the orientation of its two
arms, in exactly the same format as the previous argument.

n: Input. The number N of discrete frequency values at which the overlap reduction function (f) is to
be evaluated.
delta.f: Input. The spacing Af (in Hz) between two adjacent discrete frequency values: Af :=
fir1 = fi
gammal2: Output. gammal2[0..n-1] is an array of double precision variables containing the val-
ues of the overlap reduction «(f) for the two detector sites. These variables are dimensionless.
gammal2 [i] contains the value of (f) evaluated at the discrete frequency f; = iAf, where
i=0,1,---,N—-1.
The values of y(f) calculated by overlap () are defined by equation (3.9) of Ref. [21]:
5 . A o
) = o= / d 2SO 8%e (B By + FYFY) . 75.1)
T Jg2

Here  is a unit-length vector on the two-sphere, AZ is the separation vector between the two detector sites,
and Fi"">< is the response of detector i to the + or x polarization. For the first detector (¢ = 1) one has

B = (R~ T7E) 5O, 152

where the directions of the first detector’s arms are defined by X¢ and Ve, and e:b’x () are the spin-two
polarization tensors for the “plus” and “cross” polarizations, respectively. (A similar expression can be
written down for the second detector.) The normalization of y(f) is determined by the following statement:
For coincident and coaligned detectors (i.e., for two detectors located at the same place, with both pairs of
arms pointing in the same directions), v(f) = 1 for all frequencies.

Authors: Bruce Allen, ballen @dirac.phys.uwm.edu, and Joseph Romano, romano@csd.uwm.edu

Comments: None.
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7.6 Example: overlap program

The following example program shows one way of combining the functions detector_site() and
overlap () to calculate the overlap reduction function y(f) for a given pair of detectors. In particu-
lar, we calculate y(f) for the Hanford, WA and Livingston, LA LIGO detector sites. The resulting overlap
reduction function data is stored as two columns of double precision numbers (f; and y(f;)) in the file
LIGO.overlap.dat. Here f; = tAf withi = 0,1,---, N — 1. The values of N and Af are input

_ parameters to the program, which the user can change if he/she desires. (See the #define statements

listed at the beginning of the program.) Also, by changing the site location identification numbers and the
output file name, the user can calculate and save the overlap reduction function for any pair of detectors—
e.g., the Hanford, WA LIGO detector and the GEO-600 detector; the GEO-600 and VIRGO detector; the
Garching and Glasgow detectors; etc. The overlap reduction function data that is stored in the file can then
be displayed with xmgr, for example. (See Fig. 47.)

/* main program to illustrate the function overlap() */
#include *grasp.h"

#define DETECTORS_FILE "detectors.dat" /= file containing detector info x/

#define SITE1.CHOICE 1 /* 1=LIGO-Hanford site */
#define SITE2_CHOICE 2 /* 2=LIGO-Livingston site */
#define N 10000 /+ number of frequency points */
#define DELTAF 1.0 /* frequency spacing (in Hz) %/

#define OUT.FILE 'LIGO_overlap.dat® /x output filename /

int main(int argc,char *xargv)

{
int i;
double £;

float sitel_parameters[9],site2_parameters(9];
char sitel_name[100],noisel £file{100]),whitenl £ile[100];
char site2_name[100],noise2_£ile[100] ,whiten2_£ile{100];

double xgammal2;

FILE xfp;
fp=fopen (OUT_FILE, "w") ;

/+ ALLOCATE MEMORY =/
gammal2=(double *)malloc (N*sizeof (double));

/* CALL DETECTOR_SITE() TO GET SITE PARAMETER INFORMATION s /

detector_site (DETECTORS_FILE, SITE1_CHOICE, sitel_parameters,sitel name,
noisel_file,whitenl_file);

detector_site (DETECTORS_FILE, SITE2_CHOICE, site2_parameters, site2.mname,
noise2_file,whiten2_file);

/* CALL OVERLAP() AND WRITE DATA TO THE FILE = /
overlap (sitel_parameters,site2.parameters,N,DELTA.F,gammal2);

for (i=0;i<N;i++) {
£=i«DELTA_F;
fprintf (fp, "%e %e\n",f,gammal2[i]);

}
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fclose(fp);

return 0;

}

Overlap reduction function
(for the LIGO detector pair)

04 f .

0.0 | //A\\\

0.0 100.0 200.0 300.0 400.0 500.0
f (Hz)

Figure 47: The overlap reduction function ~(f) for the Hanford, WA and Livingston, LA LIGO detector
pair.

222



7.7 Function: get _IF012 ()

*outl, float *out2, float *sratel, float *sratel)
This function gets real interferometer output (IFO) data from two detector sites.
The arguments of get _IFO12 () are:

- .
‘ get_IF012 (FILE *fpl, FILE *fp2, FILE *fpllock, FILE *fp2lock, int n, float
|

fpl: Input. A pointer to a file that contains the interferometer output (IFO) data produced by the first
" “detector. ' ' o .
£p2: Input. A pointer to a file that contains the interferometer output (IFO) data produced by the second
detector.

fpllock: Input. A pointer to a file that contains the TTL lock signal for the interferometer output
produced by the first detector.

fp2lock: Input. A pointer to a file that contains the TTL lock signal for the interferometer output
produced by the second detector.

n: Input. The number IV of data points to be retrieved.

outl: Output. out1[0..n-1] is an array-of floating point variables containing the values of the inter-
ferometer output produced by the first detector. These variables have units of ADC counts. out1[1i]
contains the value of the whitened data stream o; (t) evaluted at the discrete time ¢; = At;, where
1=0,1,---,N — 1 and At, is the sampling period of the first detector, defined below.

out2: Output. out2([0..n-1] is an array of floating point variables containing the values of the
P interferometer output produced by the second detector, in exactly the same format as the previous
argument. '

sratel: Output. The sample rate Af; (in Hz) of the first detector. Aty := 1/Af; (in sec) is the
corresponding sampling period of the first detector.

srate2: Output. The sample rate A f (in Hz) of the second detector. Aty := 1/Af> (in sec) is the
corresponding sampling period of the second detector.

get_IF012 () consists effectively of two calls to get.data (), which is described in detail in Sec. 3.6
! It prints out a warning message if no data remains for one or both detectors. For that case, both out1[]
and out2 [] are set to zero. '

Authors: Bruce Allen, ballen@dirac.phys.uwm.edu, and Joseph Romano, romano@csd.uwm.edu

Comments: Currently, get _TF012 () calls get.data () and get_data2 (), where get_data2 () is
simply a copy of the get_data () routine. get_data () should eventually be modified so that it
can handle simultaneous requests for data from more than one detector. After this change is made, the
function get_data?2 () should be removed.
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7.8 Function: simulate noise ()

void simulatemnoise(int n, float delta.t, double *power, double *whiten_out,
float *out, int *pseed)
This function simulates the generation of noise intrinsic to a detector. The output is a (not necessarily
continuous-in-time) whitened data stream o(t) representing the detector output when only detector noise is
present.

The arguments of simulatenoise () are:

n: Input. The number N of data points corresponding to an observation time 7" := [N At, where At is the
sampling period of the detector, defined below. N should equal an integer power of 2.

delta_t: Input. The sampling period At (in sec) of the detector.

power: Input. power [0..n/2-1] is an array of double precision variables containing the values of the
noise power spectrum P(f) of the detector. These variables have units of strain?/Hz (or seconds).
power [i] contains the value of P(f) evaluated at the discrete frequency f; = 3/(NAt), where
i=0,1,---,N/2 -1

whiten out: Input. whiten out[0..n-1] is an array of double precision variables containing the
values of the real and imaginary parts of the spectrum W( f) of the whitening filter of the detector.
These variables have units rHz/strain (or sec~1/2), which are inverse to the units of the square root
of the noise power spectrum P(f). whiten out[2*i] and whiten out[2*i+1] contain, re-
spectively, the values of the real and imaginary parts of W( f) evaluated at the discrete frequency [,
fi=1/(NAt), wherei = 0,1,--- ,N/2 - 1.

out: Output. out [0..n-11] is an array of floating point variables containing the values of the whitened
data stream o(t) representing the output of the detector when only detector noise is present. o(t) is
the convolution of detector whitening filter W {(t) with the noise n(t) intrinsic to the detector. The
variables out [ ] have units of rHz (or sec™/2), which follows from the definition of n(t) as a strain
and W () as the “inverse” of the square root of the noise power spectrum P(f). out [i] contains
the value of o(t) evaluated at the discrete time ¢; = iAt, where ¢ = 0,1,--- ,N — L

pseed: Input. A pointer to a seed value, which is used by the random number generator routine.

simulatemnoise () simulates the generation of noise intrinsic to a detector in the following series
of steps:

(i) It first constructs random variables 72 f;) in the frequency domain that have zero mean and satisfy:

(A" (fi)n(f;)) = 5 T 65 P(fi), (7.8.1)

SN

where { ) denotes ensemble average. The above equation is just the discrete frequency version of
Eq. (7.3.1). This equation can be realized by setting

- 1 / .
n(fi) = 3\/T PY2(£) (g +ivg) (7.8.2)
where u; and v; are statistically independent (real) Gaussian random variables, each having zero mean

and unit variance. These Gaussian random variables are produced by calls to the Numerical Recipes
in C random number generator routine gasdev ().
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(i) simulatenoise() then whitens the data in the frequency domain by multiplying 7(f;) by the
frequency components W (f;) of the whitening filter of the detector:

- 6(f;) = alfi) W(f) - (7.8.3)

This (complex) multiplication in the frequency domain corresponds to the convolution of n(t) and
W (t) in the time domain. By convention, the DC (i.e., zero frequency) and Nyquist critical frequency
components of o( f;) are set to zero.

(iii) The final step consists of Fourier transforming the frequency components o(f;) into the time domain
to obtain the whitened data stream o(t;). Here ¢; = iAt with: =0, 1,---, N-1.

Authors: Bruce Allen, ballen@dirac.phys.uwm.edu, and Joseph Romano, romano@csd.uwm.edu

Comments: In the context of stochastic background simulations, it would be more efficient to simulate the
noise at rwo detectors simultaneously. Since the time-series data are real, the two Fourier transforms
that would heed to be performed in step (iii) could be done simultaneously. However, for modularity
of design, and to simulate noise for “single-detector” gravity-wave searches, we decided to write the
above routine instead. ‘
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7.9 Function: simulate_sb ()

void simulate sb(int n, float delta.t, float omega 0, flecat f_.low, flecat f. high,
double *gammal2, double *whitenl, double *whiten2, float *outl, float *out2, .
int *pseed)
This function simulates the generation of an isotropic and unpolarized stochastic background of gravita-
tional radiation having a constant frequency spectrum: Qgw(f) = Qo for fiow < f < fhign. The outputs are
(not necessarily continuous-in-time) whitened data stream o1 (¢) and 0,(t) representing the detector outputs
when only a stochastic background signal is present.
The arguments of simulate_sb () are:

n: Input. The number NV of data points corresponding to an observation time T := N At, where At is the
sampling period of the detectors, defined below. N should equal an integer power of 2.

delta-t: Input. The sampling period At (in sec) of the detectors.

omega_0: Input. The constant value € (dimensionless) of the frequency spectrum Qg (f) for the
stochastic background:

- Qo flow < f < fhigh
Qgw(f) = { 0 otherwise.

29 should be greater than or equal to zero.

f_low: Input. The frequency fiow (in Hz) below which the spectrum Qg (f) of the stochastic background
is zero. fiow should lie in the range 0 < fiow < fNyquist: Where fnyquist is the Nyquist critical
frequency. (The Nyquist critical frequency is defined by fnyquist = 1/(2At), where At is the
sampling period of the detectors.) fiow should also be less than or equal to fhigh.

f high: Input. The frequency fhigh (in Hz) above which the spectrum gy (f) of the stochastic back-
ground is zero. fhigh should lie in the range 0 < frigh < fNyquist- It should also be greater than or
equal to fiow-.

gammal?2 : Input. gammal2[0..n/2-1] is an array of double precision variables containing the values
of the overlap reduction function ~(f) for the two detector sites. These variables are dimensionless.
gammal2[i] contains the value of v(f) evaluated at the discrete frequency f; = 1/(NAt), where
1=0,1,---,N/2 - 1.

whitenl: Input. whitenl[0..n-1] is an array of double precision variables containing the values of
the real and imaginary parts of the spectrum 114 (f) of the whitening filter of the first detector. These
variables have units rHz/strain (or sec™1/2), which are inverse to the units of the square root of the
noise power spectrum P;(f). whitenl[2*i] and whitenl [2*1i+1] contain, respectively, the
values of the real and imaginary parts of W1 (f) evaluated at the discrete frequency f; = i/(NAt),
where¢ =0,1,--- ,N/2 - 1.

whiten2: Input. whiten2[0..n-1] is an array of double precision variables containing the values
of the real and imaginary parts of the spectrum W5 (f) of the whitening filter of the second detector,
in exactly the same format as the previous argument.

outl: Qutput. outl[0..n-11 is an array of floating point variables containing the values of the
whitened data stream o; (¢) representing the output of the first detector when only a stochastic back-
ground ‘signal is present. 0;(¢) is the convolution of detector whitening filter W (¢) with the gravi-
tational strain h1(t). The variables out1 [] have units of rHz (or sec™1/2), which follows from the
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definition of hq(t) as a strain and W1(f) as the “inverse” of the square root of the noise power spec-
trum Pi(f). outl[i] contains the value of o;(t) evaluated at the discrete time ¢; = 1At, where
i=0,1,---,N~1

out2: Output. out2[0..n-1] is an array of floating point variables containing the values of the
whitened data stream o9(t) representing the output of the second detector when only a stochastic
background signal is present, in exactly the same format as the previous argument.

“pseed: Input. A pointer to a seed value, which is used by the random number generator-routine. - -

simulate.sb() simulates the generation of an isotropic and unpolarized stochastic background of
gravitational radiation having a constant frequency spectrum Qaw(f) = Qo for fiow < f < fhigh in the
following series of steps:

(i) It first constructs random variables Ry (f;) and ho(f;) in the frequency domain that have zero mean

and satisfy:
z - 1 3HE
(RI(f)P1(f5)) = 5 T & F);r% 3 Q (7.9.1)
TN 1 3HZ ,_5
(h3(fdha(fs)) = 57T %5 153 7 Qo (7.9.2)
ISICAYNG 7 — ng,.i{{ﬁ =30 . 793
(h1(fi) 2(fj)) 9 9 1072 fi 0 v(fi), (7.9.3)

where ( ) denotes ensemble average. Here h1(f;) and ho(f;) are the Fourier components of the grav-
itational strains k1 (t) and hy(t) at the two detectors. The above equations are the discrete frequency
versions of equation (3.17) of Ref. [21], with Qgw(f) = Qo for fiow < f < fhigh- They can be
realized by setting

i o\ 1/2
h(fi) = -;—\/T (%%) £ QY (zy + iyu) (7.9.4)
ho(fi) = ha(fi) v(fi) + (7.9.5)
1 3H? 12 -3/2 A1/2 :
5\/T (m) fi Q71— 2(fi) (w2 + iyai) 5 (7.9.6)

where z1;, 1, T2i, and yo; are statistically independent (real) Gaussian random variables, each having
zero mean and unit variance. (Note: The Ti;, Y1i, Z2i, and yo; random variables are statistically
independent of the u; and v; random variables defined in Sec. 7.8.) These Gaussian random variables
are produced by calls to the Numerical Recipes in C random number generator routine gasdev ().
Note also that the second term of heo(f;) (which is proportional to /1 — 72(f;)) is needed to obtain
equation (7.9.2). Without this term, (R3(f:)ha(f;)) would include an additional (unwanted) factor of
7 (fi)-

(iii) simulate_sb () then whitens the data in the frequency domain by multiplying hi(f;) and ho(f:)
by the frequency components W1 (f;) and Wa(f;) of the whitening filters of the two detectors:

alfs) = h(f) Walfi) (7.9.7)
Ga(fi) = ha(fs) Walfi) - (7.9.8)

This (complex) multiplication in the frequency domain corresponds to the convolution of hi(t) and
Wi (t), and ho(t) and Wa(t) in the time domain. By convention, the DC (i.e., zero frequency) and
Nyquist critical frequency components of 61 (f;) and 62(f;) are set to zero.
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(iii) The final step consists of Fourier transforming the frequency components 01(f;) and 62(f;) into
the time domain to obtain the whitened data streams 04 (¢;) and oo(t;). Here t; = tAt with ¢ =
0,1,---,N — 1. Since 67(f;) and 85(f;) are the Fourier transforms of real data sets, the two Fourier
transforms can be performed simultaneously.

Authors: Bruce Allen, ballen@dirac.phys.uwm.edu, and Joseph Romano, romano@csd.uwm.edu

Comments: Although it is possible and more efficient to write a single function to simulate the genera-
tion of a stochastic background and intrinsic detector noise simultaneously, we have chosen—for the
sake of modularity—to write separate functions to perform these two tasks separately. (See also the
comment at the end of Sec. 7.8.)




7.10 Function: combine data()

void combine._data (int which, int n, float *inl, float *in2, float *out)
This low-level function takes two arrays as input, shifts them by half their length, and combines them
with one another and with data stored in an internally-defined static buffer to produce output data that is
continuous from one call of combine_data () to the next.

The arguments of combine.data () are:

which: Input. An integer variable specifying which intemnally-defined static buffer should be used when
combining the input arrays with data saved from a previous call. The allowed values are 1 < which <
16.

n: Input. The number N of data points contained in the input and output arrays. N is assumed to be even.

inl: Input. in1[0..n-1] is an array of floating point variables containing the values of the first input
array.

in2: Input. in2[0..n-1] is an array of floating point variables containing the values of the second
input array. -

out: Output. out [0..n-1] is an array of floating point variables containing the output data, which is
continuous from one call of combine data () to the next.

combine._data () produces continuous output data by modifying the appropriately chosen static
buffer buf [0..3*n/2-1] as follows: -

buf[i]+ = sin[i * MPI/n] xini[i] for 0<i<n/2-1
buf[i]+ = sin[i * MPI/n] * in1[i] + sin[(i — n/2) * MPI/n] * in2[i —n/2] for n/2<i<n
buffi]+ = sin[(i —n/2) *MPI/n] *in2[i —n/2] for n<i<3%n/2-1.

The values of the output array out [0..n-1] are taken from the first two-thirds of the buffer, while the
last one-third of the buffer is copied to the first third of the buffer in preparation for the next call. When this
is complete, the last two-thirds of the buffer is cleared.

One nice feature of combining the data with a sine function (rather than with a triangle function, for
example) is that if the input data represent statistically independent, stationary random processes having
zero mean and the same variance, then the output data will also have zero mean and the same variance. This
is a consequence of the trigonometric identity

sin?[i *M_PI/n] + sin®[(i —n/2) *MPI/n] =1. (7.10.1)

Thus, combine_data () preserves the first and second-order statistical properties of the input data when
constructing the output.

Authors: Bruce Allen, ballen@dirac.phys.uwm.edu, and Joseph Romano, romano@csd.uwm.edu

Comments: In the context of stochastic background simulations, the two input arrays would represent two
whitened data streams produced by a single detector, which are then time-shifted and combined to
simulate continuous-in-time detector output. Since the contents of the internally-defined static buffer
are equal to zero when combine data () is first called, the amplitude of the output array initially
builds up from zero to its nominal value over the course of the first N/2 data points. This corresponds
to an effective “turn-on” transient, with turn-on time equal to N At/2 (At being the time between

successive data samples).
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7.11 Function: monte_carlo()

void monte._carlo(int fake_sb, int fakemnoisel, int fakenoise2, int n, float
delta_t, float omega.0, float f_low, float f high, double *gammal2, double

*powerl, double *power2, double *whitenl, double *whiten2, float *outl,
*out2, int *pseed)

This high-level function simulates (if desired) the generation of noise intrinsic to a pair of detectors, and
an isotropic and unpolarized stochastic background of gravitational radiation having a constant frequency
spectrum: Qgw(f) = Qo for fiow < f < frign- The outputs are two continuous-in-time whitened data

streams 01 (t) and oo(t) representing the detector outputs in the presence of a stochastic background signal

plus noise.
The arguments of monte_carlo () are:

fake_sb: Input. An integer variable that should be set equal to 1 if a simulated stochastic background is
desired.

fakenoisel: Input. Aninteger variable that should be set equal to 1 if simulated detector noise for the
first detector is desired.

fakenoise2: Input. An integer variable that should be set equal to 1 if simulated detector noise for-the
second detector is desired.

n: Input. The number N of data points corresponding to an observation time T" := N At, where At is the
sampling period of the detector, defined below. IV should equal an integer power of 2.

delta.t: Input. The sampling period At (in sec) of the detector.

omega_0: Input. The constant value Qo (dimensionless) of the frequency spectrum Qg (f) for the
stochastic background: '

_ Q0 flow < f < fhigh
Qgw(f) = { 0 otherwise.

Qp should be greater than or equal to zero.

£_low: Input. The frequency fio (in Hz) below which the spectrum Qg (f) of the stochastic background
is zero. fiow should lie in the range 0 < fiow < fNyquist> Where fNyquist 1S the Nyquist critical

frequency. (The Nyquist critical frequency is defined by fuyquist = 1/(2At), where At is the
sampling period of the detector.) fiow should also be less than or equal to fpigh-

£ high: Input. The frequency fuign (in Hz) above which the spectrum Qgyw(f ) of the stochastic back-
ground is zero. fhigh should lie in the range 0 < fhigh < fNyquist- [t should also be greater than or
equal to fiow-

gammal2: Input. gammal2[0..n/2~1] is anarray of double precision variables containing the values
of the overlap reduction function ~y(f) for the two detector sites. These variables are dimensionless.
gammal2 {i] contains the value of v(f) evaluated at the discrete frequency f; = #/(NAt), where
t=0,1,---,N/2 -1

powerl: Input. powerl[0..n/2-11] is an array of double precision variables containing the values
of the noise power spectrum P;(f) of the first detector. These variables have units of strain?/Hz
(or seconds). powerl [i] contains the value of P;(f) evaluated at the discrete frequency f; =
i/(NAt), where i = 0,1,---,N/2 — 1.
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power2: Input. power2[0..n/2-1] is an array of double precision variables containing the values
of the noise power spectrum P, (f) of the second detector, in exactly the same format as the previous
argument.

whitenl: Input. whitenl [0..n-1] is an array of double precision variables containing the values of
the real and imaginary parts of the spectrum Wi (f) of the whitening filter of the first detector. These
variables have units rHz /strain (or sec™1/2), which are inverse to the units of the square root of the

—_noise power spectrum Py (f). whitenl [2*i] and whitenl [2*i+1] contain, respectively, the
values of the real and imaginary parts of W;(f) evaluated at the discrete frequency f; = i/(NAt),
where i =0,1,---,N/2 — 1.

whiten2: Input. whiten2[0..n-1] is an array of double precision variables containing the values
of the real and imaginary parts of the spectrum Ws(f) of the whitening filter of the second detector,
in exactly the same format as the previous argument.

outl: Output. outl[0..n-1] is an array of floating point variables containing the values of the
continuous-in-time whitened data stream o1 (t) representing the output of the first detector. o;(t) is
the convolution of detector whitening filter W1 (¢) with the data stream s; (¢) := A1 (2) + ni(t), where
h1(t) is the gravitational strain and nj(t) is the noise intrinsic to the detector. These variables have
units of rHz (or sec~2/2), which follows from the definition of s;(¢) as a strain and W;(f) as’the
“inverse” of the square root of the noise power spectrum P; (f). out1[i] contains the value of 01 ()
evaluated at the discrete time ¢; = tAt, where i =0,1,---,N — 1.

out2: OQutput. out2[0..n-1] is an array of floating point variables containing the values of the
continuous-in-time whitened data stream o9 (t) representing the output of the second detector, in ex-
actly the same format as the previous argument.

pseed: Input. A pointer to a seed value, which is used by the random number generator routine.

monte._carlo () isavery simple function, consisting of calls to simulate_sb(), simulatemnoise(),

and combine data (). If fake_sb=1,monte_carlo () calls simulate_sb () twice, producing two
sets of data that are time-shifted and combined by combine data () to simulate continuous-in-time de-
tector output. Similar statements apply when either fake noisel or fake noise2 equals 1.

Authors: Bruce Allen, ballen@dirac.phys.uwm.edu, and Joseph Romano, romano@csd.uwm.edu

Comments: None.
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7.12 Example: monte_carlo program

The following example program is a simple demonstration of the function monte._carlo (), which was
defined in the previous section. It produces animated output representing time-series data for simulated
detector noise and for a simulated stochastic background having a constant frequency spectrum: Qgy (f) =
Qo for fiow < f < fhigh- The output from this program must be piped into xmgr. The parameters that were
chosen for the example program shown below produce whitened time-series data for a stochastic background
having Qgw(f) = 1.0 x 1073 for 5 Hz < f < 5000 Hz. For this particular example, the noise intrinsic to
the detectors was set to zero. A sample “snapshot” of the animation is shown in Fig. 48.

By modifying the parameters listed at the top of the example program, one can also simulate an un-
whitened stochastic background signal (Fig. 49), and whitened and unwhitened data streams corresponding
to the noise intrinsic to an initial LIGO detector (Figs. 50 and 51). Other combinations of signal, noise,
whitening, and unwhitening are of course also possible. To produce the animated output, simply enter the
command:

monte.carlo | xmgr -pipe &

after compilation. :

Note: The amplitude of the animated output initially builds up from zero to its nominal value over
(approximately) the first 1.5 seconds. This “turn-on” transient is a consequence of the overlapping technique
used by combine.data () to produce continuous-in-time detector output. (See the comment at the end of
Section 7.10.)

/* main program to illustrate monte_carlo() x/

#include "grasp.h"
void graphout (float, float, int);

#define DETECTORS.FILE “detectors.dat" /« file containing detector info /

#define SITE1_CHOICE 1 /* identification number for site 1 */
#define SITE2_CHOICE 2 /* identification number for site 2 */
#define FAKE.SB 1 /* 1: simulate stochastic background =/
/* 0: no stochastic background */
#define FAKE_NOISEl 0 /* 1: simulate detector noise at site 1 */
/* 0: no detector noise at site 1 %/
#define FAKE_NOISE2 0 /* 1: simulate detector noise at site 2 */
/* 0: no detector noise at site 2 */
$define WHITEN_OUT1 1 /* 1: whiten output at site 1 */
/* 0: don’t whiten output at site 1 x/
#define WHITEN_OUT2 1 /* 1: whiten output at site 2 %/
/* 0: don’t whiten output at site 2 x/
#define N 65536 /* number of data points */
#define DELTA.T (5.0e-5) /* sampling period (in sec) */
#define OMEGA_0 (1.0e-3) /* omega_0 x/
#define F_LOW (5.0) /* minimum frequency (in Hz) */
#define F_HIGH (5.0e3) /* maximum frequency (in Hz) =/
#define NUM_RUNS 5 /* number of runs */

int main{(int argc,char xxargv)

{

int 1,j,last=0,seed= —-17;
float delta_f,tstart=0.0,timenow;

float sitel_parameters[92],site2_parameters{8];
char sitel_name[100],noisel_file[100],whitenl_ file([100];
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char site2 name[1l00],noise2_£file[100],whiten2_file[100];

double xpowerl, xpower2,*whitenl, swhiten2,*xgammal2;
float xoutl,*out2;

/* ALLOCATE MEMORY x/

powerl=(double *)malloc ((N/2)*sizeof (double));
power2=(double *)malloc( (N/2)*sizeof (double));
whitenl=(double *)malloc (Nxsizeof (double));
whiten2=(double *)malloc(N*sizeof (double));
gammal2=(double *)malloc ((N/2)}*sizeof (double));
outl=(float *)malloc (Nxsizeof (float));
out2=(float *)malloc (Nxsizeof (float));

/* IDENTITY WHITENING FILTERS (IF WHITEN_OUT1=WHITEN_OUT2=0) * /
for (i=0;i<N/2;i++) {
whitenl|[2#i)}=whiten2[2x1]=1.0;
whitenl[2*xi+1l]=whiten2[2*i+1]=0.0;

}

/+ CALL DETECTOR_SITE() TO GET SITE PARAMETER INFORMATION = /

detector_site (DETECTORS.FILE, SITEL_.CHOICE, sitel_parameters, sitel_name,
noisel_file,whitenl_file);

detector.site (DETECTORS_FILE, SITE2.CHOICE, site2_parameters, site2_name,
) noise2_file,whiten2_file);

/% CONSTRUCT NOISE POWER SPECTRA, OVERLAP REDUCTION FUNCTION, AND * /
/* (NON-TRIVIAL) WHITENING FILTERS, IF DESIRED */

delta.f=(float) (1.0/(N*DELTA.T)) ;

noise.power (noisel_file,N/2,delta_f,powerl);

noise_power (noise2_file,N/2,delta.f,power2);

overlap (sitel_parameters,site2_parameters,N/2,delta_f,gammal2);

if (WHITEN-OUTl==1) whiten(whitenl_file,N/2,delta_f,whitenl);

if (WHITEN.OUT2==1) whiten(whiten2_file,N/2,delta.f,whiten2);

/* SIMULATE STOCHASTIC BACKGROUND AND/OR DETECTOR NOISE #/

for (j=0;3j<NUM_RUNS;j++) {
monte_carlo (FAKE_SB, FAKE_NOISEl,FAKE_NOISE2,N, DELTA_T,OMEGA_0,F_LOW, F_HIGH,
gammal2, powerl,power2,whitenl,whiten2, outl,out2, &seed);

/* DISPLAY OUTPUT USING XMGR =/

for (i=0;i<N;i++) {
time_now=tstart+i*DELTA_T;
printf("%e\t%e\n", time.now,outl[il);

if (j==NUM_RUNS-1) last=1;
graphout (tstart, tstart+N«DELTA_T, last) ;

/ * UPDATE TSTART * /
tstart+=N*DELTA_T;

} /* end for (j=0;j <NUM_RUNS;j++) */

return 0;

}

void grapho-ut(float xmin, float xmax,int last)

{

233




static int first=1l;
printf ("&\n");

if (first) {

}

/* first time we draw plot x/

printf (*@doublebuffer true\n"); /+ keep display from flashing */
printf (*@focus off\n");

printf ("@world xmin %$e\n",xmin);

printf ("@world xmax %e\n",xmax);

printf (*@autoscale yaxes\n");

printf ("@xaxis label \"t (sec)\"\n");

printf("@title \*Simulated Detector Ouput\"\n");

printf ("@subtitle \"(stochastic background--whitened)\"\n"};
printf ("@redraw \n");

if ('last) printf("ekill sO\n"); /= Kkill set; ready to read again */

first=0;

else {

}

/* other timeOAs we draw plot */

printf ("@world xmin %e\n",xmin);

printf (*@world xmax %e\n",xmax);

printf ("@autoscale yaxes\n");

if (ilast) printf(“@kill sO\n"); /*Kkill set; ready to read again +/

return;
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Figure 48: Time-series data (whitened) for a stochastic background having a constant frequency spectrum:
Qgw(f) = 1.0 x 1073 for 5 Hz < f < 5000 Hz.
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Figure 49: Time-series data (unwhitened) for a stochastic background having a constant frequency spectrum:
Qew(f) = 1.0 x 1073 for 5 Hz < f < 5000 Hz.
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Figure 50: Time-series data (whitened) for the noise intrinsic to an initial LIGO detector.
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Figure 51: Time-series data (unwhitened) for the noise intrinsic to an initial LIGO detector.
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713 Function: test_datal2 ()

int test.datal2(int n, float *datal, float *datal)
This function tests two data sets to see if they have probability distributions consistent with a Gaussian

normal distribution.
The arguments of test_datal2 () are:

n: Input. The number N of data points contained in each of the input arrays.

datal: Input. datal[0..n-1]is an array of floating point variables containihg the values of the first
array to be tested.

data2: Input. data2[0..n-1] is an array of floating point variables containing the values of the
second array to be tested.

test_datal2 () is a simple function that makes use of the is_gaussian () utility routine. (See
Sec. 10.5 for more details.) test_datal2 () prints a warning message if either of the data sets contain
a value too large to be stored in 16 bits. (The actual maximum value was chosen to be 32765.) It returns
1 if both data sets pass the is.gaussian () test. It returns O if either data set fails, and prints a message

indicating the bad set.

Authors: Bruce Allen, ballen@dirac.phys.uwm.edu, and Joseph Romano, romano@csd.uwm.edu

Comments: In the context of stochastic background simulations, datal[] and data2 [] contain the
values of the whitened data streams o1 (t) and 05(t) that are output by the two detectors.
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7.14 Function: extract noise ()

void extractmnoise(int average, int which, float *in, int n, float delta._t,

double *whiten.out, double *power)
This function calculates the real-time noise power spectrum P(f) of a detector, using a Hann window and
averaging the spectrum for two overlapped data sets, if desired.

The arguments of extract noise () are:

average: Input. An integer variable that should be set equal to 1 if the values of the real-time noise

power spectra corresponding to two overlapped data sets are to be averaged.

which: Input. An integer variable specifying which internally-defined static buffer should be used when

in:

overlapping the new input data set with data saved from a previous call. The allowed values are
1 <which <£'16.

Input. in[0..n-1] is an array of floating point variables containing the values of the assumed
continuous-in-time whitened data stream o(t) produced by the detector. o(t) is the convolution of
detector whitening filter W (¢) with the data stream s(t) := h(t)4-n(t), where h(t) is the gravitational
strain and n(t) is the noise intrinsic to the detector. The variables in [] have units of rHz (or sec™1/2y,
which follows from the definition of s(t) as a strain and W (f) as the “inverse” of the square root of
the noise power spectrum P(f). in[i] contains the value of o(t) evaluated at the discrete time
t; = iAt, wherei =0,1,---,N — 1.

n: Input. The number NV of data points corresponding to an observation time T" := N At, where At is the

sampling period of the detector, defined below. N should equal an integer power of 2.

delta_t: Input. The sampling period At (in sec) of the detector.

whiten.out: Input. whiten out[0..n-1] is an array of double precision variables containing the

values of the real and imaginary parts of the spectrum W( f) of the whitening filter of the detector.
These variables have units rHz/strain (or sec™1/2), which are inverse to the units of the square root
of the noise power spectrum P(f). whiten_out[2*i] and whiten_ out[2*i+1] contain, re-
spectively, the values of the real and imaginary parts of W (f) evaluated at the discrete frequency
fi=1/(NAt), wherei =0,1,--- ,N/2 — 1.

power: Output. power [0..n/2-1] is an array of double precision variables containing the values of

the real-time noise power spectrum P(f) of the detector. Explicitly,

P(f) = = 8(H3), .14

where 3(f) is the Fourier transform of the unwhitened data stream s(t) produced by the detector.
These variables have units of strain?/Hz (or seconds). power [1i] contains the value of P(f) eval-
uated at the discrete frequency f; = i/(NAt), wheret = 0,1,---,N/2 — L.

extractmnoise () calculates the real-time noise power spectrum P(f) as follows:

(i) It first stores the input data stream o(t) in the last two-thirds of an appropriately chosen static buffer

buf[0..3*n/2-1]. The first one-third of this buffer contains the input data left over from the
previous call.

240




(ii) It then multiplies the first two-thirds of this buffer by the Hann window function:

w(t) = \/g : % [1 —~ cos (%)] . (7.14.2)

The factor /8/3 is the “window squared-and-summed” factor described in Numerical Recipes in C,
p.553. It is needed to offset the reduction in power that is introduced by the windowing.

(iii)~The windowed data is then Fourier transformed-into-the frequency-domain, where it-is-unwhitened
by dividing by the (complex) spectrum W () of the whitening filter of the detector. The resulting
unwhitened frequency components are denoted by (M 5(f); the superscript (1) indicates that we are
analyzing the first of two overlapped data sets.

(iv) The real-time noise power spectrum is then calculated according to:

Op(f) = % Mg () D3(f) . (7.14.3)

(v) The data contained in the last two-thirds of the buffer is then copied to the first two-thirds of the buffer,
and steps (ii)-(iv) are repeated, yielding a second real-time noise power spectrum @P(f).

(vi) If average=1, P(f) is given by:

[ Wp(f)+ DP(f) ] ) (7.14.4)

N =

P(f) =

Otherwise, P(f) = P P(f).

(vii) Finally, the data contained in the last two-thirds of the buffer is again copied to the first two-thirds, in
preparation for the next call to extract noise () . The data saved in the first one-third of this buffer
will match onto the next input data stream if the input data from one call of extractnoise() to

the next is continuous.

Note: One should call extract.noise () with average # 1, when one suspects that the current in-
put data is not continuous with the data that was saved from the previous call. This is because a discontinuity
between the “old” and “new” data sets has a tendency to introduce spurious large frequency components into
the real-time noise power spectrum, which should not be present. Since a single input data stream by itself
is continuous, the noise power spectrum () P(f) (which is calculated on the second pass through the data)
will be free of these spurious large frequency components. This is why we set P(f) equal to @) P(f)—and
not equal to () P(f)—when average # 1.

Authors: Bruce Allen, ballen @dirac.phys.uwm.edu, and Joseph Romano, romano@csd.uwm.edu

Comments: In the context of stochastic background simulations, it would be more efficient to extract the
real-time noise power spectra at two detectors simultaneously. However, for modularity of design,
and to allow this function to be used possibly for “single-detector” gravity-wave searches, we decided
to write the above routine instead.
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7.15 Function: extract_signal ()

void extract._signal(int average, float *inl, float *in2, int n, float delta.t,
double *whitenl, double *whiten2, double *signall2)
This function calculates the real-time cross-correlation spectrum §32(f) of the unwhitened data streams
s51(t) and s9(t), using a Hann window and averaging the spectrum for two overlapped data sets, if desired.
The arguments of extract_signal () are:

average: Input. An integer variable that should be set equal to 1 if the values of the real-time cross-
correlation spectra corresponding to two overlapped data sets are to be averaged.

inl: Input. inl1{0..n-1] is an array of floating point variables containing the values of the assumed
continuous-in-time whitened data stream o0, (t) produced by the first detector. o1 (¢) is the convolution
of detector whitening filter Wy (t) with the data stream s;(t) = hy(t) + n1(t), where hy (%) is the
gravitational strain and n(t) is the noise intrinsic to the detector. The variables inl [] have units of
rHz (or sec™/2), which follows from the definition of s (¢) as a strain and Wy (f) as the “inverse” of
the square root of the noise power spectrum Py (f). in1[1] contains the value of 0;(t) evaluated at
the discrete time t; = iAt, where7 =0,1,--- N — 1.

in2: Input. in2[0..n-1] is an array of floating point variables containing the values of the assumed
continuous-in-time whitened data stream o2 (t) produced by the second detector, in exactly the same
format as the previous argument.

n: Input. The number N of data points corresponding to an observation time T := N At, where At is the
sampling period of the detectors, defined below. N should equal an integer power of 2.

delta-t: Input. The sampling period At (in sec) of the detectors.

whitenl: Input. whitenl[0. .n-1] is an array of double precision variables containing the values of
the real and imaginary parts of the spectrum Wy (f) of the whitening filter of the first detector. These
variables have units rHz /strain (or sec™l/ 2), which are inverse to the units of the square root of the
noise power spectrum Pj(f). whitenl[2*i] and whitenl [2*i+1] contain, respectively, the
values of the real and imaginary parts of W;(f) evaluated at the discrete frequency f; = i/(NA¢),
wherei =0,1,--- ,N/2 — 1.

whiten2: Input. whiten2[0..n-1] is an array of double precision variables containing the values
of the real and imaginary parts of the spectrum W (f) of the whitening filter of the second detector,
in exactly the same format as the previous argument.

signall2: Output. signall2[0..n/2-1] is an array of double precision variables containing the
values of the real-time cross-correlation spectrum

S12(f) = (51(f) 52(f) +cc) (7.15.1)

where 31 (f) and 3o(f) are the Fourier transforms of the unwhitened data streams s (t) and s3(t) pro-
duced by the two detectors. These variables have units of strain?-sec? (or simply sec?). signall2[i]
contains the value of 315(f) evaluated at the discrete frequency f; = ¢/(NAt), wherei = 0,1,---, N/2—
1.

extract_signal () calculates the real-time cross-correlation spectrum 31o(f) as follows:
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(1) It first stores the input data streams o;(¢) and 02(t) in the last two-thirds of internally-defined static
buffers buf1[0..3*n/2-1] and buf2[0..3*n/2-1]. The first one-third of these buffers con-
tains the input data left over from the previous call.

(ii) It then multiplies the first two-thirds of these buffers by the Hann window function:

w(t) = \/g : % [1 — cos (?)} . (7.15.2)

The factor /8/3 is the “window squared-and-summed” factor described in Numerical Recipes in C,
p.553. It is needed to offset the reduction in power that is introduced by the windowing.

(iti) The windowed data is then Fourier transformed into the frequency domain, where it is unwhitened by
dividing by the (complex) spectra W1 () and Wa(f), which represent the whitening filters of the two
detectors. The resulting unwhitened frequency components are denoted by (V3(f) and V5(f); the
superscript (1) indicates that we are analyzing the first of two overlapped data sets.

(iv) The real-time cross-correlation spectrum is then calculated according to:

Waia(f) = [ D31(F) V5a(f) + cc. | - (7.15.3)

(v) The data contained in the last two-thirds of the buffers is then copied to the first two-thirds of
the buffers, and steps (ii)-(iv) are repeated, yielding a second real-time cross-correlation spectrum

@315(f)-

(vi) If average=1, 512(f) is given by:

[Ws0(5)+ @s1a(f) ] - (7.15.4)

N =

512(f) =

Otherwise, 515(f) = @315(5).

(vi1) Finally, the data contained in the last two-thirds of the buffers is again copied to the first two-thirds, in
preparation for the next call to extract._sb (). The data saved in the first one-third of these buffers
will match onto the next input data streams if the input data from one call of extract_sb () to the
next is continuous. o

Note: One should call extract_sb () with average # 1, when one suspects that the current input
data is not continuous with the data that was saved from the previous call. This is because a discontinuity
between the “old” and “new” data sets has a tendency to introduce spurious large frequency components
into the real-time cross-correlation spectrum, which should not be present. Since a single input data stream
by itself is continuous, the cross-correlation spectrum (2)512( f) (which is calculated on the second pass
through the data) will be free of these spurious large frequency components. This is why we set 512(f)
equal to (?)5;5(f)—and not equal to (1)319(f)—when average # 1.

Authors: Bruce Allen, ballen @dirac.phys.uwm.edu, and Joseph Romano, romano@csd.uwm.edu

Comments: Although it is possible and more efficient to write a single function to extract the real-time
detector noise power and cross-correlation signal spectra simultaneously, we have chosen—for the
sake of modularity—to write separate functions to perform these two tasks separately. (See also the
comment at the end of Sec. 7.14.)
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7.16 Function: optimal_filter ()

void optimal_filter (int n, float delta.f, float f.low, float f.high, double
*gammal2, double *powerl, double *power2, double *filterl2)
This function calculates the values of the spectrum Q(f) of the optimal filter function, which maximizes
the cross-correlation signal-to-noise ratio for an isotropic and unpolarized stochastic background of gravita-
tional radiation having a constant frequency spectrum: Qgw(f) = Qo for fiow < f < fhigh-

The arguments of optimal_filtexr () are:

n: Input. The number N of discrete frequency values at which the spectrum Q(f) of the optimal filter is
to be evaluated.

delta_f: Input. The spacing Af (in Hz) between two adjacent discrete frequency values: Af :=
fi+1 — fi

£_low: Input. The frequency fiov (in Hz) below which the spectrum Qg (f) of the stochastic background—
and hence the optimal filter Q( f)—is zero. fiow should lie in the range 0 < fiow < fNyquist. Where
SNyquist is the Nyquist critical frequency. (The Nyquist critical frequency is defined by fnyquist =
1/(2At), where At is the sampling period of the detectors.) fiow should also be less than or equal to
Fhigh-

£ high: Input. The frequency fhign (in Hz) above which the spectrum Qgw(f) of the stochastic background—
and hence the optimal filter Q(f)—is zero. fhigh should lie in the range 0 < fhigh < fNyquist- It
should also be greater than or equal to figw-

gammal2: Input. gammal2[0..n-1] is an array of double precision variables containing the values
of the overlap reduction function y(f) for the two detector sites. These variables are dimensionless.
gammal2[i] contains the value of v(f) evaluated at the discrete frequency f; = A f, where ¢ =
0,1,---,N—-1.

powerl: Input. powerl[0..n-1] is an array of double precision variables containing the values of
the noise power spectrum Py (f) of the first detector. These variables have units of strain?/Hz (or
seconds). powerl [i] contains the value of Py(f) evaluated at the discrete frequency f; = iAf,
wherei =0,1,---,N — 1.

power2: Input. power2[0..n-1] is an array of double precision variables containing the values of
the noise power spectrum Py (f) of the second detector, in exactly the same format as the previous
argument.

filterl2: Output. filter12([0..n-1] is an array of double precision variables containing the
values of the spectrum Q( f) of the optimal filter function for the two detectors. These variables are di-
mensionless for our choice of normalization (S) = Qo T". (See the discussion below.) filterl12[i]
contains the value of Q( f) evaluated at the discrete frequency f; = iAf, wherei = 0,1,---, N — L.

The values of Q() calculated by optimal_filter () are defined by equation (3.32) of Ref. [21]:

= o ’Y(f)QgW(f) 6.1
=R R ieb
Such a filter maximizes the cross-correlation signal-to-noise ratio SNR := p/o, where
H2 oo ~
b= =T 28 [ & D217 (7162
o = (-1~ [ a PUAIPUMIGUE (1.163)
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discussed in Sec. 7.18.
Note that we have explicitly included a normalization constant A in the definition of Q( f). The choice

of A does not affect the value of the signal-to-noise ratio, since 4 and o are both multiplied by the same

factor of \. For a stochastic background having a constant frequency spectrum

_J %  fw<f< Jhigh
fgu(f) -{ 0 otherwise,

it is convenient to choose )\ 80 that
w=QyT. (7.16.4)

From equations (7.16.1) and (7.16.2), it follows that
BH o [l () )7
A= =200 / df ——L 27 (7.16.5)
[1%2 S ¥ FEPBD

will do the job. With this choice of A Q(f) is dimensionless and independent of the value of €. This is
why ) does not have to be passed as a parameter to optimal_ filter().

Authors: Bruce Allen, ballen @dirac.phys.uwm.edu, and J oseph Romano, romano @csd.uwm.edn

Comments: None.

245




7.17 Example: optimal_filter program

The following example program shows one way of combining the functions detector.site (), noise power (),

overlap (),and optimal filter () to calculate the spectrum Q() of the optimal filter function for
a given pair of detectors. Below we explictly calculate Q(f) for the initial Hanford, WA and Livingston,
LA LIGO detectors. (We also choose to normalize the magnitude of the spectrum Q(f) to 1, for later
convenience when making plots of the output data.) Noise power information for these two detectors is
read from the input data file noise_init.dat. This file is specified by the information contained in
detectors.dat. (See Sec. 7.1 for more details.) The resulting optimal filter function data is stored as
two columns of double precision numbers (f; and Q(f:)) in the file LIGO_filter.dat, where f; = iAf
andi=0,1,---, N — 1. A plot of this data is shown in Fig. 52.

As usual, the user can modify the parameters in the #def ine statements listed at the beginning of the
program to change the number of frequency points, the frequency spacing, etc. used when calculating Q( f)
Also, by changing the site location identification numbers and the output file name, the user can calculate
and save the spectrum of the optimal filter function for any pair of detectors. For example, Fig. 53 is a plot
of the optimal filter function for the advanced LIGO detectors.

/+ main program to illustrate the function optimal_-filter() */
#include "grasp.h"

#define DETECTORS_FILE "detectors.dat” /xfile containing detector info */

$define SITE1.CHOICE 1 /# 1=L1GO-Hanford site */
#define SITE2.CHOICE 2 /* 2=LIGO-Livingston site */
#define N 500 /+ number of frequency points * /
#define DELTAF 1.0 /* frequency spacing (in Hz) * /
#define F_LOW 0.0 /* minimum frequency (in Hz) * /
#define F-HIGH (1.0et4) /* maximum frequency (in Hz) /

#define OUT.FILE "LIGO_filter.dat" /xoutputfilename */

int main(int argc,char xxargv)
int i;
double £;
double abs-value,max;

float sitel_parameters(9],site2_parameters [9);
char sitel_name[100],noisel file[100] ,whitenl_ file[100];
char site2_name[100],noise2_£ile[100] ,whiten2_£ile[100];

double xpowerl,*power2;
double *gammal?l;
double xfilterl2;

FILE x*fp;
fp=fopen (OUT.FILE, "w");

/* ALLOCATE MEMORY =*/

powerl=(double x)malloc (Nxsizeof (double));
power2=(double *)malloc (Nxsizeof (double));
gammal2= (double x)malloc (Nxsizeof (double));
filterl2=(double x)malloc (N¥sizeof (double));

/+* CALL DETECTOR_SITE() TO GET SITE PARAMETER INFORMATION =/
detector_site (DETECTORS.FILE, SITE1_CHOICE, sitel_parameters, sitel_name,
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noisel_file,whitenl_file) ;
detector_site (DETECTORS.FILE, SITE2_CHOICE, site2.parameters, site2_name,
noise2_file,whiten2_file);

/+ CALL NOISE_POWER() AND OVERLAP() =/

noise_power (noisel_file,N,DELTA_F powerl) ;

noise_power (noise2_file,N,DELTA_F ,power2) ;
overlap(sitel_parameters, site2_parameters,N,DELTA_F ,gammal2) ;

/* CALL OPTIMAL_FILTER() AND DETERMINE MAXIMUM ABSOLUTE VALUE =/

optimal_filter (N,DELTA_F, F.LOW, F_HIGH,gammal2,powerl,power2, filterl2) ;

max=0.0;

for (i=0;i<N;i++) {
abs_value=fabs(filter12[i]) ;
if (abs_value>max) max=abs_value;

}
/* WRITE FILTER FUNCTION (NORMALIZED TO 1) TO FILE « /
for (i=0;i<N;i++) {

f=1+«DELTA_F;

fprintf (fp, "%e %e\n",f,filterl? [i]/max) ;

}

fclose(£fp);

return 0;
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Optimal filter function

(for the initial LIGO detectors)
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Figure 52: Optimal filter function Q(f) (normalized to 1) for the initial LIGO detectors.
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Optimal filter function

(for the advanced LIGO detectors)
0.5 ) T T

0.0

-1.0 ' : :
0.0 50.0 100.0 150.0 200.0

f (Hz)

Figure 53: Optimal filter function Q( f) (normalized to 1) for the advanced LIGO detectors.
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7.18 Discussion: Theoretical signal-to-noise ratio for the stochastic background

In order to reliably detect a stochastic background of gravitational radiation, we will need to be able to say
(with a certain level of confidence) that an observed positive mean value for the cross-correlation signal
measurements is not the result of detector noise alone, but rather is the result of an incident stochastic
background. This leads us natually to consider the signal-to-noise ratio, since the larger its value, the more
confident we will be in saying that the observed mean value of our measurements is a valid estimate of
the true mean value of the stochastic background signal. Thus, an interesting question to ask in regard to
stochastic background searches is: “What is the theroretically predicted signal-to-noise ratio after a total
observation time T, for a given pair of detectors, and for a given strength of the stochastic background?” In
this section, we derive the mathematical equations that we need to answer this question. Numerical results
will be calculated by example programs in Secs. 7.20 and 7.21.
To answer the above question, we will need to evaluate both the mean value

p = (S) (7.18.1)
and the variance
0% = (8% - (5)? (7.18.2)
of the stochastic background cross-correlation signal S. The signal-to-noise ratio SNR is then given by,
SNR := ;f’f . (7.18.3)

As described in Sec. 7.16, if the magnitude of the noise intrinsic to the detectors is much larger than the
magnitude of the signal due to the stochastic background, then

2 o) _
po= T3 [ a0 000) (7184)
o = 2 [T @ BBIGUP, 7185)
where Q(f) is an arbitrary filter function. The choice
(D0
Q) = A Rp (7R () (7.18.6)

maximizes the signal-to-noise ratio (7.18.3). It is the optimal filter for stochastic background searches. As
also described in Sec. 7.16, if the stochastic background has a constant frequency spectrum

) Q% fiow £ F £ fuign
Qeu(f) = { 0 otherwise,

it is convenient to choose the normalization constant A so that

p=QT. (7.18.7)
Forsuch a A, ) .
T (10n? /fhigh Y2 (f) -
2
ol df ———— , (7.18.8)
2 <3H3> [ fow  SERUS)P2(S)
which leads to the squared signal-to-noise ratio
OHg  [fuieh (f)
SNR2=TQQ—°—/ df 2 7.18.9
R =T % 50rt s ¥ FRGIBT) (7:189)
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This is equation (3.33) in Ref. [21].

But suppose that we do not assume that the noise intrinsic to the detectors is much larger in magnitude
than that of the stochastic background. Then Eq. (7.18.5) for o2 needs to be modified to take into account
the non-negligible contributions to the variance brought in by the stochastic background signal. (Equation
(7.18.4) for y is unaffected.) This change in o2 implies that Eq. (7.18.6) for Q() is no longer optimal. But
to simplify matters, we will leave Q(f) as is. Although such a Q(f) no longer maximizes the signal-to-noise
ratio, it at least has the nice property that, for a stochastic background having a constant frequency spectrum,

_ the normalization constant ) can be chosen so that Q(f) is independent of £g. The expression for the actual

optimal filter function, on the other hand, would depend on €.
So keeping Eq. (7.18.6) for Q(f), let us consider a stochastic background having a constant frequency
spectrum as described above. Then we can still choose A so that

=0T, (7.18.10)

(the same A as before works), but now

D[P el ] () ey
=3 Uf o fSPl(f)Pz(f)} { 3HZ . R

10m2  ffuien () 1072 ffiin P(f)
+o <3H3> fi® FERE ™ (3H&> 4 gy

ow

5 Shigh ,72(f) \
o fiow o FRP2(FP(S) (“’7 (f)) } (7.18.11)

The new squared signal-to-noise ratio is 22 72 divided by the above expression for o2.

Note the three additional terms that contribute to the variance o2. Roughly speaking, they can be thought
of as two “signal+noise” cross-terms and one “pure signal” variance term. These are the terms proportional
to 2o and Q3, respectively. When Qp is small, the above expression for o2 reduces to the pure noise
variance term (7.18.8). This is what we expect to be the case in practice. But for the question that we posed
at the beginning of the section, where no assumption is made about the relative strength of the stochastic
background and detector noise signals, the more complicated expression (7.18.11) for o should be used.
The function calculate_var (), which is defined in the following section, calculates the variance using
this equation.
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7.19 Function: calculate_var()

double calculatewvar{(int n, float delta_f, float omega-0, float f.low, flocat

f.high, float t, double *gammal2, double *powerl, double *power2)

This function calculates the theoretical variance o® of the stochastic background cross-correlation signal S.
The arguments of calculate_var () are:

n: Input. The number N of discrete frequency values at which the spectra are to be evaluated.

delta_f: Input. The spacing Af (in Hz) between two adjacent discrete frequency values: Af :=
fir1— fi.

omega.0: Input. The constant value )y (dimensionless) of the frequency spectrum gy (f) for the
stochastic background:

) Q0 fiow £ F £ Fhigh
ng(f) - { 0 otherwise.

1o should be greater than or equal to zero.

f.low: Input. The frequency flow (in Hz) below which the spectrum Qg ( f) of the stochastic background
is zero. fiow should lie in the range 0 < flow < fNyquist» Where fnyquiss is the Nyquist critical

frequency. (The Nyquist critical frequency is defined by fnyquiss := 1/(2At), where At is the
sampling period of the detector.) fiow should also be less than or equal to fhigh-

f_high: Input. The frequency fpien (in Hz) above which the spectrum Qgw (f) of the stochastic back-
ground is zero. fpigh should lie in the range 0 < fhigh < fNyquist- It should also be greater than or
equal to flow-

t : Input. The observation time T (in sec) of the measurement.

gammal2: Input. gammal2[0..n-1] is an array of double precision variables containing the values
of the overlap reduction function ~y(f) for the two detector sites. These variables are dimensionless.
gammal2[i] contains the value of v(f) evaluated at the discrete frequency f; = iAf, where ¢ =
0,1,---,N -1

powerl: Input. powerl[0..n-1] is an array of double precision variables containing the values of
the noise power spectrum P (f) of the first detector. These variables have units of strain?/Hz (or
seconds). powerl[i] contains the value of P(f) evaluated at the discrete frequency f; = iAf,
where ¢ =0,1,--- )N — 1.

power2: Input. power2[0..n-1] is an array of double precision variables containing the values of
the noise power spectrum Py (f) of the second detector, in exactly the same format as the previous
argument.

The double precision value returned by calculate_var () is the theoretical variance o2 given by

Eq. (7.18.11) of Sec. 7.18. As discussed in that section, Eq. (7.18.11) for 02 makes no assumption about
the relative strengths of the stochastic background and detector noise signal, but it does use Eq. (7.18.6) for
| the filter function @( f), which is optimal only for the large detector noise case. For stochastic background
| simulations, §)g is usually chosen to equal some known non-zero value. This is the value that should be
| passed as a parameter to calculate.var (). For stochastic background searches (where {2 is not known
a priori) the value of of the parameter o should be set to zero. The variance for this case is given by
Eq. (7.18.8).
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Comments: None.
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7.20 Example: snr program

As mentioned in Sec. 7.18, an interesting question to ask in regard to stochastic background searches is:
“What is the theroretically predicted signal-to-noise ratio after a total observation time T', for a given pair
of detectors, and for a given strength of the stochastic background?” The following example program
show how one can combine the functions detector_site(), noise.power (), overlap (), and
calculate_var () to answer this question for the case of a stochastic background having a constant fre-
quency spectrum: Qg (f) = Qo for figw < f < frign- Specifically, we calculate and display the theoretical
SNR after approximately 4 months of observation time (I" = 1.0 x 107 seconds), for the initial Hanford,
WA and Livingston, LA LIGO detectors, and for 3o = 3.0 x 1078 for 5 Hz < f < 5000 Hz. (The answer
is SNR = 1.73, which means that we could say, with greater than 95% confidence, that a stochastic back-
ground has been detected.) By changing the parameters in the #define statements listed at the beginning
of the program, one can calculate and display the signal-to-noise ratios for different observation times T,
for different detector pairs, and for different strengths g of the stochastic background.

Note: Values of N and A f should be chosen so that the whole frequency range (from DC to the Nyquist
critical frequency) is included, and that there are a reasonably large number of discrete frequency values for
approximating integrals by sums. The final answer, however, is independent of the choice of N and A f, for
N sufficiently large and A f sufficiently small.

/* main program to calculate the theoretical snr */
#include "grasp.h"

#define DETECTORS_FILE "detectors.dat" /x file containing detector info %/

#define SITE1_CHOICE 1 /* 1=LIGO-Hanford site x/
#define SITE2_CHOICE 2 /* 2=LIGO-Livingston site */
#define OMEGA_0 (3.0e—6) /* Omega_0 (for initial detectors) */
#define F_LOW 0.0 /* minimum frequency (in Hz) */
#define F_HIGH (1.0e+4) /* maximum frequency (in Hz) */
#define T (1.0e+7) /* total observation time (in sec) */
#define N 40000 /* number of frequency points */
#define DELTA_F 0.25 /* frequency spacing (in Hz) =/

int main(int argc,char sxargv)

{

double mean,variance, stddev,snr;

float sitel_parameters[9],site2 parametersi9];
char sitel_name[100],noisel_file[100],whitenl file{100];
char site2_name[100],noise2_file[100],whiten2.£ile[100];

double *powerl, xpower2;
double xgammal2l;

/* ALLOCATE MEMORY =/

powerl=(double *)malloc(Nssizeof (double));
power2=(double x)malloc (Nxsizeof (double)}:;
gammal2=(double *)malloc (Nxsizeof (double)};

/* CALL DETECTOR_SITE() TO GET SITE PARAMETER INFORMATION */

detector_site (DETECTORS_FILE, SITE1.CHOICE, sitel_parameters, sitel name,
noisel_file,whitenl_file);

detector._site (DETECTORS_FILE, SITE2.CHOICE, site2_parameters,site2_name,
noise2_file,whiten2_file);
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/* CALL NOISE_POWER() AND OVERLAP() * /

noise.power (noisel_file,N,DELTA_F, powerl) ;
noise_power(noise2_file,N,DELTA_F, power2) ;

overlap (sitel.parameters,site2_parameters,N,DELTA_F,gammal2);

/ * CALCULATE MEAN, VARIANCE, STDDEV, AND SNR x /
mean=0MEGA._0xT;

-variance=calculate_var (N, DELTA-F, OMEGA-0, F_LOW, F_HIGH, T, gammal2,

powerl, power2);
stddev=sgrt{variance);
snr=mean/stddev;

/* DISPLAY RESULTS */

printf("\n");

printf (*Detector site 1 = %s\n",sitel_name);
printf ("Detector site 2 = %$s\n",site2_name);
printf ("Omega_0 = %e\n",OMEGA_0) ;
printf("f_low = %e Hz\n",F_LOW);
printf("f_high = %e Hz\n",F_HIGH);
printf("Observation time T = %e sec\n",T);
printf ("Theoretical S/N = %e\n",snr);
printf("\n");

return O;
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7.21 Example: omega.min program

The example program described in the previous section calculates the theoretical signal-to-noise ratio after
a total observation time T, for a given pair of detectors, and for a given strength Jg of the stochastic
background. A related—and equally important—question is the inverse: “What is the minimurmn value of
Qo required to produce a given SNR after a given observation time 7'?” For example, if SNR = 1.65,
then the answer to the above question is the minimum value of )y for a stochastic background that is
detectable with 95% confidence after an observation time T'. The following example program calculates and
displays this 95% confidence value of Qg for the inital Hanford, WA and Livingston, LA LIGO detectors, for
approximately 4 months (T = 1.0 x 107 seconds) of observation time. (The answer is o = 2.87 x 10-6))
Again, we are assuming in this example program that the stochastic background has a constant frequency
spectrum: Qg (f) = Qo for 5 Hz < f < 5000 Hz. By modifying the parameters in the #define
statements listed at the beginning of the program, one can calculate and display the minimum required (2p’s
for different detector pairs, for different signal-to-noise ratios, and for different observation times T'.
Note: As shown in Sec. 7.18, the squared signal-to-noise ratio can be written in the following form:

2 _ T3
TA+BQ+COR

(SNR) (7.21.1)

where A, B, and C are complicated expressions involving integrals of the the overlap reduction function
and the noise power spectra of the detectors, but are independent of T" and . Thus, given SNR and T,
Eq. (7.21.1) becomes a quadratic for {2¢:

aQ2+bQ+c=0, (7.21.2)
which we can easily solve. It is this procedure that we implement in the following program.

/* main program to calculate the minimum detectable omega. 0 */
$include “grasp.h"

#define DETECTORS.FILE "detectors.dat" /x file containing detector info x/

#define SITE1_CHOICE 1 /* 1=L1GO-Hanford site =/
#define SITE2_CHOICE 2 /* 2=L1GO-Livingston site /
#define SNR 1.65 /* 1.65=SNR for 95% confidence */
#define F_LOW 0.0 /* minimum frequency (in Hz) =/
#define F_HIGH (1.0e+4) /* maximum frequency (in Hz) =/
#define T (1.0e+7) /* total observation time (in sec) =/
#define N 40000 /# number of frequency points %/
#define DELTA_F 0.25 /* frequency spacing (in Hz) x/

int main(int argc,char sxargv)
int i;
float £;

double factor,£3,f£6,£9,£12,pl,p2,92;
double intl,int2,int3,int4;
double a,b,c,omega.0;

float sitel_parameters([9],site2_parameters[9];
char sitel_name[100],noisel.file(100] ,whitenl_£ile[100];
char site2_name{100],noise2_file[100],whiten2_£ile{1001};
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double xpowerl, xpower2;
double xgammal2;

/* ALLOCATE MEMORY =/

powerl=(double x)malloc (Nxsizeof (double));
power2=(double x)malloc (Nxsizeof (double));
gammal2=(double *)malloc (Nxsizeof (double));

/* CALL DETECTOR_SITE() TO GET SITE PARAMETER INFORMATION * /

detector-site (DETECTORS.FILE,SITE1_CHOICE, sitel_parameters,sitel_name, -
noisel_file,whitenl_file);

detector_site (DETECTORS.FILE, SITE2.CHOICE, site2_parameters, site2_name,
riocise2_file,whiten2_£file);

/* CALL NOISE_POWER() AND OVERLAP() »/

noise_power (noisel_file,N,DELTA_F, powerl) ;

noise_power (noise2_file,N,DELTA_F, power2) ;

overlap (sitel.parameters, site2_parameters,N,DELTA_F,gammal2) ;

/* CALLCULATE INTEGRALS FOR VARIANCE =/
intl=int2=int3=int4=0.0;

for (i=1;i<N;i++) { /= start sum ati=1to avoid possible division */
/* by 0 (e.g., if f_low=0) %/
f=1xDELTA_F; ‘
if (F.LOW<=f && f<=F_HIGH) {
f3=fxfxf;
f6=f3xf3;
£9=£6x£3;
£12=f9%f3;
g2=gammal2 [i]*gammal2 [i];
pl=powerl[i];
p2=power2[i];

int1+=DELTA_F*g2/ (£6*plx*p2);
int2+=DELTA.Fxg2/ (£9*pl*plip2) ;
int3+=DELTA_F*g2/ (£9*pl*p2*p2) ;
. int4+=DELTA_Fxg2*(1.0+g2)/(£124pl*plp2%p2) ;
}
}

/* CALCULATE COEFFICIENTS OF QUADRATIC EQUATION =/
factor=10.0xM PI«M_PI/(3.0+xHUBBLE+HUBBLE) ;

a=(int4/intl-2.0xTxintl/(SNR+SNR) )/ (factoxr*factor) ;
b= (int2+int3) /(intlxfactor);
c=1.0;

/% SOLVE THE QUADRATIC x/
omega-0=0.5% (—b—sqgrt (bxb—4x*axc) )} /a;

/* DISPLAY RESULTS =/

printf(*\n");

printf (“Detector site 1 = %¥s\n",sitel_name);
printf ("Detector site 2 = %$s\n",site2_name);
printf("S/N ratio = %e\n",SNR):
printf("f_low = %e Hz\n",F_LOW);

printf (" f_high = %e Hz\n*,F_HIGH);

printf ("Observation time T = %e sec\n",T);
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printf (*Minumum Omega_0 = %e\n",omega.0);
printf("\n");

return 0O;

} =
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7.22 Function: analyze ()

void analyze(int average, float *inl, float *in2, int n, float delta.t, float
f_low, float f.high, double *gammal2, double *whitenl, double *whiten2, int
real_timenoisel, int real_timenoise2, double *powerl, double *power2, double
*signal, double *variance)
This high-level function performs the optimal data processing for the detection of an isotropic and unpolar-
ized stochastic background of gravitational radiation having a constant frequency spectrum: Qg (f) = Qo
for fiow < f < fhign. It calculates the cross-correlation signal value S and theoretical variance o2, taking
as input the continuous-in-time whitened data streams o0; (¢) and o02(¢) produced by two detectors.

The arguments of analyze () are:

average: Input. An integer variable that should be set equal to 1 if the values of the real-time cross-
correlation and/or noise power spectra corresponding to two overlapped data sets are to be averaged.

inl: Input. in1[0. .n-1] is an array of floating point variables containing the values of the continuous-
in-time whitened data stream 0, (¢) produced by the first detector. o1 () is the convolution of detector
whitening filter W1 (t) with the data stream s1(t) := hy(¢) + n1(t), where h;(t) is the gravitational
strain and n,(t) is the noise intrinsic to the detector. These variables have units of rHz (or sec™1/ 2,
which follows from the definition of s, (t) as a strain and Wy (f) as the “inverse” of the square roct of
the noise power spectrum P;(f). in1[i] contains the value of o1 (%) evaluated at the discrete time
t; = iAt, where1 =0,1,--- ,N — 1.

in2: Input. in2[0. .n~1] is an array of floating point variables containing the values of the continuous-
in-time whitened data stream o2(t) produced by the second detector, in exactly the same format as the
previous argument.

n: Input. The number N of data points corresponding to an observation time T := N At, where At is the
sampling period of the detectors, defined below. /N should equal an integer power of 2.

delta_t: Input. The sampling period At (in sec) of the detectors.

£ low: Input. The frequency fiow (in Hz) below which the spectrum Qg ( f) of the stochastic background
is assumed to be zero. fio should lie in the range 0 < fiow < fNyquist» Where fyquist is the Nyquist
critical frequency. (The Nyquist critical frequency is defined by fnyquist := 1/(2A%), where At is
the sampling period of the detectors.) fiow should also be less than or equal to fhigh.

£ high: Input. The frequency fhign (in Hz) above which the spectrum gy (f) of the stochastic back-
ground is assumed to be zero. fyign should lie in the range 0 < fhigh < fNyquist- It should also be
greater than or equal to fiow.

gammal2: Input. gammal2 [0. .n/2-1] is an array of double precision variables containing the values
of the overlap reduction function «(f) for the two detector sites. These variables are dimensionless.
gammal2 [i] contains the value of (f) evaluated at the discrete frequency f; = ¢/(INAt), where
1=0,1,---,N/2 - 1.

whitenl: Input. whitenl [0..n-1] isan array of double precision variables containing the values of
the real and imaginary parts of the spectrum Wl( f) of the whitening filter of the first detector. These
variables have units rHz /strain (or sec™1/2), which are inverse to the units of the square root of the
noise power spectrum P;(f). whitenl[2*1i] and whitenl [2*i+1] contain, respectively, the
values of the real and imaginary parts of Wi (f ) evaluated at the discrete frequency f; = i/(NAt),
where7 =0,1,---,N/2 - 1.
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whiten2: Input. whiten2[0..n~1] is an array of double precision variables containing the values
of the real and imaginary parts of the spectrum W>(f) of the whitening filter of the second detector,
in exactly the same format as the previous argument.

real_timenoisel: Input. Aninteger variable that should be set equal to 1 if the real-time noise power
spectrum Py (f) of the first detector should be calculated and used when performing the data analysis.

real timenoise2: Input. An integer variable that should be set equal to 1 if the real-time noise
power spectrum Py (f) for the second detector should be calculated and used when performing the
data analysis.

powerl: Input/Output. powerl[0..n/2~1] is an array of double precision variables containing
the values of the noise power spectrum Pj(f) of the first detector. These variables have units of
strain?/Hz (or seconds). powerl[i] contains the value of P;(f) evaluated at the discrete fre-
quency f; = i/(NAt), where i = 0,1,---,N/2 — 1. If real time noisel = 1, the values of
powerl[0..n/2-1] are changed to

P(f) = 2 (D), @221

where 31(f) is the Fourier transform of the unwhitened data stream s1(t) at the first detector site. If
real_time noisel # 1, the values of power1[0. .n/2-1] are unchanged.

power2 : Input/Output. power2 [0..n/2-1] is an array of double precision variables containing the
values of the noise power spectrum Py (f) of the second detector, in exactly the same format as the
previous argument.

signal: Output. A pointer to a double precision variable containing the value of the cross-correlation
signal

§:= / df 512() Q1) (1222)

Siow

where 512(f) is the real-time cross-correlation spectrum and Q(f) is the spectrum of the optimal filter
function. S has units of seconds.

variance: Output. A pointer to a double precision variable containing the value of the theoretical
variance o2 of the cross-correlation signal S. o2 has units of sec?.

analyze () is very simple function, consisting primarily of calls to other more basic functions. If
real_time noisel or real_timenoise2 = 1, analyze () calls extractmoise () to obtain the
desired real-time noise power spectra. It then calls extract.s ignal() and optimal_filter() to
obtain the values of §5(f) and Q(f), which are needed to calculate the cross-correlation signal .S, accord-
ing to Eq. (7.22.2). Finally, analyze () calls calculate_var () to obtain the theoretical variance o?
associated with S.

Note: One should call analyze () with average # 1, when one suspects that the current input data
inl[] and in2 [] are not continuous with the data from the previous call to analyze () . This is because
a discontinuity between the “old” and “new” data sets has a tendency to introduce spurious large frequency
components into the real-time cross-correlation and/or noise power spectra, which should not be present.
(See the discussion at the end of Secs. 7.14 and 7.15 for more details.)

Authors: Bruce Allen, ballen@dirac.phys.uwm.edu, and Joseph Romano, romano@csd.uwm.edu

Comments: None.




7.23 Function: prelim stats()

prelimstats(float omega.0, float t,double signal, double variance)
This function calculates and displays the theoretical and experimental mean value, standard deviation, and
signal-to-noise ratio for a set of stochastic background cross-correlation signal measurements, weighting
each measurement by the inverse of the theoretical variance associated with that measurement.

The arguments of prelim.stats () are:

omega_0: Input. The constant value Q) (dimensionless) of the frequency spectrum Qgw(f) for the

stochastic background:
_ Q0 flow < f < fhigh
Ogw(f) = { 0 otherwise.

Qo should be greater than or equal to zero.
float t: Input. The observation time T (in sec) of an individual measurement.

double signal: Input. The value S of the current cross-correlation signal measurement. This variable
has units of seconds.

double variance: Input. The value o2 of the theoretical variance associated with the current cross-

correlation signal measurement. This variable has units of sec2.
prelim_stats () calculates the theoretical and experimental mean value, standard deviation, and
signal-to-noise ratio, weighting each measurement S; by the inverse of the theoretical variance cr;-" associated
with ‘that measurement. This choice of weighting maximizes the theoretical signal-to-noise, allowing for

possible drifts in the detector noise power spectra over the course of time. More precisely, if we let S;

(i = 1,2,---,n) denote a set of n statistically independent random variables, each having the same mean
value
pe=(Si), (7.23.1)
but different variances
of 1= (SF) — (5:)?, (1.23.2)
then one can show that the weighted-average
n 3 .
S .= -ZE,LJ—AQ - (1.23.3)
Zj:l /\j .

has maximum signal-to-noise ratio when A; = o; 2, Roughly speaking, the above averaging scheme assigns
more weight to signal values that are measured when the detectors are “quiet,” than to signal values that are

measured when the detectors are “noisy.”
The values calculated and displayed by prelim_stats () are determined as follows:

(i) The total observation time is
Tt :=nT, (7.23.4)

where n is the total number of measurements, and 7 is the observation time of an individual measure-
ment.

(ii) The theoretical mean is given by the product

Htheory = QT (7.23.5)

This follows from our choice of normalization constant for the optimal filter function. (See Sec. 7.16
for more details.)
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(iii) The theoretical variance is given by

n
O-gheory = n -3 (7236)
i=10¢

Note that when the detector noise power spectra are constant, a? =: g? fori = 1,2,---,n and
atzheory = 2. This case arises, for example, if we do not calculate real-time noise power spectra, but

use noise power information contained in data files instead.

(iv) The theoretical signal-to-noise ratio (for n measurements) is given by
Htheor

SNRtheory = VI —— . (7.23.7)

Otheory

The factor of 1/n comes from our assumption that the n individual measurements are statistically
independent.

(v) The experimental mean is the weighted-average

n g._zsi ’
Hexpt = ___Ez:}l_l_ ;_T——2 . (7.2?.8)
j=1%j
(vi) The experimental variance is given by
-2 a2
2 07 °5;
Coent 1= —————_— — u? .- (7.23.9)
exp 2] 10 2 exp

When the weights o, 2 are constant, the above formula reduces to the usual expression

13\
2 — .
expt - § :S (n z§=1 Sz) (7.23.10)

for the variance of n measurements .S;.
(vil) The experimental signal-to-noise ratio is given by

SNReypt = /1 E22E (7.23.11)
Oexpt

(viii) The relative error in the signal-to-noise ratios is

SNRtheory — SNRexpt
-100% . 7.23.12
SNRtheory ’ ( )

relative error :=

The value of this quantity should be on the order of (1/SNRiheory) - 100%.

Note: prelim_stats () has internally-defined static variables which keep track of the number of
times that it has been called, the sum of the weights, the sum of weights times the signal values, and the sum
of the weights times the signal values squared.

Authors: Bruce Allen, ballen@dirac.phys.uwm.edu, and Joseph Romano, romano@csd.uwm.edu

Comments: None.
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7.24 Function: statistics ()

void statistics(float *input, int n, int numbins)
This function calculates and displays the mean value, standard deviation, signal-to-noise ratio, and con-
fidence intervals for an input array of (assumed) statistically independent measurements z; of a random
variable z. This function also write output data to two files: histogram.dat and gaussian.dat.
The first file contains a histogram of the input data z;; the second file contains the Gaussian probability
distribution that best matches this histogram. (See Sec. 7.22 for more details.)

The arguments of statistics () are:

input: Input. input [0..n-1] is an array of floating point variables containing the values of a set of
(assumed) statistically independent measurements x; of a random varable z.

n: Input. The length N of the input data array. If N < 2, statistics () prints out an error message
and aborts execution.

num.bins: Input. The number of bins to be used when constructing a histogram of the input data z;.

statistics () calculates and displays the mean value and standard deviation of the input data z;.
It also calculates and displays the signal-to-noise ratio and 68%, 90%, and 95% confidence intervals for
the input data, assuming that the x; are statistically independent measurements of a random variable z.
statistics () also writes output data to two files:

(i) histogram.datis a two-column file of floating point numbers containing a histogram of the input
data z;. The length of each column of data is equal to num bins, and the histogram is normalized
so that it has unit area.

(ii) gaussian.dat is a two-column file of floating point numbers containing the Gaussian proba-
bility distribution function that best matches the histogram of the input data z;. Each column of
gaussian.dat has a length equal to 8192. There are also three markers included in the Gaussian
probability distribution data: One marker for the mean, and two for the £ one standard deviation
values of x. :

Authors: Bruce Allen, ballen@dirac.phys.uwm.edu, and Joseph Romano, romano@csd.uwm.edu

Comments: In the context of the stochastic background routines, statistics () is used to perform a
statistical analysis of the cross-correlation signal values S; calculated by the function analyze ().
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7.25 Example: simulation program

By combining all of the functions defined in the previous sections, one can write a program to simulate the
generation and detection of a stochastic background of gravitational radiation having a constant frequency
spectrum: Qgw(f) = Qo for fiow < f < fuigh- The following example program is a simulation for
the initial Hanford, WA and Livingston, LA LIGO detectors. The parameters chosen for this particular
simulation are contained in the #define statements listed at the beginning of the program. By changing
these parameters, one can simulate the generation and detection of a stochastic background for different
stochastic backgrounds (i.e., for different values of Qo, fiow, and fnigh) and for different detector pairs.
The number of data points, the sampling period of the detectors, and the total observation time for the
simulation, etc. can also be modified. Preliminary statistics are displayed during the simulation. In addition,
a histogram and the best-fit Gaussian probability distribution for the output data are stored in two files:
histogram.dat and gaussian.dat. Sample output produced by the simulation and a plot of the
histogram and best-fit Gaussian data are given in Sec. 7.26.

/* main program for stochastic background simulation */
#include "grasp.h"

#define DETECTORS_FILE "detectors.dat® /x file containing detector info */

#define SITEL_CHOICE 1 /* identification number for site 1 =/
#define SITE2_CHOICE 2 /* identification number for site 2 %/
#define FAKE.SB 1 /* 1: simulate stochastic background */

/* 0: stochastic background from real data */
#define FAKE_NOISEL 1 /* 1: simulate detector noise at site 1 */

/* 0: detector noise from real data at site 1 x/
#define FAKE NOISE2 1 /* 1: simulate detector noise at site 2 */

: /* 0: detector noise from real data at site 2 */

#define N 65536 /* number of data points %/
#define DELTA.T (5.0e-5) /* sampling period (in sec) */
#define OMEGA-0 (1.0e-3) /* omega_0 x/
#define F_LOW (0.0) /* minimum frequency (in Hz) */
#define F_HIGH (1.0e4d) /* maximum frequency (in Hz) =/

#define REAL_TIME_NOISEl 0  /x l: use real-time noise atsite 1 x/
/* 0: use noise information from data file »/
#define REAL_TIME_NOISE2 0  /x l: use real-time noise at site 2 %/
_ /* 0: use noise information from data file */
#define NUM_RUNS 2500 /* number of runs (for simulation) */
#define NUM_BINS 200 /* number of bins (for statistics) =/

int main(int axrgc,char =sx*xargv)
int i,pass_test=0,previous_test,runs_completed=0,seed= —17;
float delta-f;
double signal,variance;

float sitel.parameters[9],site2_parameters[9];
char sitel-name[100],noisel_file[100],whitenl _file[100];
char site2_name{100]},noise2.file(100],whiten2_£ile[100];

double *generation_powerl,*generation_power2;
double *xanalysis_powerl,*analysis_power2;
double xwhitenl,*whiten2;

double xgammall2;

float =xoutl,xout2;

float =xstats;
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/* ALLOCATE MEMORY =/

generation_powerl={(double *)malloc((N/2)xsizeof (double)});
generation.power2=(double *)malloc((N/2)*sizeof (double));
analysis_powerl=(double x)malloc((N/2)xsizeof (double));
analysis_power2=(double x)malloc((N/2)xsizeof (double));
whitenl=(double *)malloc (Nk«sizeof (double));
whiten2=(double *)malloc(N*sizeof (double));

gammal2= (double *)malloc{ (N/2)*sizeof (double));

“outl=(float x)malloc (Nxsizeof (float));

out2=(float *)malloc(Nxsizeof (float));
stats=(float x¥)malloc (NUM_RUNS*sizeof (float)):;

/* INITIALIZE OUTPUT ARRAYS TO ZERO */
for (i=0;i<N;i++) outl[il=out2[i]=0.0;

/* CALL DETECTOR_SITE() TO GET SITE PARAMETER INFORMATION */

detector_site (DETECTORS_FILE, SITE1.CHOICE, sitel_parameters,sitel._name,
noisel_file,whitenl_file);

detector.site (DETECTORS.FILE, SITE2.CHOICE, site2_parameters, site2_name,
noise2_file,whiten2._file);

/* DISPLAY STOCHASTIC BACKGROUND SIMULATION PARAMETERS x*/

printf(“\n");

printf (*STOCHASTIC GRAVITATIONAL WAVE BACKGROUND SIMULATION\n"):
printf(“\n");

printf (“PARAMETERS:\n") ;

printf ("Simulated stochastic background (0=no,l=yes): %d\n",FAKE_SB);
printf("Simulated detector noise at site 1 (0=no,l=yes): %d\n",FAKE_NOISEl) ;
printf ("Simulated detector noise at site 2 (0=no,l=yes): %d\n",FAKE_NOISE2) ;
printf ("Real-time noise at site 1 (0=no,l=yes): %d\n", REAL.TIME_NOISEl});
printf ("Real-time noise at site 2 (0=no,l=ves): %d\n", REAL_TIME_NOISE2);
printf ("Detector site 1 = %s\n",sitel.name);

printf (“Detector site 2 = %s\n",site2_name);

printf ("Sampling period = %e seconds\n",DELTA.T);

printf ("Number of data points = %d\n",N);

printf ("Omega_0 = %e\n",OMEGA.0);

printf(*f_low = %e Hz\n",F_LOW);

printf("f_high = %e Hz\n",F_HIGH);

printf ("Number of runs (for simulation) = %d\n",NUM.RUNS) ;

printf ("Number of bins (for statistics) = %d\n",NUM_BINS):

printf (*\n");

/* CONSTRUCT NOISE POWER (FOR SIGNAL GENERATION), WHITENING FILTER =/
/#* AND THE OVERLAP REDUCTION FUNCTION x/

delta_f=(float) (1.0/(N*DELTA T));

noise_power (noisel_file,N/2,delta.f,generation_powerl) ;
noise_power (noise2_file,N/2,delta_f,generation power2);
whiten(whitenl_ file,N/2,delta-f,whitenl);

whiten (whiten2_file,N/2,delta_£,whiten2);
overlap(sitel_parameters,site2_parameters,N/2,delta_f,gammal2);

/* CONSTRUCT NOISE_POWER (FOR SIGNAL ANALYSIS) IF REAL-TIME NOISE x/
/* IS NOT DESIRED =/
if (REAL_TIME_NOISE1l!=1) {

for (i=0;i<N/2;i++) analysis_.powerl(i]l=generation_powerl[i];
}
if (REAL_TIME_NOISE2!=1) {

for (i=0;i<N/2;i++) analysis_power2[i]=generation_power2[i];
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}

/* PERFORM THE SIMULATION =/
For (i=1;i<=NUM_RUNS;i++) {

/* SIMULATE STOCHASTIC BACKGROUND AND/OR DETECTOR NOISE, IF DESIRED =/
if (FAKE_SB==1 || FAKE_NOISEl==1 || FAKE_NOISE2==1) {
monte_carlo (FAKE_SB, FAKE_NOISEl, FAKE_NOISE2,N,DELTA_T,OMEGA_O,
F_LOW,F_HIGH, gammal2,
generation_powerl,generation_power2,
whitenl,whiten2,outl,out2, &seed);

}

/* TEST DATA TO SEE IF GAUSSIAN */
previous_test=pass_test;
pass_test=test_datal2 (N,outl,out2);

if (pass-test==1) {

/* ANALYZE DATA =/

analyze (previous_test,outl, out2,N,DELTA_T, OMEGA_0,F_.LOW, F_HIGH,
gammal2,whitenl,whiten2,
REAL_TIME_NOISEl,REAL_TIME_NOISE2,
analysis_powerl,analysis_power2,&signal, &variance);

/* DISPLAY PRELIMINARY STATISTICS =/
prelim stats (OMEGA.0,N*DELTA_T, signal, variance) ;

/* UPDATE RUNS COMPLETED AND STATS ARRAY FOR FINAL STATISTICS x/
runs.completed++;
stats [runs_completed—1]l=signal;

}
} /* end for (i=1;i<+NUM_RUNS;i++) */
/* FINAL STATISTICS »/
printf(*\n");

statistics (stats, runs_completed, NUM_BINS) ;

return 0;
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7.26 Some output from the simulation program

Below is a sample of the output that is produced during the execution of the stochastic background simulation
program described in Sec. 7.25. Also shown, in Fig. 54, is a plot of the histogram and best-fit Gaussian
probability distribution that were stored in data files by the function statistics (). For this particular
simulation, the total number of runs was equal to 1271 and the number of bins for the histogram was equal
to 200.

total number of runs completed=815

total observation time =2.670592e+03 seconds
signal value=2.659629e—03

experimental mean=3.360998e—-03

experimental stddev=1.21456%e—02
experimental SNR=7.899961e+00

theoretical mean=3.276800e—03

theoretical stddev=1.112916e—-02

theoretical SNR=8.405551e+00

relative error in SNR=6 percent

experimental omega_0=1.025695e—-03
theoretical omega_0=1.000000e—03

theoretical omega-0 for detection with 95 percent confidence=1.96298%e—04

total number of runs completed=816

total observation time =2.673869e+03 seconds
signal value=-—3.592409e—-03

experimental mean=3.352476e-03

experimental stddev=1.214068e—02
experimental SNR=7.888017e+00

theoretical mean=3.276800e—03

theoretical stddev=1.112916e-02

theoretical SNR=8.410706e+00

relative error in SNR=6 percent
experimental omega-0=1.023095e—03
theoretical omega-0=1.000000e—03

theoretical omega_0 for detection with 95 percent confidence=1.961785e—04

total number of runs completed=817

total observation time =2.677146e+03 seconds
signal value=—7.967954e—03

experimental mean=3.338620e—03

experimental stddev=1.213970e—-02
experimental SNR=7.860860e+00

theoretical mean=3.276800e—03

theoretical stddev=1.112916e—02

theoretical SNR=8.415858e+00

relative error in SNR=6 percent
experimental omega-0=1.018866e—03
theoretical omega.-0=1.000000e—03

theoretical omega-0 for detection with 95 percent confidence=1.960585e~04

Data segment 1 failed Gaussian test!

total number of runs completed=818

total observation time =2.680422e+03 seconds
signal value=1.447747e-02

experimental mean=3.352238e-03

experimental stddev=1.213852e—-02
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experimental SNR=7.898519e+00

theoretical mean=3.276800e—03

theoretical stddev=1.1129816e~02

theoretical SNR=8.421007e+00

relative error in SNR=6 percent

experimental omega.0=1.023022e—03

theoretical omega_0=1.000000e—03

theoretical omega.0 for detection with 95 percent confidence=1.959386e-04

total number of runs completed=819

total observation time =2.683699e+03 seconds
signal value=3.647211e-03

experimental mean=3.352598e—03

experimental stddev=1.213111le-02
experimental SNR=7.909022e+00

theoretical mean=3.276800e—03

theoretical stddev=1.112916e-02

theoretical SNR=8.426153e+00

relative error in SNR=6 percent

experimental omega_-0=1.023132e-03
theoretical omega.0=1.000000e—03

theoretical omega_0 for detection with 95 percent confidence=1.95818%e-04

total number of runs completed=820

total observation time =2.686976e+03 seconds
signal value=—5.958459e—-03

experimental mean=3.341243e-03

experimental stddev=1.212807e—02
experimental SNR=7.889026e+00

theoretical mean=3.276800e-03

theoretical stddev=1.112816e-02

theoretical SNR=8.431295e+00

relative error in SNR=6 percent

experimental omega.0=1.019666e—03
theoretical omega_0=1.000000e—03

theoretical omega-0 for detection with 95 percent confidence=1.956995e—04

total number of runs completed=821

total observation time =2.690253e+03 seconds
signal value=1.057661le-02

experimental mean=3.350056e—03

experimental stddev=1.212331e—02
experimental SNR=7.917764e+00

theoretical mean=3.276800e—~03

theoretical stddev=1.112916e—02

theoretical SNR=8.436435e+00

relative error in SNR=6 percent

experimental omega._0=1.022356e—03
theoretical omega.0=1.000000e—03

theoretical omega.0 for detection with 95 percent confidence=1.955803e—04

Data segment 2 failed Gaussian test!

total number of runs completed=822

total observation time =2.693530e+03 seconds
signal value=6.683305e—03

experimental mean=3.354111e—03

experimental stddev=1.211649e—02
experimental SNR=7.936639e+00




theoretical mean=3.276800e—03

theoretical stddev=1.112916e—02

theoretical SNR=8.441571e+00

relative error in SNR=5 percent

experimental omega_0=1.023593e-03

theoretical omega.0=1.000000e—03

theoretical omega_0 for detection with 95 percent confidence=1.954613e—04

Histogram and Gaussian Probability Distribution

(for the initial LIGO detectors simulation)

—0.06 -0.04 -0.02 0.00 0.02 0.04 0.06

Figure 54: Histogram of the measured cross-correlation signal vaues, and the corresponding best-fit Gaus-
sian probability distribution for the stochastic background simulation.
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8 GRASP Routines: Supernovae and other transient sources




9 GRASP Routines: Periodic and quasi-periodic sources
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10 GRASP Routines: General purpose utilities

This section includes general purpose utility functions for a variety of purposes. For example, these include
functions for error handling, to calculate time-averaged power spectra, and functions to graph data, listen to

data, etc.




10.1 GRASP Error Handling

GR_error is the GRASP error reporting module. It has two abstract interfaces which insulate the GRASP
library and the programs which use it from the details of how GRASP will report errors and how the program
will handle them. The internal interface provides GRASP itself with a standard method to report errors. The
external interface allows programs which use GRASP to specify exactly how error reports are to be handled.
In addition, a default set of handling routines is provided for printing error messages in a standard format to
stderr or a log file.

- 10.1.1 Reporting Errors In GRASP Code

Reporting errors from within GRASP code is simple: every legal GRASP error report consists of exactly
one call to GR.start_error (), zero or more calls to GR_report_error (), and exactly one call to
GR-end error (). Failing to call the functions in exactly this order will cause an assert to fail and the
program to abort; this allows the code in the handler routines to safely assume that they will be called in the
correct order.

GR_start_error () takes four arguments specifying the name of the function in which the error
occured, the RCS ID of the GRASP file which contains the function’s source, the name of that file, and
the line number on which the error report began. In practice providing this data is easy. Every GRASP
file should declare a static string "rcsid’ containing the ID, and ANSI C defines the macros _FILE__ and
-LINE__ which expand to the file name and line number, respectively. Within a given file only the function
name parameter will change from call to call.

The arguments to GR.report_error () are exactly the same as those to printf(): a familiar printf-style
format string followed by a variable number of arguments. There is no file pointer a’ la fprintf() because the
errors may not be printed to a file or the screen but handled in some completely different way determined
by the calling program. Repeated calls are a convenient way to build up the complete message just as with
printing to the screen with printf(). Finally, a call to GR_end_error () ends the report. It requires no
arguments.

The GRASP source code provides many examples of the use of these functions, and they are docu-
mented by example in Section 10.1. Because of the stereotyped calling sequence and arguments involved,
an efficient technique for GRASP library programmers is to paste in the calls from another location in the
source file or from a handy template kept in a scratch file so that only the function name and actual message
needs editing for each case.

10.1.2 How GRASP Error Reports Are Handled

Programs vary widely in how they notify the user of errors. A simple command-line program will probably
print the messages to the screen or a file, while a program with a graphical interface will likely send them to
an error log window or to a dialog window. GRASP allows arbitrary error handlers to be specified, but the
default provided will probably suffice for most GRASP application programmers.

Calling GR_set_errors_enabled() with an argument of false (zero) will suppress all GRASP error mes-
sages regardless of the actual handlers used, while a true argument will enable them again. GR_errors_enabled()
returns true if errors are currently enabled and false otherwise. Errors always start out enabled unless the
environment variable ’'GRASP_NODEBUG"’ exists (its value is irrelevant), in which case they are disabled
by default. Errors may be disabled within a handler, but the change will not take place until the next
GR_start_error () call

By default, the default error handlers print errors to stderr. The function, file, and line number are re-
ported in a standard header format, followed by the message itself printed as though each call to GR_report_error(format,
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args) was a call to fprintf(stderr, format, args), and ending with the RCS ID of the file containing the func-
tion source. If the environment variable 'GRASP_ERRORFILE’ exists and its value is the pathname of
a file which can be opened for appending that filename is used instead of stderr. Finally, if in addition
’GRASP_ERRORFILE_OVERWRITE’ exists (its value is irrelevant) the file is overwritten rather than ap-
pended to.

10.1.3 Customizing The Default Handlers

GRASP error reports may be customized by modifying the behavior of the default handler functions or by
replacing them entirely. By default, when GR_start_error () is called it checks to see if there is a default
file name set; if so, that file is opened for appending. If not (that is, if the filename has been set to NULL),
or if the file cannot be opened, it then checks to see if an error FILE* has been set. If so, that file is used. If
not, then the handler fails since it has no way to report the error. The default GR_report_error () prints
to whatever file GR_.start_error () chose to use, and GR_end_error () prints the RCS ID. If the file
was opened by name in GR_start._error () then GR.end_error () also closes it.

The default FILE* can be set and examined with GR_set_error_file() and GR_get_error_file(), and the
default filename can be set and examined with GR_set_error_file_name() and GR_get_error_file_name(). The
default behavior can be restored with GR_set_error_file(stderr) and/or GR_set_error_file_name(NULL.). These
functions may be called at any time except during an error report (between the calls to GR_start_erroz ()
and GR_end_errox () ), when an assert would fail. (This is a non-issue in practice because the file/filename
could only be changed during a report if the file or filename is set in GRASP code itself, if the error reporting
functions are called in user code as well as in GRASP, or if a custom handler changes the file/filename and
then calls the default handler. The first possibility is strictly forbidden, and the others are discouraged
because they can lead to confusion and subtle bugs.) . v

~ The reason for this somewhat complex system is safety. If a specified file name cannot be opened errors
can still be reported to the FILE*, probably stderr. If an error file name has been set, the file is opened and
closed for each report so that if the program crashes as much of the error log as possible is preserved on
disk.

When using GR _set_error_file(), the calling program is responsible for opening the file for writing before
the call and closing it (if necessary); GRASP will simply assume that the file is always available for output.
A NULL file pointer is allowed, in which case calls to the default error handler will cause an assert to fail

unless an error file name has been set.

When a file name is set with GR_set_error_file_name(), GRASP immediately attempts to open the file.
If the erasefile parameter is TRUE (nonzero) the file will be opened for writing, if it is false (zero) it will
be opened for appending. If the open succeeds, the name is copied and stored for future use (this means
that the function can be safely called with locally allocated storage), an identifying start-up message and the
time is written to the log file (even if error reporting is disabled), the file is closed, and the function returns
true. When appending to a non-empty file it also writes a separator line so that reports from different runs
are more easily distinguished. If the open fails, the filename is left unchanged (if a previous one existed),
an error is reported in the usual way (unless error messages are suppressed), and the function returns false.
Setting a NULL filename means that the FILE* should be used instead; the erasefile parameter is ignored in
this case and the call always succeeds. As with GR_set_error_file(), the filename may not be changed during
a report.

It is easy to see how the default behavior is obtained using these handlers. The default FILE* is stderr;
conceptually a call to GR_set_error.file(stderr) occurs before the program begins. Similarly, a conceptual
call to GR_set_error_file_name(filename, erase) occurs before program execution, with filename having the
value of the environment variable GRASP_ERRORFILE if it exists and NULL otherwise, and erase true if
the environment variable GRASP_ERRORFILE_OVERWRITE exists and false otherwise.
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10.1.4 Writing Custom Error Handlers

Internally, GR-error keeps three pointers of type GR _start_error_type, GR _report_error.type, and GR_end_error_type
(defined in grasp.h) which point to the current start_error, report_error, and end_error handlers, respectively.

When the three error handlers GR_start_erroxr (), GR-report_error (), and GR_end_error ()

are called, they in turn check to see that they are called in the proper order and then call the function
pointed to by the corresponding function pointer if (and only if) the function pointer is non-NULL (so

_that for convenience if a particular handler is not neccessary a dummy._routine is not required)-and if-er--

rors are currently enabled (so disabling errors works regardless of the handler). By default the handler
pointers simply reference GR_default_start_error(), GR _default_report_error(), and GR_default_end_error(),
which actually implement the default behavior described above. For convenience they may be restored with

GR restore_default_handlers() as well as GR _set_error_handlers().

The functions GR_set_error_handlers() and GR_get_error_handlers() set and examine the handler’s cur-
rent values, so that by writing the proper functions GRASP’s error reports can be customized in any way
desired. The GR...._error.type typedef’s in grasp.h illustrate the proper function prototypes. Note that
GR_report_error_type functions take a va_list as their second argument rather than ’...’; for convenience
GR.report_error () creates the list and calls va_start() beforehand and calls va_end() afterwards so the
handler need only deal with the list itself. In the common case where the message will simply be printed
to a file, the va_list may be passed directly to one of the v...printf functions. The only restriction is that-the
handlers may not be changed between calls to GR_start_error () and GR_end_error (), but just as
when changing the default error files this should not be a problem in practice.

The default handlers in src/utility/GR-error.c and their supporting routines are good exam-
ples of how GRASP error handlers are written. They are special only in that they are initialized and set
automatically; otherwise, they use only features available to any handler. Most of their code provides the
ability to switch files easily and safely; writing a custom handler that does not need this generality is quite
straightforward. GR_is_reporting() returns true if a report is in progress and is sometimes useful when writ-
ing custom handlers.




10.1.5 Functions: GR_start_error (),GR.report_error (),GR.end-error ()

These three functions are the GRASP error handlers. Their use is best illustrated by example. A typical
usage is shown below — a fragment taken from a fictitous routine called “trouble ()”.

GR_start_error("trouble()",rcsid,__FILE_ ,_ LINE_ );

GR_report_error ("The GR_report_error () function is like printf().\n");
GR_report_error ("It can have no arguments.\n");

GR_report_error ("It can have a float argument %$f\n",x1);

GR_report_error ("Or any mixture of valid types %d %d %$s\n",1l,12, stringptr);
GR_end_error () ;

The use of these three routines as shown will print out, for example:

GRASP: Message from function trouble() at line number 123 of file "source.c".
The GR_report_error() function is like printf ().

It can have no arguments.

It can have a float argument 5.43210

Or any mixture of valid types -2 17 the string pointed to by the pointer
$Id: man_utility.tex,v 1.20 1997/08/25 19:16:06 ballen Exp §

$Name: RELEASE_1_5_2 $

In particular, the line number, release number, and file name are all filled in automatically. The environment
variables that govern the behavior of the default error handler are shown in Table 10 below.

Environment variable. How to set, and effect obtained.
GRASP NODEBUG setenv GRASP NODEBUG

tarns off error messages.
GRASP.ERRORFILE setenv GRASP_ERRORFILE thisfile

sends errors to file “thisfile”.
GRASP_ERRORFILE_OVERWRITE setenv GRASP_ERRORFILE.OVERWRITE
errors don’t accumulate in file.

Table 10: The behavior of the error handler is determined by three environment variables, which can be
set and un-set using the shell commands setenv and unsetenv. These permit the error messages to be
turned off, saved in a file, and contro] the file name and its over-write properties.
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10.2 Function: grasp_open ()

FILE* grasp.open(const char *environmentvariable,char *shortpath)

This routine provides a simple mechanism for obtaining the pointer to a data or parameter file. It
is called with two character strings. One of these is the name of an environment variable, for example
GRASP_DATAPATH or GRASP_PARAMETERS. The second argument is the “tail end” of a path name. The
routine then constructs a path name whose leading component is determined by the environment variable
and whose tail end is determined by the short path name. grasp-open () opens the file (printing useful
error messages if this is problematic) and returns a pointer to the file. S '

The arguments are:

environment.variable: Input. Pointer to a character string containing the name of the environment
variable.

shortpath: Input. Pointer to a character string containing the remainder of the path to the file.

As a simple example, if the environment variable GRASP_PARAMETERS is set to
/usr/local/data/14nov94 .2 and one calls
grasp-open ( "GRASP_PARAMETERS ", "channel. 0" ), then the routine opens the file
/usr/local/data/l4nov94.2/channel. 0 and returns a pointer to it.
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10.3 Function: avg_spec ()

void avg.spec (float *data,float *average, int npoint, int *reset, float srate, floa.
decaytime, int windowtype)

This routine calculates the power spectrum of the (time-domain) input stream data[ ], averaged over
time with a user-set exponential decay, and several possible choices of windowing.

The arguments are:

-

data: Input. The time domain input samples are contained in data[0. .N-1], with the data sample at
time ¢ = n/At contained in data[n].

average: Output. The one sided power spectrum is returned in average [0, . .N-1]. Note that only
after the second call to avg_spec () will average[ ] be non-zero. The value of average [m]
is the average power spectrum at frequency

m X srate
f= N (103.1)
This is twice the number of distinct frequency values which appear in the FFT of N samples; this is
because of the overlapping technique described below. We do not output the value of the average at
the Nyquist frequency, which would be the (non-existent) array element average [N]. The units
of average[ ] are data[]2 /Hz. Note: the elements of average [ ] must not be changed in
between successive calls to avg_spec ().

npoint: Input. The number of points npoint = NN input. This must be an integer power of two.

reset: Input. If set to zero, then any past contribution to the average power spectrum is initialized to
zero, and a new average is begun with the current input data.

srate: Input. The sample rate 1/At of the input data, in Hz.

decaytime: Input. The characteristic (positive) decay time 7 in seconds, to use for the moving (exponentially-
decaying) average described below. If no averaging over time is wanted, simply set decaytime to
be small compared to NAL.

windowtype: Input. Sets the type of window used in power spectrum estimation. Rectangular win-
dowing (i.e., no windowing) is windowtype=0, Hann windowing is windowtype=1, Welch win-
dowing is windowtype=2 and Bartlett windowing is windowtype=3. See [1] for a discussion of
windowing and the definitions of these window types.

The methods used in this routine are quite similar to those used in the overlap=1 version of the
Numerical Recipes [1] routine spctrm (), and the reader interested in the details of this routine should
first read the corresponding section of [1]. A continuous sample of the input data of twice the length of the
array data[ ] is maintained by avg_spec (). Thus, each element of the array data [ ] utilized twice;
once with the first point data [ 0] right in the middle of the time-domain window function, and once more
with that same point right at the beginning of the window function. Note that to reproduce (exactly) the
procedure described in Numerical Recipes [1] one must have npoint=M where M is the variable used in
the procedure spctrm (), and the decay time must be very large (so that the two successive spectra are
equally weighted). For example, if you are doing analysis with 2048 samples, using that as the number of
samples which you FFT and correlate, then you should make two calls to avg_spec (), in each of which
npoint=1024; this will give you one spectral bin per FFT bin.
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One frequently wants to do a moving-time average of power spectra, for example to see how the noise
spectral properties of an interferometer are changing with time. This is accomplished in avg.spec ()
by averaging the spectrum with an exponentially-decaying average. Let A;(f) denote the average power
spectrum as a function of frequency f, at time ¢. Then the exponentially-decaying average (A(f)), at time
t is defined by

JE oo dt! Ap(f)e= =T
<A(f)>t - ffoo dt! e—(t=t")/7

where 7 is the characteristic decay time over which an impulse in the power spectrum would decay. In our
case, we wish to average the power spectra obtained in the nth pass through the averaging routine. The
discrete analog of the previous equation (10.3.2) is

(10.3.2)

i

N
> An(fleo

(A(f)y =5 : (10.3.3)
Z e—a(N—n)
n=0
Here, ) A
o= npoint (10.3.4)

srate X decaytime

is determined by the averaging time desired. The average defined by (10.3.3) can be easily determined by a
recursion relation. We denote the the normalization factor by

N .
Ny =Y emelV-n), (10.3.5)

n=0

It obeys the (stable) recursion relation Ny = 1 4+ e~*Ay_1 together with the initial condition N_; = 0.
The exponentially-decaying average then satisfies the (stable) recursion relation

(A(Ny=e N (A(f ) ny + Aj\vffvf) for N =0,1,2,-- (10.3.6)

(no initial condition is needed). The routine avg_spec () computes the exponentially decaying average by
implementing these recursion relations for (A(f))  and M.
The units of the output array average [ ] are the square of the units of the input array data[ ] per
Hz, i.e.
units (average[ ]) = (units (data[ 1)? /Hz. (10.3.7)

The example program calibrate described earlier makes use of the routine avg-spec ().
Authors: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: See comments for calibrate. Warning: Because avg_spec () uses an internal buffer to
store a set of points twice as long as the input array data[0. .N-11, if you pass it sets of points
that are not continuous, you will introduce discontinous jumps between the data sets, and add lots of
peculiar high-frequency garbage to the spectrum. You must feed this routine from a continuous data
stream, and reset it in between breaks or gaps.




10.4 Function: binshort ()

void binshort (short *input, int ninput,double *bins,int offset)
This function performs the “binning” which is needed to study the statistics of an array of short integers,
such as the output of a 12 or 16 bit analog-to-digitial converter. Its output is a histogram showing the
number of times that a particular value occurred in an input array. Note that this routine increments the
output histogram, so that you can use it for accumulating statistics of a particular variable.

The arguments are:

input : Input. This routine makes a histogram of the values input [0. .ninput-1].
ninput: Input. The number of elements in the previous array.

bins: Output. Upon return from the function, this array contains a histogram showing the probabil-
ity distribution of the values input[0..ninput-1]. The array element bins [offset] is
incremented by the number of elements = of input[] that had value x = 0. The array ele-
ment bins [offset+i] is incremented by the number of elements z of input [] that had value
z = 4. If the output of your 16 bit ADC ranges from -32,768 to +32,767 and nbins has value
216 = 65,536 then you would want offset = 32,768. For a 12-bit ADC you would probably
want nbins = 22 = 4096, and depending upon the sign conventions either offset = 2047 or
offset = 2048.

offset: Input. The offset defined above.

Note that in the interests of speed and efficiency this routine does nor check that your values lie within
range. So if you try to bin a value that lies outside of the range —offset, —offset + 1,---,offset — 1
you may end up over-writing another array! You’ll then spend unhappy hours trying to locate the source
of bizzare unpredictable behavior in your code, when you could be doing better things, like seeing if your
ADC has dynamic range problem (reaches the end-point values too often) or has a mean value of zero (even
with AC-coupled inputs the ADC may have substantial DC offset).

Authors: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: None.
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10.5 Function: is_gaussian()

int is_gaussian(short *array,int n,int min, int max, int print)
This is a quick and robust test to see if a collection of values has a probability distribution that is consis-
tent with a Gaussian normal distribution (“normal IFO operation™), or if the collection of values contains
“outlier” points, indicating that the set of values contains “pulses”, “blips” and other “obvious” exceptional
events that “stick out above the noise” (caused by bad cabling, alignment problems, or other short-lived
transient events).

The arguments are:

array: Input. The values whose probability distribution is examined are array [0..n-1].
n: Input. The length of the previous array.

min: Input. The minimum value that the input values might assume. For example, if array [ ] contains
the output of a 12-bit analog-to-digital converter, one might setmin=-2048. Of course the minimum
value in the input array might be considerably larger than this (i.e., closer to zero!) as it should be if the
ADC is being operated well within its dynamic range limits. If you’re not sure of the smallest value
produced in array[], set min smaller (i.e., more negative) than needed; the only cost is storage,
not computing time.

max : Input. The maximum value that the input values might assume. For example, if array [] contains
the output of a 12-bit analog-to-digital converter, one might set max=2047. The previous comments
apply here as well: set max larger than needed, if you are not sure about the largest value contained
inarrayl].

print: Input. If this is non-zero, then the routine will print some statistical information about the
distribution of the points.

The value returned by is_gaussian () is 1 if the distribution of points is consistent with a Gaussian
normal distribution with no outliers, and 0 if the distribution contains outliers.
The way this is determined is as follows (we use z; to denote the array element array [i]):

o First, the mean value Z of the distribution is determined using the standard estimator:

=%, (10.5.1)

o Next, the points are binned into a histogram N[v]. Here N[v] is the number of points in the array that
have value v. The sum over the entire histogram is the total number of points: }_; N[i] = n.

e Then the standard deviation s is estimated in the following robust way. It is the smallest integer s for
which
S 1 1 2 2
S Ni+3] > nerf(1/v2) = n—s / ez, (105.2)
j=—38 V 27[' -1

This value of s is a robust estimator of the standard deviation; the range of =ts about the mean includes
68% of the samples. (Note that since the values of z; are integers, we replace Z by the closest integer
to it, in the previous equation).
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o Next, the number of values in the range from one standard deviation to three standard deviations is
found, and the number of values in the range from three to five standard deviations is found. This is
compared to the expected number:

n(erfc(3/V2) — erfc(5/V2)). (10.5.3)

o If there are points more than five standard deviations away from the mean, or significantly more points
in the 3 to 5 standard deviation range than would be expected for a Gaussian normal distribution, then
is_gaussian() returns 0. If the numbers of points in each range is consistent with a Gaussian
normal distribution, then is_gaussian () returns 1.

Authors: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: This function should be generalized in the obvious way, to look at one sigma wide bins in a
more systematic way. It can eventually be replaced by a more rigorously characterized test to see if
the distribution of sample values is consistent with the normal IFO operation.
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10.6 Function: cleaxr ()

void clear(float *array, int n,int spacing)
This routine clears (sets to zero) entries in an array.
The arguments are:

array: Ouput. This routine clears elements array[0],array[spacing],---, array|( (n-1) *spac ing].
~n: Input. The number of array elements that are set to zero.

spacing: Input. The spacing in the array between succesive elements that are set to zero.

Authors: Bruce Allen, ballen @dirac.phys.uwm.edu

Comments: None.
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10.7 Function: product ()

void product (float *c,float *a, float *b,int ncomplex) This routine takes as input
a pair of arrays a and b containing complex numbers. It multiplies a with b, placing the result in c, so that
¢ = a X b. The arguments are:

a: Input. An array of N complex numbers a[0..2N-1] with a[23] and a[2]+1] respectively con-
taining the real and imaginary parts.

b: Input. An array of N complex numbers b[0..2N-1] withb[23] and b[2j+1] respectively con-
taining the real and imaginary parts. '

c: Output. The array of N complex numbers ¢ [0..2N-1] with c[23] and c[2j+1] respectively
containing the real and imaginary parts of a X b.

ncomplex: Input. The number N of complex numbers in the arrays.

Note that the two input arrays a[ ] and b[ ] can be the same array; or the output array c [ ] can be the
same as either or both of the inputs. For example, the following are all valid:

product (c,a, a,n), which performs the operation a? — c.

product (a,a, b, n), which performs the operation a X b — a.

product (a, b, a, n), which performs the operation a X & — a.

product (a,a, a,n),which performs the operation a?
Note also that this routine does not allocate any memory itself - your input and output arrays must be

allocated before calling product ().

— Q.

Author: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: None.
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10.8 Function: productc ()

void productc (float *c,float *a, float *b,int ncomplex) This routine takes as in-
put a pair of arrays a and b containing complex numbers. It multiplies a with the complex-conjugate of b,
r placing the result in c, so that ¢ = a X b*. The arguments are:

a: Input. An array of N complex numbers a [0..2N-1] with a[25] and a [25+1] respectively con-
—_— taining the real and imaginary parts.

b: Input. An array of NV complex numbers b[0. .2N-1] with b[25] and b[25+1] respectively con-
taining the real and imaginary parts. _—

c: Output. The array of N complex numbers c[0..2N-1] with c[25] and c[25+1] respectively
containing the real and imaginary parts of a x b*.

ncomplex: Input. The number N of complex numbers in the arrays.

Note that the two input arrays a[ ] and b[ ] can be the same array; or the output array ¢ [ ] can be the
same as either or both of the inputs. For example, the following are all valid:

productc(c, a,a,n), which performs the operation |a]? — c.

productc(a, a, b, n), which performs the operation a x b* — a.

productc(a,b, a,n), which performs the operation a* x b — a.

productc (a, a, a,n), which performs the operation |a|? — a.
Note also that this routine does not allocate any memory itself - your input and output arrays must be
allocated before calling productc ().

Author: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: None.

L
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10.9 Function: ratio ()

void ratio(float *c,float *a, float *b,int ncomplex) This routine takes as input a
pair of arrays a and b containing complex numbers. It divides a by b, placing the resultin ¢, so thatc = a /b.
The arguments are:

a: Input. An array of N complex numbers a [0 . .2N-1] with a[23] and a [2]+1] respectively con-
taining the real and imaginary parts.

b: Input. An array of N complex numbers b[0..2N-1] withb[23j] and b[2]+1] respectively con-
taining the real and imaginary parts.

c: Output. The array of N complex numbers c[0..2N~1] with c[27] and c[2]j+1] respectively
containing the real and imaginary parts of a/b.

ncomplex: Input. The number N of complex numbers in the arrays.

Note that the two input arrays a[ ] andb[ ] can be the same array; or the output array c [ 1 can be the
same as either or both of the inputs. For example, the following are all valid:

ratio(c,a, a,n),which (very inefficiently) sets every element of c to 1 + 0.

ratio(a,a,b,n),which performs the operation a/b — a.

ratio(a,b,a,n),which performs the operation b/a — a.

ratio(a,a,a,n),which (very inefficiently) sets every element of a to 1 + 0s.

This routine is particularly useful when you want to reconstruct the raw interferometer output Co( f) that
would have produced a particular interferometer displacement Al( f) (see for example normalize._gw()
in Section 3.12). This occurs for example if you are “injecting” chirps into the raw interferometer output;
they first need to be deconvolved with the response function of the instrument. One can invert this equation

using ratio () since Al(f) = R(f)Co(f) = Co(f) = AL(F)/R(F).
Author: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: None.

286




10.10 Function: graph ()

void graph(float *array,int n,int spacing)
This is a useful function for debugging. It pops up a graph on the computer screen (using the graphing
program xmgxr) showing a graph of some array which you happen to want to look at.
The arguments are:

array: Input. The array that you want a graph of.

n: Input. The number of array élements that you want to graph.ﬁ

spacing: Input. The spacing of the array elements that you want to graph. The elements graphed are
array[0], array[spacing],array[2*spacing],..array[ (n-1) *spacing].

This function is a handy way to get a quick look at the contents of some array. It writes the output to
a temporary file and then starts up xmgr, reading the input from the file. The z values are evenly spaced
integers from 0 to n-1. The y values are the (subset of) points in array[ ]. If your array contains real
data, you might want to use spacing=1. If your array contains complex data (with real and imaginary
parts interleaved) you will use spacing=2, and make separate calls to see the real and imaginary parts.
For example if complex[0..2047] contains 1024 complex numbers, then:
graph (complex, 1024, 2) (view 1024 real values)
graph (complex+1,1024, 2) (view 1024 imaginary values)

Note that in order not to produce too much garbage on the screen, any output Or €rror messages from
xmgr are tossed into /dev/null!

Authors: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: None.
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10.11 Function: graph_double ()

void graph.-double(double *array,int n,int spacing)

This is a useful function for debugging, and exactly like the function graph (), except that it’s intended
for double precision floating point numbers. It pops up a graph on the computer screen (using the graphing
program xmgr) showing a graph of some array which you happen to want to look at.

The arguments are:

array: Input. The array that you want a graph of.
n: Input. The number of array elements that you want to graph.

spacing: Input. The spacing of the array elements that you want to graph. The elements graphed are
array[0],array[spacing]l,array[2*spacing],..,arrayl (n-1) *spacingl.

This function is a handy way to get a quick look at the contents of some array. It writes the output to
a temporary file and then starts up xmgr, reading the input from the file. The z values are evenly spaced
integers from O to n-1. The y values are the (subset of) points in array [ 1. If your array contains real
data, you might want to use spacing=1. If your array contains complex data (with real and imaginary
parts interleaved) you will use spacing=2, and make separate calls to see the real and imaginary parts.
For example if complex[0..2047] contains 1024 complex numbers, then:
graph (complex, 1024, 2) (view 1024 real values)
graph (complex+1,1024,2) (view 1024 imaginary values)

Note that in order not to produce too much garbage on the screen, any output or error messages from
xmgr are tossed into /dev/null!

Authors: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: None.
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10.12 Function: graph_short ()

void graph.short(short *array,int n)

This is a useful function for debugging, and exactly like the function graph (), except that it’s intended
for short integer values. It pops up a graph on the computer screen (using the graphing program xmgxr)
showing a graph of some array which you happen to want to look at.

The arguments are:

array: Input-Thearray that you want a graph of.
n: Input. The number of array elements that you want to graph. The elements graphed are array [0. .n-1].

This function is a handy way to get a quick look at the contents of some array. It writes the output to
a temporary file and then starts up xmgr, reading the input from the file. The z values are evenly spaced
integers from 0 to n-1. The y values are the points in array[ 1.

Note that in order not to produce too much garbage on the screen, any output or error messages from
xmgx are tossed into /dev/null!

Authors: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: None.
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10.13 Function: sgraph ()

sgraph (short *array, int n,char *name,int filenumber)

This routine writes the elements of a short array into a file so that they may be viewed later with a
graphing program like xmgr.

The arguments are:

array: Input. The array that you want to graph.

n: Input. The number of array elements that you want to graph. The elements used are array[0..n-1].
name : Input. Used to construct the output file name.

filenumber : Input. The value of y used to construct the output file name.

This function produces an output file with two columns, containing:

0 array[0]
1 array[1l]
n-1 arrayin-1]

The name of this file is: name . y where y is the integer specified by £ilenumber. Note that if y < 1000
then y is “expanded” or “padded” to three digits. For example, calling

sgraph (array,1024, "curious",9)

will produce the file

curious.009

containing 1024 lines.

Authors: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: None.
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10.14 Function: audio ()

void audio(short *array, int n)
Makes a Sun workstation play music!
The arguments are:

array: Input. The array that you want to hear.

n: Input. The number of array elements that you want to hear. The elements used are array[0..n-1].

It doesn’t take much experience before you find out that an interferometer can do funny things that you
can’t see in the data stream, if you just graph the numbers. However in many cases you can kear the peculiar
events. This function works only on Sun workstations with a CD-sound quality chipset, that can handle 16
bit linear PCM audio. It creates a temporary file, then pipes it though the Sun utility audioplay. The
sample rate is assumed to be 9600 Hz. ,

Note that audio () adjusts the volume so that the loudest event (largest absolute value) in the data
stream has a (previously fixed, by us!) maximum amplitude. So the “background level” of the sound will
depend upon the amplitude of the most obnoxious pings, blips, bumps, scrapes or howlers in the data set.

On a machine not equiped with the correct sound chip (for example a SparcStation 2) you can listen
to the file, if you first convert it to a format that the chipset can handle. This can be done by taking.the
output of audio (), which is a file called temp.au and converting it to “voice” format. To do this, use
the command:
audioconvert -f voice -o temp2.au temp.au
You can then listen to the sound using the command:
audioplay temp2.au

Warning: If you share your office with others, they will find the first few events that you listen to highly
entertaining. After the first day however they will stop asking what you're listening to. After a few more
days, their suggestions that you buy headphones will become more pointed. Respect this request.

Authors: Bruce Allen, ballen @dirac.phys.uwm.edu

Comments: This routine could be modified to permit a bit more freedom in setting the volume and/or the
sample rate.
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10.15 Function: sound ()

sound (short *array,int n,char *name,int filenumber)
This is just like the function audio () except that it writes the sound data into a file of the form * . au.
The arguments are:

array: Input. The array that you want to hear.

n: Input. The number of array elements that you want to hear. The elements used are array [0..n-1].
name : Input. Used to construct the output file name.

filenumber : Input. The value of y used to construct the output file name.

This function produces an output file with 16-bit PCM linear coding, containing sound data. The name
of the file is: name .y . au where y is the integer specified by £ilenumber. Note that if y < 1000 then y
is “expanded” or “padded” to three digits. For example, calling
sound (array, 4800, "growl", 9)
will produce the file
growl.00S8.au
containing 1/2 second of sound.

Note: see the Warning that goes with audio ().

Authors: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: This routine could be modified to permit a bit more freedom in setting the volume and/or the
sample rate.
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10.16 Example: translate

This example may be found in the src/examples/examplesutility directory of GRASP, and
contains an example program which translates data from the “old 1994” Caltech 40-meter format described
earlier, to the new LIGO/VIRGO frame format. Because this code provides an example of how the data is
encoded in this new format, we have included the text of the translation code here. The frames produced by
this translation contain about 5 seconds of data each, and are about half a megabyte in length. The number
of frames in each data file is set by the

# define FRAMES.PER.FILE

at the top of the code. To run the utility, use the command

translate directory-name ) '

where directory-name is the name of the directory in which the files channel . 0 to channel .15
may be found. The FRAME format files produced by translate are labelled uniquely by the time at
which the first data point in the first frame was taken (in Coordinated Universal Time). An example of such
a file (produced by translate)is:

C1-94.10.15.06.18_02

where C1 denotes the Caltech 40-meter prototype. Suggested names for the other sites are H2 and H4 for
the two Hanford LIGO detectors, L1 for the Livingston LIGO detector V1 for the Virgo detector, G1 for
the GEO detector, T1 for the Tama detector, S1 for the Glasgow detector, M1 for the Max-Plank detector,
and A1l for the AIGO detector. In the file name, 94 denotes the year (we will use 01 for 2001, etc.) and 10
denotes the month (labelled from 1 to 12). The hour ranges from 0 to 23 and in this examples is 06. The
minutes (18) ranges from 0 to 59 and the seconds (02) ranges from 0 to 61 to include leap seconds but is
normally in the range from 0 to 59. This naming convention will be used for any data files containing one
second or more of data.

#include <math.h>

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include "FrameL.h"

#include "grasp.h"

#define OLDNAMES 0 /* set to zero to use new channel names, 1 for old names */
#define LOCKLO 1

#define LOCKHI 10

#define CORRECTTIMESTAMPS 1 /* set to 1 to correct loss of timestamp resolution */

/* Each block of old-format data contains 5.07 secs of data. This
parameter determines how many of these old-format blocks (now a frame)
end up in each FRAME file. =/

#define FRAMES_PER_FILE 32

/* earth’s equatorial radius, in meters %/

#define EQUATORIAL (6.37814e+06)

/* earth’s ellipticity or flattening due to rotation */

#define FLAT (3.3528le-3)

[/ the conversion from ADC counts to volts is: %/
static char units[]="Units are 10 volts per 2048 counts. Range -2048 to +2047*;

#if (OLDNAMES)
/* channel assignments before Nov 15, 1994 x/

static char sprenovl5[]={
*IFO output", "', "', "microphone", "dc strain", "mode cleaner pzt",
*seismometer®, "', *", ", “TTL locked”, "arm 1 visibility", "arm 2 visibility*,
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"mode cleaner visibility", "slow pzt", "arm 1 coil driver*"};

/* channel assignments after Nov 15, 1994 */
static char *postnovlS[]={

*"IFO output”, "magnetometer*, “"microphone", "", *dc strain®, "mode cleaner pzt", —
"seismometer”, "slow pzt", "power stabilizer", "", {
"pTI, locked", "arm 1 visibility", "arm 2 visibility", "mode cleaner visibility",

»*, *arm 1 coil driver“};
f#else !
/* channel assignments before Nov 15, 1994 */ oo
static char *prenovl5[]={

*IFQ_DMRO"*, "", "*, "IFO_Mike", "IFO_DCDM", "PSL_MC_V", !

*IF0_Seis_1", ", "", **, "IFO_Lock", "“IFO_EAT", "IFO_SAT", i

“IFO_MCR", "IFO_SPZT*, *SUS_EE_Coil_V"}; ;

/* channel assignments after Nov 15, 1994 =/
static char xpostnovi5[]={
“IFO_DMRO", "IFO_Mag_x", "IFO_Mike", "", "IFO_DCDM", "PSL_MC_V", :
"IFO_Seis_1", "“IFO_SpZT", “"PSL_PSS", "*,
*IF0_Lock", "IFO_EAT", "IFO_SAT", "IFO_MCR",
»v, "SUS_EE_Coil_V"}; .
#endif o

/* Program’s only argument is the name of the directory containing old-format data */ ' |
int main(int argc,char* argvi]) {
char filename[256],name[256],hist[1024],xhistnew, *buff, sxchan name;
int i,code=1,num,large=50000,small=5000,n,first=1,firsttime,nlines; ;
long buffSize; !
float fastrate=9868.4208984375, tblock, slowrate=986.84208984375, xreal, *ximag, *freq, theta;
double firstmsec,first.estimate,second_estimate,diff,dt,dtslow;
float starttime=-100.0,guesstime; -
double currenttime=-200; )
int blockcount=0,channelsopen=0, expected;
struct FrFile xoutputfile;
struct FrameH xframe;
struct FrAdcData *xadc[l61;
struct FrDetector xfrdetect;
struct FrVect xframevec;
struct FrVect xframevecsS;
struct FrStatData *staticdata;
struct FrStatData *staticdatas;
struct ld.binheader bin_header;
struct ld.mainheader main_header;
struct tm timetm,*gtime,gts;
time_t caltime, translate._time;
FILE *fpl[l6],*fpsweptsine;
void unhappyexit (int i);
int get_run.number (int firsttime);

/* initialize the frame system x/
FrLibIni (NULL,NULL, 2);
buffSize=1000000;

buff=malloc(buffsSize);

/* create a frame */
frame=FrameHNew ("Cl") ;

/* assign detector structure: site location and orientation information s/
frame—>detectRec=FrDetectorNew("real") ;
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frdetect=frame—>detectRec;
frdetect—>latitude=34.1667;
frdetect—>longitude=118.133;
frdetect—>armlAngle=180.0;
frdetect—>arm2aAngle=270.0;
frdetect—>armllLength=38.5;
frdetect->arm2Length=38.1;

/* Correct for oblateness of earth, use reference spheriod with

flattening FLAT; EQUATORIAL is earth equatorial radius-in meters:-

Reference: eqns (4.13-14) in “Spacecraft attitude determination and

control”, Ed. James R. Wortz, D. Reidel Publishing Co., Boston, 1985.

Note: this SHOULD be corrected to add in the height of Caltech above

sea level. x/

/* angle measured down from the North pole =/

theta= (M-PI/180.0)*(90.0—frdetect->latitude);
frdetect—>altitude=EQUATORIAL*(1l.0~FLAT*cos (theta)*cos (theta));

/* now open files containing 40 meter data */
if (largv([1] || argc!=2) unhappyexit(l);

/* step through all possible channels, seeing which channels have data */
for (i=0;i<16;i++) {
sprintf (name, "%$s/channel.%d",argvil],i);
fpiil=fopen(name, "r");
if (fp[i}==NULL)
fprintf (stderr, "File %s unavailable. Skipping it...\n",name);
else )
channelsopen++;

}

/= if there are no open files, then please exit with a warning message =/
if (channelsopen==0) unhappyexit(1l);

/* the sample times for the fast/slow channels */
dt=1.0/fastrate;
dtslow=1.0/slowrate;

/* Define 4 fast, 12 slow ADC channels (long strings of blanks needed - see below) %/
for (i=0;i<16;i++)
if (fpli]!=NULL)
if (i<4)
/* sample rates differ from fastrate, slowrate — see GRASP manual for details */
adcii)l=FradcDataNew (frame,"
else
adc [i]=FrAdcDataNew (frame, "

*,50000.0%15.0/76.0, large, 16) ;

",5000.0%15.0/76.0,small,16);

/* now loop over the input data, creating blocks of output data */
while (code>0) {
/* read a block of data =/
for (i=0;i<16;i++) {
/* set size of data block */
n=(i<4)?large:small;
/#* read data into frame short array */
if (i<4 && fp[i]!=NULL)
code=read.block(fpl[i], &(adc[i]—>data—>datas), &num, &tblock, &fastrate,0,&n, 0,
&bin_header, &main_header) ;
else if (fpli]!=NULL)
code=read_block(fp[i],&(adc[i]l—>data—>datasS), &num, &tblock, &slowrate,0,&n,; 0,

295




&bin_header, &main header) ;

}

/* if no data remains, we have found an error */

if (code==0) {
fprintf (stderr, "Error in translation: unexpected end of datai\n");
abort (};

}

/* check the various sample times /
if (dt!=1.0/fastrate) fprintf(stderr,"Fast sample rates don't match!\n");
if (dtslow!=1.0/slowrate) fprintf(stderr, "Slow sample rates don't match!\n");

/* set time stamps for this block of data %/

/* create structure to store localtime of tape */

timetm. tm sec=main_header.tod_second;

timetm. tm_min=main_header.tod minute;

timetm. tm_hour=main_header.tod_hour;

timetm.tm mday=main_header.date_day;

timetm.tm mon=main_header.date_month;

timetm. tm_year=main_header.date.year;

timetm. tm_wday=main_header.date.dow;
timetm.tm_yday=—1; /«info not available, but filled in by mktime */
timetm.tm isdst=—1; /# infonot available, but filled in by mktime */
caltime=mktime (&timetm) ;

gtime=gmtime (&caltime) ;

gts=xgtime;

if (caltime!=main_header.epoch_time_sec) {
fprintf (stderr, I am confused about the correct time: %d oxr %sd\n",
(int)caltime,main.header.epoch_time._sec);
fprintf (stderr, "If not running on a PST time-zone machine, ignore erxror!\n");

}

/* set the time stamp for the first data sample (more precise than header time) * /
if (first) {
firsttime=main_header.epoch_time_sec;
firstmsec=0.001lsmain_-header.epoch_time_msec;
printf(“Local start time: %$s\n",ctime(&caltime});
printf ("UTC start time: $s",asctime(&gts));

/* assign the run number from 1,..,11 to the frame. %/
frame—>run=get_run.number (firsttime);
if (frame—>run<l || frame—>run>11) unhappyexit(2);

/* assign proper name to adc channel (to overwrite long blank space above) */
if (frame—>run<=2) {
chan_name=prenovl5;
expected=11;
}
else {
chan_name=postnovl5;
expected=13;

}

if (channelsopen!=expected) {
fprintf (stderr, "Only found %d channels. Expected %d\n", channelsopen, expected) ;

T exit(1l);



for (i=0;i<16;i++)
if (£plil!=NULL) {
/* verify that name is correct */
if (strcmp(chan.name(i],"")==0) {

fprintf (stderr, "Channel %d is not recognized and has no name!\n",i);

exit(l);

}

/* point to the correct channel name for this particular date, channel %/
strcpy (adc{i] —>name, channame{il);

/#* put in the physical volts/counts conversion */

adcli}~>data—>unit[0]=(char *)malloc{(strlen(units)+1)*sizeof (char));

strcpy(adcli)—->data—>unit[0],units);

/* which ADC “crate” was this */
adc[i]—>crate=i;

if (CORRECTTIMESTAMPS) {
guesstime=currenttime+76.0/15.0;
if (fabs(guesstime—tblock)>1.0) {
starttime=tblock;
blockcount=0;

}

currenttime=(blockcount++)*((double)76.0/15.0) +starttime;

/* put the time stamp into the frame structure */
currenttime+=firstmsec;
frame—>UTimeS=firsttime+ (int)currenttime;
frame—>UTimeN=(int) (1.e9* (currenttime— (int)currenttime) )
frame—>dt=76.0/15.0;

}

else {
/* put the time stamp into the frame structure */
tblock+=firstmsec;
frame~>UTimeS=firsttime+ (int)tblock;
frame—>UTimeN=(int) (1.e9*(tblock- (int)tblock)) ;
frame—>dt=num/slowrate;

}

/* Localtime - UTC time in seconds =/
frame—>localTime=-9%3600;

/* frame->type[0]=0; */

/# put in the history information (only once per translation) /
if (first) {

first=0;

histnew=hist;

time (&translate_time);

i

histnew+=sprintf (histnew, "\nTranslation carried out by:\n");

histnew+=sprintf (histnew, * login: %s\n",getenv ("LOGNAME"));
histnew+=sprintf (histnew, " user: %s\n",getenv("USER"));
histnew+=sprintf (histnew, " directory: %s\n",getenv("PWD"));
histnew+=sprintf (histnew, * datapath: %s\n",argv([1]):
histnew+=sprintf (histnew, " translation program name: %s\n*,argv([0]);
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histnew+=sprintf (histnew, " source code name: %s\n","translate.c"); =
histnew+=sprintf (histnew, " translation date: %$s\n",ctime(&translate_time)); ‘
FrHistoryAdd(frame,hist);

/* read the swept sine calibration files (only once per run) */

sprintf (name, "%s/swept-sine.ascii",argvill);
fpsweptsine=fopen (name, "r");

read_sweptsine (fpsweptsine, &nlines, &freq, &real, &imag) ;

/* copy swept sine calibration data into vector; see below for packing style */

framevec=FrVectNew (FR.VECT.F,1,3*nlines,1.0,"Vifo/Vcoil");

for (i=0;i<nlines;i++) { L -
framevec—>dataF[i]=freq[i]; '
framevec—>dataF[i+nlines]=reallil];
framevec~>dataF [i+2xnlines]=imag(i];

}

/* then link the calibration data into the history structure */
staticdata=FrStatDataNew("sweptsine",
"swept sine calibration:\npacking: freql[il, real[i], imaginarxy{i]",
frame—>UTimeS,MAXINT, 1, framevec} ;
FrStatDataAdd (&frame—>detectRec—>sData,staticdata);

/* put in lock range (INCLUSIVE low->high) Rolf: if O=unlock and 1=lock
then you need LOCKLO=LOCKHI=1
*/
framevecS=FrVectNew (FR_VECT-S,1,2,1.0, "adcCounts");
framevecS—>dataS[0]=LOCKLO; /* smallest value at which we are still in lock */
framevecS—>dataS[1]=LOCKHI; /* largest value at which we are still in lock */

/* then link the lockrange data into the history structure */
staticdataS=FrStatDataNew ("locklo/lockhi",
*lock range:\npacking: array[0]=locklo array[l]=lockhi*,
frame—>UTimeS,MAXINT, 1, framevecS);
FrStatDataAdd (&frame—>detectRec—>sData,staticdataS);

}

/* is the time stamp for this data block consistent with start time+offset? %/
first_estimate=frame—>UTimeS+1.e—9%frame—>UTimeN;
second_estimate=main_header.epoch_time.sec+l.e—3smain_header.epoch_time msec;
diff=first_estimate—second.estimate;
if (fabs(diff)>0.002) '

fprintf (stderr, "Time stamps have drifted by %f msec!\n",diff);

/* Increment frame counter (set to 1 for first frame of each run) */
frame—>frame++;

/% Open Frame file (one file per FRAMES_PER_FILE frames) */
if (({frame—>frame%FRAMES PER_FILE)==1} {
/* set file name. Note than month=1 to 12 not O to 11! %/
sprintf (filename, "C1-%024_%02d_%02d_%02d_%02d_%024",gts.tmyear, gts. tm_mon+1,
gts.tm.mday,gts.tm hour,gts.tmmin,gts.tm.sec);
printf (*Filename:. %s\n",filename);
outputfile=FrFileONew (filename, NO, buff, buffsSize);

}

/% un-comment to print a short snippet of each Frame onto the screen %/
/* FrameDump(frame, stdout, 2); */
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/* Write frame to file, */
FrameWrite (frame, outputfile);

/* Close file if finished with FRAMES_PER_FILE or no remaining data */
if ((frame—>frame%FRAMES_PER_FILE)==0 || code==-1)
FrFileOEnd (outputfile);

}

/* Free frame memory and return %/
" FrameFree (frame) ;
return(0);
}

/+ this routine is called if something is wrong */
void unhappyexit (int i) {
switch (i) {
case 1l:
fprintf (stderr,
"Syntax: \ntranslate directory\nwhere channel.* files may be found in directory\n");
exit (1) ;
case 2:
fprintf (stderr,
"The UTC does not appear to lie in the range of any data set!\n"});

exit(l);
default:
abort () ;
}
return;
}

/* number of secs after Jan 1 1970 UTC at which Nov 1994 runs began +/
static int stimes[]={784880277,784894763,785217574,785233119,785250938,785271063,
785288073,785315747,785333880,785351969,785368428,785388248};

/* This routine looks at the epoch time (sec) and returns the run pumber (1-11) %/
int get_run._number (int firsttime) {
int i;

for (i=0;i<12;i++) .
if (firsttime<stimes[i]) break;

return i;

Author: Bruce Allen, ballen@dirac.phys.uwm.edu

Comments: The technique used to time-stamp this data is an attempt to correct the poor resolution of
the original data — please see the remarks in 4.1 for additional detail. Also notice that because the
sample rates of the slow/fast channels differ by a ratio of 10, we can not easily reformat the frames
with sample sizes of length 2". We expect that the FRAME format will continue to evolve, so that
this translator (and the FRAME format data) may regire periodic updates. Should the year have four
digits (eg, 1994) for easier sorting?
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10.17 Multi-taper methods for spectral analysis

Since the early 1980’s there has been a revolution in the spectral analysis, due largely to a seminal paper by
Thomson [24]. There is now a standard textbook on the subject, by Percival and Walden [25], to which we
will frequently refer.

Among the most useful of these techniques are the so-called “multitaper” methods. These make use
of a special set of windowing functions, called Slepian tapers. For discretely-sampled data sets, these are
discrete prolate spheroidal sequences, and are related to prolate spheroidal functions. The GRASP package
contains (a modified version of) a public domain package by Lees and Park, which is described in [26].
Further details of this package may be found at
http://love.geology.yale.edu/mtm/. Note however that we have already included this package
in GRASP; there is no need to hunt it down yourself.

For those who are unfamilar with these techniques, we suggest reading Chapter 7 of [25]. The sets of
tapered windows are defined by three parameters. These are, in the notation of Percival and Walden:

N: The length of the discretely-sampled data-set, typically denoted by the integer npoints in the GRASP
routines.

' NWAt: The product of total observation time N At and the resolution bandwidth W. This dimensionless

(non-integer) quantity is denoted nwdt in the GRASP routines. Note that for a conventional FFT, the
frequency resolution would be W = Af = 1/NAt. This corresponds to having NW At = 1. The

multitaper techniques are typically used with values of W which are several times larger, for example

W = 3A f, which corresponds to NW At = 3.

K: The number of Slepian tapers (or window functions) used, typically denoted nwin in the GRASP
routines. Note that it is highly recommended (see page 334 of [25] and the final two figures on page
339) that the number of tapers K < 2NW At.

In addition to providing better spectral estimation tools, the multi-taper methods also provide nice tech-
niques for spectral line parameter estimation and removal. When the sets of harmonic coefficients are gen-
erated for different choices of windows, one can perform a regression test to determine if the signal contains
a sinusoid of fixed amplitude and phase, consistent across the complete set of tapers. The GRASP package
uses this technique (the F-test described on page 499, and the worked-out example starting on page 504 of
[25]) to estimate and remove spectral lines from a data-set. This can be used both for diagnostic purposes
(i.e., track contamination of the data set by the 5th line harmonic at 300Hz) or to “clean up” the data (i.e.,
remove the pendulum resonance at 590 Hz).

As an aid in understanding these techniques, we have included with GRASP a section of the data-set
from the Willamette River appearing on pg 505 of Percival and Walden [25], and an example program which
repeats and reproduces the results in Section 10.13 of that textbook. This demonstrates the use of multi-taper
methods in removing “spectral lines” from a data set.
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10.18 Function: slepian_tapers()

int slepian_tapers(int numpoints, int nwin, double *lam, float nwdt, doubkle
*tapers, double *tapsum)

~ This function computes and returns properly-normalized Slepian tapers. These tapers are normalized so
| that
‘ N
> RZ=N, (10.18.1)
t=1

which is the Numerical Recipes convention for tapers (rather than the Percival and Walden convention for
which the rhs is 1). It uses the method described in Percival and Walden [25] pages 386-387, finding the
eigenvectors and eigenvalues of a tri-diagonal matrix. The arguments are:

num_points: Input. The number of points IV in the taper.
P nwin: Input. The number of tapers computed.

. lam: Output. Upon return, lam{0..nwin-1] contains the eigenvalues A of the tapers. Note that
| 0<A<l.

nwdt : Input. The (total sample time) x (frequency resolution bandwidth) product.

tapers: Output. Upon return: tapers[0..numpoints-1] contains the first taper,
tapers [numpoints..2*numpoints-1] contains the second taper, and so on.

tapsum: Output. On return tapsum{ 0] contains the sum of the num_points values of the first taper,
tapsum[1] contains the sum of the values of the second taper, and so on. Note that because the
odd-index Slepian taper functions are odd, tapsum([1,3,5, ...] would vanish if it were not for
round-off and other numerical error. -

|

‘ This function will print a warning message if the condition K < 2NW At is not satisfied (see Sec-

ti?x‘btlf?mlj)Adapted from the original code (Lees and Park) by Bruce Allen (ballen@dirac.phys.uwm.edu)
and Adrian Ottewill (ottewill @relativity.ucd.ie).

Comments: There are a number of techniques for calculating the Slepian tapers. We have not extensively
tested these routines, but they appear to work well. They make use of the standard EISPACK routines,
translated from FORTRAN into C using f2c.

301



2.0

-2.0

Slepian Taper Functions
N=npoints=395 NWAt=nwdt=4 K=nwin=>5
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Figure 55: Here are five Slepian tapers computed with slepian_tapers(). The parameters are
npoints=395,nwdt=4. 0 and nwin=>5,
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10.19 Function: multitaper_spectrum/()

multitaper spectrum(float *data, int npoints,int kind, int nwin, float nwdt,
int inorxrm, float dt, float *ospec, float *dof, float *fvalues, int klen,
float *cest, int dospec)

This function computes the multi-taper spectrum, as defined for example by Percival and Walden [25]
equation (333). For the sake of efficiency, it computes then stores internally the Slepian taper functions, so
that if it is called a second time (and needs the same tapers) they do not need to be re-computed. If called

~ with different parameters it recomputes the Slepian tapers for the new parameters.
The arguments are:

data: Input. Pointer to the time-domain data array, data[0. .npoints-1].
npoints: Input. Number of data points in the data array.

kind: Input. If set to 1, compute the normal multi-taper spectrum. If set to 2, compute the “adaptive”
spectrum defined by defined by Percival and Walden equation (370a).

nwin: Input. The number of tapers to use.
nwdt : Input. The (total sample time) x (frequency resolution bandwidth) product.
inorm: Input. Determines choice of normalization. Possible values are

1: Divide spectrum by N2.
2: Divide spectrum by A2,
3: Divide spectrum by V.
4: Divide spectrum by 1.

dt : Input. Sample interval (only used for normalization).

ospec: Output. The output spectrum, including both DC and Nyquist frequency bins. The array range is
ospec{0..klen/2]. Warning -this is an odd number of entries. The user must provide a pointer
to sufficient storage space.

dof: Output. The effective number of degrees of freedom of the spectral estimator at a given frequency,
defined by Percival and Walden eqn (370b). The number of degrees of freedom is the constant
nwin-1 for kind=1 above, and only useful in the adaptive case where kind=2. The array range is
dof[0..klen/2]1. Warning - this is an odd number of entries. The user must provide a pointer to
sufficient storage space.

fvalues: Output. The value of the F-statistic in each frequency bin spectrum, including both DC and
Nyquist. This is defined by Percival and Walden equation (499c), and roughly speaking is the ratio of
the energy explained by the hypothesis that one has a fixed-amplitude spectral line at that frequency to
the energy not explained by this hypothesis. The array range is fvalues{0. .klen/2]. Warning
-this is an odd number of entries. The user must provide a pointer to sufficient storage space.

klen: Input. An integer power of 2, greater than (or equal to) npoints. The (tapered) data is zero-
padded out to this length. You generally want klen to be around four to eight times larger than the
length of your data set, to get decent frequency resolution. The number of frequency bins (including
DC and Nyquist) in the output spectrum is Ny = 1+ klen/2.
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cest: Output. The estimated Fourier coefficients of any spectral lines in the data. The real and imag-
inary parts at DC are contained in cest [0],cest[1]. The next higher frequency bin has its
real/imaginary parts contained in cest [2], cest [3], and so on. This pattern continues up to and
including the Nyquist frequency. The length of the array is cest [0. .k1len+1]. The normaliza-
tion/sign conventions are identical to Percival and Walden eqns (499a) and the example on line 20
of page 513, except that the sign of the imaginary part is reversed, because the Percival and Walden
FFT conventions eqn (65ab) are opposite to Numerical Recipes. The user must provide a pointer to
sufficient storage space.

dospec: Input. If set non-zero, then the power spectrum (pointed to by ospec) is calculated. If set to
zero, then to save time in situations where all that is needed is cest, the power spectrum ospec is
not calculated.

Author: Adapted from the original code (Lees and Park) by Bruce Allen (ballen@dirac.phys.uwm.edu)
and Adrian Ottewill (ottewill @relativity.ucd.ie).

Comments: None.
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10.20 Function: multitaper cross_spectrum/()

void multitaper_cross_spectrum(float *ol, float *o2, int npoints, int npadded,
float delta-t, int nwin, float nwdt, double *ReImSpecl2)
= This function calculates the high resolution multitaper spectral estimate of the (complex-valued) cross-
| correlation spectrum 6% (f)62(f) of the two input time-series o1 (t) and o(t).
The arguments are:

01: Input. 01[0. .npoints-1) is an array of floating point variables containing the values of the input.
time-series o1 (). o1 [1] contains the value of 0;(t) evaluated at the discrete time ¢; := tA¢, where
i=0,1,---,N—1.

02: Input. 02[0. .npoints-1] is an array of floating point variables containing the values of the input
time-series 02(t), in exactly the same format as the previous argument.

npoints: Input. The total number N of data points contained in the two input time-series.

npadded: Input. The padded length N, is an integer pbwer of 2, greater than (or equal to) the total
number of data points. The tapered data sets are zero-padded out to this length. The total number of
frequency bins (including DC and Nyquist) in the output cross-correlation spectrum is Ny = 1+Vp, /2.

delta_t: Input. The sampling period At (in sec).
nwin: Input. The total number K of data tapers used when forming the multitaper spectral estimate.
nwdt : Input. The (total sample time) X (frequency resolution bandwidth) product NAt - W.

ReImSpecl2: Output. ReImSpecl2[0. . .npadded+1] is an array of double precision variables
containing the values of the high resolution multitaper spectral estimate of the (complex-valued)
: cross-correlation spectrum 6% (f)62(f). ReImSpecl2 [2*1i] and ReImSpecl2 [2*i+1] contain,

respectively, the values of the real and imaginary parts of

K-1 4 N-1 o N-1 o
Z /\— < Z 01(tm) Wk, m e"z”m]/NP> (At Z 09(tn) Wk n e""z’"”/NP) (10.20.1)

m=0 n=0

: ! where wg n, is the nth element of the kth order NW At discrete prolate spheroidal sequence data
taper, and A is its associated eigenvalue. (Here i = 0,1,---, Ny — 1 = N,/2.) The data tapers are
normalized so that Zn —0 w,% n = N. This differs from the normalization convention of Percival and

Walden [25], where zn—o wkn = 1. Also, Equation (333) in [25] does not include the factors of
1/A. Butfor K < 2NW At, it follows that 1/X; =~ 1.

\ \ If you want to obtain the same normalization as that used in the avg.spec () routine described by
equation (10.3.7) for the case where 01(t) = 02(t) then the output array ReImSpecl2 must be multiplied
by a factor of ‘1\7'253'

Author:

Adapted from the original code (Lees and Park) by Bruce Allen (ballen@dirac.phys.uwm.edu), Adrian
Ottewill (ottewill @relativity.ucd.ie), and Joseph Romano (romano@csd.uwm.edu).

Comments: None.
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10.21 Structure: struct removed_.lines

This is a structure used to keep track of spectral lines as they are removed. Its primary use is in the function
remove_spectral_lines (). The structure contains the following:

struct removed_lines({
int index;
float fvalue;
float re;
float im;

};

The different quantities are:

index: The subscript (frequency bin) occupied by the spectral line in an array of length Ny (defined
in the previous section). Note that in typical use index runs over a range of 2" + 1 possible values,
including DC and Nyquist.

fvalue The value of the F-statistic, defined by Percival and Walden eqn. (499c¢).

re: The real part of the line’s complex amplitude. The normalization/sign conventions are identical to
Percival and Walden eqns (499a) and the example on line 20 of page 513.

im: The imaginary part of the line’s complex amplitude. The normalization conventions are identical to
Percival and Walden eqns (499a) and the example on line 20 of page 513, but the sign is reversed,
because the Percival and Walden FFT conventions egn (65ab) are opposite to Numerical Recipes.

306




,,,,,

10.22 Function: fvalue_cmp ()

int fvalue.cmp(const void *£fl, const void *£2) .

This is a function which may be used to compare the fvalues of two different objects of type struct
removed._lines. It is used for example as an argument to the standard-C library routine gsort for
sorting lists of removed lines into decreasing order of fvalue.

This function is supplied with pointers to two stuctures. It returns -1-if the first structure has the larger
fvalue, +1 if the first structure has the smaller fvalue, and 0 if the fvalues are equal.

‘The arguments are: - o -

£1: Input. Pointer to the first structure of type struct removed-lines (casttovoid * so that your
compiler does not complain).

£2: Input. Pointer to the second structure of type struct removed lines (cast to void * so that
your compiler does not complain).

Asanexample,if line 1ist[0..n-1] isanarray of struct removed.lines, then the function
call: o
gsort(line.list,n,sizeof (struct significantwvalues), fvalue.cmp)
will sort that array into decreasing fvalue order. (Note: you may have to cast the arguments to preyent
your compiler from complaining.)

Author: Bruce Allen (ballen@dirac.phys.uwm.edu) and Adrian Ottewill (ottewill@relativity.ucd.ie).

Comments: None.
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10.23 Function: index_cmp ()

int index.cmp (const void *fl, const void *£2)
This is a function which may be used to compare the indexes of two different objects of type struct
removed_lines. It is used for example as an argument to the standard-C library routine gsoxt for
sorting lists of removed lines into increasing order in frequency.

This function is supplied with pointers to two stuctures. It returns -1 if the first structure has the smaller
index, +1 if the first structure has the larger index, and 0 if the indexes are equal.

The arguments are:

£1: Input. Pointer to the first structure of type struct removed lines (casttovoid * so thatyour
compiler does not complain).

£2: Input. Pointer to the second structure of type struct removed.lines (castto void * so that
your compiler does not complain).

Asanexample,if 1ine 1ist[0..n-1]isanarray of struct removed.lines, then the function
call:
gsort(linelist;n,sizeof (struct significant.wvalues), index.-cmp)
will sort that array into increasing index (frequency!) order. (Note: you may have to cast the arguments to
prevent your compiler from complaining.)

Author: Bruce Allen (ballen@dirac.phys.uwm.edu) and Adrian Ottewill (ottewill @relativity.ucd.ie).

Comments: None.
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10.24 Function: remove_spectral_lines ()

void remove._spectral_lines(float *data, int npoints, int padded length, float
nwdt, int nwin, int max.lines, int maxpass, int *numremoved, struct removed.lines
— *line.list, '
) float *mtap.spec_init, float *mtap_spec.final, int dospecs, int fimin, int
fimax)
This routine automatically identifies and removes “spectral lines” from a time series. The procedure
[ followed is described in Percival and Walden Chapter 10. A worked example may be found in Section 10.13
of that book, and the next subsection of the GRASP manual includes two example programs which use
remove_spectral_lines (). Upon return, remove _spectral_lines () provides both an “initial”
| multi-taper spectrum, of the original data, and a “final” multi-taper spectrum, after line removal. Upon
return, the data set has the spectral lines subtracted. This routine also returns a list of the lines removed. For
each line it provides the frequency bin (for the padded data set) in which the line falls, the value of the F-test
for that line, and the complex coefficient C; defined by Percival and Walden eqn (499a) which defines the
line.
! The arguments are:

data: Input. A pointer to the time-series array data[0. .npoints-1].
npoints: Input. The number of points in the previous array.

padded_length: Input. The number of points of zero-padded data that will be analyzed. Note that this
must be an integer power of two greater than or equal to npoints. We recommend that you use at
least a factor of four greater, to obtain sufficient frequency resolution to accurately identify/remove
spectral lines.

nwdt : Input. The (total sample time) X (frequency resolution bandwidth) product.
nwin: Input. Number of Slepian tapers. See previous sections.

max_lines: Input. The maximum number of spectral lines that you want removed. The array 1ine 1ist[0. .max.]
must have at least this length.

maxpass : Input. The maximum number of iterations or passes through the line-removal loop described
below. Set to a large number to make as many passes as needed to remove all the spectral lines.

num_removed: Output. The actual number of spectral lines subtracted from the data.

line_list: Ouput. A listof structures 1ine 1ist[0..num removed-1] containing the frequency
bin, real and imaginary parts of the removed line, and the F-test significance value associated with the
first removal of the line. Upon return from this function, the elements of 1ine 1ist[] are sorted
into increasing frequency-bin order.

DC and Nyquist frequency bins. The array range is mtap.spec.init [0. .paddedlength/2].

|
] mtap_spec.init: Output. The multi-taper power spectrum of the initial data [] array, including both
Warning -this is an odd number of entries. The user must provide a pointer to sufficient storage space.

mtap_spec_final: Output. The multi-taper power spectrum of the final data [] array, with the spec-
tral lines subtracted, including both DC and Nyquist frequency bins. The array range ismtap_spec_final[0..p
Warning -this is an odd number of entries. The user must provide a pointer to sufficient storage space.
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dospecs: Input. If set non-zero, then the initial/final power spectra (pointed to by mtap_spec_init
and mtap_spec_final are calculated. If set to zero, then to save time in situations where all that
is needed a list of spectral lines and their amplitudes and phases, then neither of these power spectra
are calculated.

fimin: Input. In situations where all that is needed is a list of spectral lines and their amplitudes, and it
is desired to limit the search to a restricted range of frequencies, then £imin defines the lower bound
of the range of (padded) frequency bins which are searched for spectral lines. The range of £imin is
0.klen/2. Also, fimin < fimax.

fimax: Input. In situations where all that is needed is a list of spectral lines and their amplitudes, and it
is desired to limit the search to a restricted range of frequencies, then £imax defines the upper bound
of the range of (padded) frequency bins which are searched for spectral lines. The range of £iminis
0.klen/2. Also, fimin < fimax.

The algorithm used by remove_spectral_lines () is an automated version of the procedure illus-
trated in Percival and Walden Section 10.13. The steps followed are:

1. The mean value is subtracted from the data-set, and it is zero padded to the specified length.
2. The set of Fourier coefficients for the tapered data sets are determined.

3. From these coefficients the F-statistic is determined for each frequency bin (Percival and Walden eqn
(499c)). If the confidence level (that the frequency bin contains a spectral line) exceeds 1—1/npoints
(Percival and Walden pg 513), an estimator of the spectral line coefficients is constructed, and the line
is placed onto a working list. If no frequency bins exceed this level of confidence, we are finished.

4. The working list is now sorted into order of decreasing F-values.

5. To ensure that we do not remove the same line twice, the spectral line associated with each spectral
line on the working list is subtracted from the data-set, provided that it does not lie within a frequency
width of £W of a stronger (larger F-value) line.

6. We return to step 1 above, iterating this procedure, provided that the number of times that we have
passed by step 1 is less than or equal to maxpass.

Author: Bruce Allen (ballen@dirac.phys.uwm.edu) and Adrian Ottewill (ottewill@relativity.ucd.ie).

Comments: If max_lines is not large enough, then the line list[] array may not contain all of
the possible spectral lines, which exceed the confidence level above. This may even be the case if
num_removed is less than max_lines. We suggest that you make max-lines somewhat larger
than num_removed. One ought to be able to improve on this routine, by using the array of F-values
generated internally and interpolating to find the frequency of the lines more precisely. One might
also be able to fit to a model of two closely separated lines to better remove certain “split” features, or
to fit to an exponentially-decaying model to remove other broadened features.
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10.25 Example: river

This is an example program which uses the function remove_spectral_lines () to repeat the analysis
of data from the Willamette River given by Percival and Walden in section 10.13 of their textbook.

It displays graphs of the river flow data (which is distributed with GRASP) and spectrum before and
after automatic removal of the two significant spectral lines (whose frequencies are 1/year and 2/year).
These graphs are also shown here. Before running this program, be sure to set the envionment variable
giving the path to the river data, for example:

~setenv GRASP_PARAMETERS -/usr/local/GRASP/parameters -

The text output of the program is as follows:

Total number of lines removed: 2

Removed line of amplitude -0.291175 + i 0.312209 at freqg 1.005848 cycles/year
(F-test value 48.455242)

Removed line of amplitude 0.023220 + i 0.098357 at freg 2.000000 cycles/year
(F-test value 15.224311)

#include "grasp.h'
#include <unistd.h> /x need the header for the sleep() function */

int main() {
int i,num points,num win,num_freq,padded._length,max_lines, num.removed;
float nwdt,xdata,*mtap-spec.init, smtap.spec.final, freq, fnyquist;
struct removed.lines xline_list;
FILE xfpriver;

/ data length, padded length, num frequencies including DC, Nyquist x/
num._points=395;

padded.length=1024;

num_freg=l+padded_length/2;

/* number of taper windows to use, and time-freq bandwidth */
num win=5;
nwdt=4.0;

/* maximum number of lines to remove */
max_lines=8;

/* allocate arrays */

data= (float x)malloc(sizeof (float)*num points);

mtap.spec.init=(float *)malloc(sizeof (float)*num.freq):;

mtap.spec_final=(float x)malloc(sizeof (float)*num freq); -

line_list=(struct removed_lines x)malloc(sizeof (struct removed_lines)smax_lines):;

/* Read Willamette River data from Percival & Walden example, pg 505 */
fpriver=grasp-open ("GRASP_PARAMETERS"', "willamette_river.dat");
for (i=0;i<395;i++) fscanf(fpriver, "%f",data+i);
fclose(fpriver) ;

/* Since the data is sampled once per month, fnyquist = 6 cyles/year */
fnyquist=0.5%12;

/* pop up a graph of the original data /
graph (data,num points,l); sleep(5);
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/* now remove the spectral lines from the data set x/
remove.spectral_lines(data,num.points,padded_length,nwdt, num win,
max_lines, 500, &num removed, line_list,mtap.spec_init,mtap-spec_final,l,0,nun.freq);

/* pop up a graph of the original multitapered spectrum s/
graph (mtap_spec_init, num_freq,l); sleep(5):

Bt

/* pop up a graph of the line-removed data and multitapered spectrum »*/
graph (data,num_points,1l); sleep(5);
graph (mtap_spec_final ,num freqg,1l); sleep(5);

/* print out a list of lines removed */
printf ("Total number of lines removed: %d\n",num.removed);
for (i=0;i<num removed;i++) {
freg=line.list[i].index*fnyquist/num freg;
printf (“Removed line of amplitude %f + i %f at freqg %f cycles/year\t",
line_list[i].re,line.list[i].im, freq);
printf (" (F-test value %f)\n",line_list[i].fvalue);

}

return 0;
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(from Percval & Walden pg 505)

Willamette River Flow

Green: original data (DC removed)

Red: after spectral line removal
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automatically find and remove two “spectral line” features from a data set. This is the same example treated

Figure 56: Output of the example program river, making use of remove_spectral.lines () to
by Percival and Walden in Section 10.13 of their textbook.
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10.26 Example: ifo_clean

This example program uses remove_spectral_lines () to automatically identify and remove “spectral

lines” from the output of the 40-meter IFO. To run this program, be sure to set the data path environment

variable, for example:

setenv GRASP DATAPATH /usr/local/GRASP/data/19nov94.3

The program outputs graphs in a two files called ifo_clean.data.out and ifo.clean_spec.out,

containing the before/after time series and spectra. These may be viewed with xmgr by typing:

xmgr -nxy ifo.clean data.out ] g;

and

xmgr -nxy ifo_clean_spec.out o

to start up the xmgr graphing program.
The output of this program is a list of lines removed:

1

Total number of lines removed: 39 iz
Removed line frequency 30.717 Hz amplitude 0.78 phase 15.54 (F-test 68.6)
Removed line frequency 79.203 Hz amplitude 0.55 phase -157.41 (F-test 52.5)
Removed line frequency 80.257 Hz amplitude 0.12 phase -101.84 (F-test 39.3) i;
Removed line frequency 109.318 Hz amplitude 4.52 phase 10.21 (F-test 75.5)
Removed line frequency 120.009 Hz amplitude 0.46 phase 5.01 (F-test 537.9)
Removed line frequency 139.584 Hz amplitude 0.29 phase -163.57 (F-test 304.5) [
Removed line frequency 179.938 Hz amplitude 21.91 phase -43.22 (F-test 3635.0)
Removed line frequency 239.867 Hz amplitude 0.45 phase 130.25 (F-test 42.2)
Removed line frequency 245.438 Hz amplitude 0.21 phase -116.94 (F-test 51.9)
Removed line frequency 279.167 Hz amplitude 0.31 phase 0.52 (F-test 47.2)
Removed line frequency 299.947 Hz amplitude 15.37 phase -135.82 (F-test 9712.5) °
Removed line frequency 359.876 Hz amplitude 1.17 phase 51.64 (F-test 134.8) ‘
Removed line frequency 419.955 Hz amplitude 4.48 phase -39.58 (F-test 356.1)
Removed line frequency 488.768 Hz amplitude 0.19 phase 165.56 (F-test 50.5) _
Removed line frequency 500.212 Hz amplitude 0.64 phase 129.38 (F-test 34.5) iA
Removed line frequency 539.964 Hz amplitude 5.09 phase 119.38 (F-test 425.2)
Removed line frequency 571.585 Hz amplitude 4.01 phase 120.03 (F-test 50.6) !
Removed line frequency 578.662 Hz amplitude 34.97 phase -149.12 (F-test 429.8)_{“‘“2
Removed line frequency 582.426 Hz amplitude 107.36 phase 15.64 (F-test 1129.7)
Removed line frequency 597.936 Hz amplitude 58.72 phase 63.27 (F-test 558.6) ;
Removed line frequency 605.314 Hz amplitude 17.21 phase -140.57 (F-test 489.7)§M
Removed line frequency 659.822 Hz amplitude 2.20 phase -152.53 (F-test 121.0)
Removed line frequency 779.831 Hz amplitude 3.95 phase -39.18 (F-test 502.4)
Removed line frequency 839.760 Hz amplitude 2.75 phase -172.15 (F-test 468.2)
Removed line frequency 899.840 Hz amplitude 3.40 phase 113.05 (F-test 528.6)
Removed line frequency 959.919 Hz amplitude 0.80 phase 178.70 (F-test 43.2)
Removed line frequency 999.822 Hz amplitude 1.01 phase 67.74 (F-test 114.8) L
Removed line frequency 1019.698 Hz amplitude 1.46 phase -156.72 (F-test 146.6)
Removed line frequency 1079.777 Hz amplitude 3.00 phase 51.82 (F-test 128.9)
Removed line frequency 1157.023 Hz amplitude 2.99 phase -76.14 (F-test 129.4)
Removed line frequency 1210.778 Hz amplitude 2.12 phase 128.39 (F-test 69.5)
Removed line freguency 1319.644 Hz amplitude 3.02 phase -105.29 (F-test 146.2) |
Removed line frequency 1499.582 Hz amplitude 1.31 phase 141.94 (F-test 50.5) o

boodi

N O O i

P O WhN wi

=W NN W
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Removed line freguency 1559.662 Hz amplitude 2.79 phase 107.12 (F-test 60.0)
Removed line fregquency 1746.978 Hz amplitude 1.81 phase 50.38 (F-test 112.0)
Removed line freguency 2039.697 Hz amplitude 1.65 phase 165.82 (F-test 62.3)
Removed line freguency 2279.413 Hz amplitude 2.12 phase -25.06 (F-test 163.0)
Removed line frequency 3509.465 Hz amplitude 0.11 phase 43.89 (F-test 60.1)
Removed line freguency 4609.720 Hz amplitude 0.03 phase 24.61 (F-test 35.4)

Virtually all of these lines can be identified as either 60 Hz line harmonics, or as specific suspension and

the signal, as shown in Figure 57. Note that the amplitudes of the lines above are properly normalized (in
ADC units). For example the 180 Hz line harmonic is well described by A(t) = 21.91sin(3607t/sec). By
far the largest amplitude lines are the three violin modes at 578.662, 582.426, and 597.936 Hz, and the 180
and 300 Hz line harmonics. Most of the structure visible in Figure 57 is the result of these five harmonics.

#include “grasp.h”

int main() {
short xdatas;
int i,num points, num.win,num_freq, padded.length,max_lines,num.removed, remain;
float nwdt,*data, smtap_spec_init,*mtap.spec_final, freq,tstart,srate,*initial_data,amp,phi;
struct removed.lines xline_list;
FILE xfpifo,*fplock, xfpoutl, xfpout?2;

/* open the IFO output file and lock file */
fpifo =grasp.open(“GRASP_DATAPATH", *channel.O");
fplock=grasp_open("GRASP_DATAPATH", "channel.10");

/* data length, padded length, num frequencies including DC, Nyquist %/
num points=8192;

padded_length=65536;

num.freqg=1+padded_length/2;

/= number of taper windows to use, and time-freq bandwidth */
num.win=5;
nwdt=3.0;

/* maximum number of lines to remove */
max_lines=100;

/ allocate arrays */

datas={(short x)malloc (sizeof (short)*num points);

data=(float *)malloc(sizeof (float)*num_points);

mtap.spec_init=(f{loat *)malloc(sizeof (float)xnun.freqg);

mtap_spec_final=(float *)malloc{sizeof (float)snun_freq):;

line_list=(struct removed.lines *)malloc (sizeof (struct removed_lines)smax_lines);
initial_data=(float *)malloc({sizeof (float)s*numpoints);

/* get a section of data.. . =/
get_data(fpifo,fplock,&tstart, numpoints,datas, &remain, &srate, 0);

/* copy short data to float data,and save initial data set %/
for (i=0;i<num.points;i++) initial_data(i]=data([i]=datas(il];

/* remove the spectral lines from the data set /

remove.spectral_lines (data,num points,padded_length,nwdt,num.win,
max._lines, 500, &num.removed, line_list,mtap_spec_init,mtap_spec_-final, 1, 0,num_freq);
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/* print out a list of lines removed */
printf ("Total number of lines removed: %d\n",num.removed);
for (i=0;i<num removed;i++) {
freg=0.5xline_list{i].index xsrate/num freq;
amp=2.0*sqgrt (line_list[i].rexline_list[i].re+line.-list[i].imxline_list(il.im);
phi=180*atan2 (line_list[i].im,line_list[i].xe) /M PI;
printf("Removed line frequency %.3f Hz amplitude %.2f phase %.2f (F-test %.1f)\n", )

freq,amp,phi,line_list[i].fvalue); ’

) o

/+ now output a file containing the initial and final data. .. */
fpoutl=fopen("ifo_clean_data.out”, "w");
fprintf (fpoutl, *# Three columns are:\n# Time (sec) Initial data Final Data\n");
for (i=0;i<num points;i++)
fprintf (fpoutl, "$£\t%f\t%f\n",i/srate,initial datalil,datalil);
fclose (fpoutl);

A

/#* ... and the initial and final spectra, for graphing by xmgr */
fpout2=fopen ("ifo_clean_spec.out”,"w");
fprintf (fpout2, "# Three columns are:\n# Freg (Hz) Initial spectrum Final spectrum\n®);
for (i=0;i<num freq;i++)

fprintf (fpout2, "$E\t%f\t%f\n",0.5*ixsrate/num freq, mtap.spec_init[i], ,mtap_spec_fihallil);
fclose(fpout2);

return 0;
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Figure 57: Output of the example program ifo_clean, making use of remove_spectral.l ines ()
to automatically identify and remove “spectral line” features from the (whitened) output of the Caltech
40-meter interferometer. The black curve and the red curve show the before/after time series and spectra.
We have deliberately choosen a siretch of data immg?,i]ately after the IFO locks, so that the suspension and
pendulum modes are excited.




10.27 Example: tracker

This program produces an animated display which tracks the amplitude and phase of selected line features
in the spectrum. It has a number of user-settable options which determine how the line is tracked. To run
this program, type

tracker | xmgr -pipe

and an animated display will start up. In normal use, the parameters should be set as follows:

num_points: a power of two. A single phase/amplitude point is printed for each set of num_points
samples. '

padding_factor: a power of two. This determines the amount of padding done on the data set, and
thus the ultimate frequency resolution of the line discrimination.

fpreset: your best guess for the frequency that you want to track. If the actual frequency of the spectral
line differs from this value, then the phase will slowly drift as a linear function of time. (The tracker
program does a robust best linear fit to this slope, and uses it to report a best frequency estimate.)

estimate: if set to zero, then the phase of the line found is always compared with the frequency preset
above. If set non-zero, then tracker will make a “best estimate” of the true frequency, and compare
the phase of the line found with the phase appropriate to that sinusoid.

nbins: the number of (padded) frequency bins adjacent to the one of interest in which the line will be
searched for. The frequency range covered is thus given by

nbins
Af==+ 10.27.1
! At(num_points X padding factor + 2) ( )

num_display: the number of points displayed by trackexr. The total amount of time covered by the
output is num_display X num.points x At where At is the sample interval.

num.-win, nwdt: these parameters are described in the section on multi-taper methods.

maxpass: the number of passes to make within remove_spectral_lines (). This number should
be set as small as possible, provided that you still “catch” the line of interest.

Authors: Bruce Allen (ballen @dirac.phys.uwm.edu) and Adrian Ottewill (ottewill@relativity.ucd.ie).

Comments: None.
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L Figure 58: Output of the example program tracker, making use of remove_spectral-lines() to
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10.28 Example: trackerF

This example program is identical to the t racker program just described, which tracks spectral lines, but
with one crucial difference: it reads its data from FRAME files rather than from the old format data stream.
To run this program, type
setenv GRASP.FRAMEPATH /usr/local/GRASP/18nov94.lframe
trackerF | xmgr -pipe
and an animated display will start up.

To run this example in real-time on data coming out at the 40-meter lab, type setenv GRASP REALTIME
trackerF | xmgr -pipe
and an animated display will start up.

#include *grasp.h"

/* macros to define the standard mathematical forms of mod */
#define MOD(X) ({X)>=07?((X)%nundisplay): (num-display—1+((X+1)%num.display)))
#define FMOD2PI(X) ((X)>=0.07?(fmod((X),2.0«M_PI)): (2.0+M_PI+fmod((X),2.0xM_PI)))

/* numerical recipes routine for robust linear fit */
void medfit (float x[],float y[],int npoints, float *a ,float xb,float xdev);
void graphout (float, float, float,float);

main () {
short *datas;

int npass=1l,numpoints,num win,num freqg,padded_length,max.lines,num removed,remain,code, first /
int i,top,estimate,nbins,padding_factor,num display,nprint,index,new=0, maxpass=1 ,minbin,maxbi%\

float nwdt,xdata,*mtap-spec_init,smtap-spec-final,srate,creal,cimag;

float *phase,phasel=0.0,ampl,phase2,*times,*xlinfitx,xlinfity,offset, binpreset;

float displaytime,tl,*amp,dbin,ffit,intercept,slope,deviation,maxamp, displayamp=1.0;
double time, fpreset,sdoub, tsdoub, tinitial,tstart,initime=0.0;

struct removed_lines xline_list;

struct fgetinput fgetinput;

struct fgetoutput fgetoutput;

/= USER DEFINABLE */
/* data length, padded length (powers of 2!) x/
num_points=2048;

padding_factor=8;

/* your best guess for the line frequency you want to track /
fpreset=582.395;

/# set non-zero if you want us to estimate the best-fit frequency */
estimate=0;

/* number of (padded) frequency bins (either side) to search near fpreset = /
nbins=5;

/* the number of phase/amplitudes to display =/
num display=150;

/+ number of taper windows to use, and time-freq bandwidth =/
num-win=5;

nwdt=3.0;

/* the number of passes to make within the line removal algorithm = /
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maxpass=1;

/* num_points=2048; padding_factor=8;fpreset=582.395; /
num points=4096; padding_factor=4;fpreset=582.395;
num points=4096; padding.-factor=4;fpreset=180.0;

/% ———————— END OF USER DEFINABLE x/

/* number of channels */
fgetinput.nchan=1;
fgetinput.inlock=0;
fgetinput.npoint=num points;

/* source of files x/
fgetinput.files=framefiles;

fgetinput.chnames=(char *x)malloc (fgétinput .nchanxsizeof (char x));
fgetinput.locations=(short **)malloc (fgetinput.nchanssizeof (short x));
fgetoutput.npoint=(int *)malloc (fgetinput.nchanxsizeof (int));

/* channel name */
fgetinput.chnames[0]}="IFO_DMRO";

/* number of points to get */
fgetinput.seek=0;
fgetinput.calibrate=0;

padded_length=padding_factor*num_points;

/+ num frequencies including DC, Nyquist */
nun_freg=1+padded.length/2;

/+ max number of lines to report on */
max-lines=64;

/* allocate storage */

datas= (short *)malloc(sizeof (short)s*num points);
data=(float *)malloc(sizeof (float)s*num points);
mtap_spec.init=(float *)malloc(sizeof(float) snum_freq);
mtap-spec_final=(float *)malloc(sizeof (float) snum.freq) ;
line_list=(struct removed.lines x)malloc(sizeof (struct removed_lines})*max-lines) ;
amp={float *)malloc(sizeof (float)snum display);

phase= (float *)malloc(sizeof (float)*num display);
times=(float *)malloc(sizeof (float)*num display);
linfitx=(float *)malloc (sizeof (£loat)*num display);
linfity=(float *)malloc (sizeof (float) snum.display);

fgetinput.locations[0]=datas;

while (npass>0) {
/* get a section of data. .. %/
code=fget_ch (&fgetoutput, &fgetinput) ;
time=fgetoutput.dt;

if (code==0) return 0;
new+=code;

srate=fgetoutput.srate;

if (Hew==1) {
fprintf (stderr, "\aTracker: New Locked Segment at time %f\n",time);
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ffit=fpreset;
npass=1;
top=0;
time=0.0;

}

binpreset=fpreset*2.0xnum freqg/srate;
minbin=binpreset-nbins;
if (minbin<0) minbin=0;
maxbin=binpreset+nbins;
if (maxbin>num_freqg) maxbin=num_freq;

/* copy short data to float data */
for (i=0;i<num_points;i++) datali]=datas(il};

/* remove the spectral lines from the data set */
remove.spectral_lines (data,num_points,padded_length,nwdt, numwin,max_lines, ;
maxpass, &num.removed, line.list, mtap.spec_init,mtap-spec_final, 0,minbin,maxbin);

/* if we fail to remove a line, amplitude set to zero, phase RETAINS PRIOR VALUE x/
ampl=0.0;
/* look in the list of removed lines for the right one =/
for (i=0;i<num removed;i++) {
/* the closest bin to our estimated frequency */
dbin=binpreset—line_list{i].index;
if (fabs(dbin)<=nbins) {
creal=line_list[i].re+dbinxline_list[i].dcdbr+
0.5xdbin*dbinxline_list{i].d2cdb2r;
cimag=line.list[i].im+dbinxline_list([i].dcdbi+
0.5*dbinxdbinxline_list([i].d2cdb2i;
ampl=2.0xsqrt (crealxcreal+cimagxcimag) ; [
phasel=atan2 (cimag, creal) +2.0«M.PIxfmod (fpresetxtime,1.0); ;
break;

}

/* save data in a circular buffers *[0. .num_display-1] */
amp [top]=ampl;

phase[top] =FMOD2PI (phasel) ;
times{topl=time;

/* how many values are we going to output to the graph? %/
nprint=(npass<num.display) ?npass:num-display;

/* cut out a piece for the linear fit x/
if (npass>=2) {

/* adjust the phases to avoid boundary jumps */
offset=0.0;
index=MOD(top—nprint+1};
linfitx[0)=times[index];
linfity[0]=phase[index];
for (i=1;i<nprint;i++) {
index=MOD (top+i-nprint+l);
linfitx[i]=times[index];
if (phase{index]—phase[MOD(index—1)]1>M PI)
offset—=2_0xM_PI;
" else if (phasel[index]-—phase[MOD(index—1)]<—M_PI)
offset+=2.0+«M_PI;
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linfity[i)=phase[index]+offset;

}

/* do a robust linear fit x/
medfit (linfitx—1,linfity—-1,nprint,&intercept,&slope,&deviation);

/* now see what frequency the best fit corresponds to */
ffit=fpreset—slope/(2.0+M PI);

/= if we are assuming a fixed frequency (not adapting) */
if (lestimate) {

slope=intercept=0.0;
}

/* print out amplitude if non-zero %/
maxamp=0.0;
for (i=0;i<nprint;i++) {
index=MOD(top+i—nprint+l);
if (amp([index]>0.0)
printf(“%e\t%e\n",linfitx{i],amplindex]);
else
/* won’t appear on the graph - out of bounds */
printf ("%e\t%f\n",linfitx([i],~1.0);

if (amp[index]>maxamp) maxamp=amp[index];
}
/* separate data sets x/
printf (*&\n");
/* print out phase if non-zero amplitude %/
for (i=0;i<nprint;i++) {
phase2=linfity[i];
phase2=FMOD2PI ( (phase2—slopexlinfitx[i]—intercept));
if (phase2>M_PI)
phase2—=2.0xM_PI;
phase2=(180.0/M_PI)*phase2;
index=MOD (top+i—nprint+l);
if (amp([index]>0.0)
printf(*%.8e\t%.8f\n",linfitx[i],phase2);
else
/* won't appear on the graph - out of bounds */
printf("%.8e\t%f\n",linfitx[i],-500.0);
}
/* set up scale of the x-axis %/
tl=linfitx[0];
displaytime=num display* (num points/srate);
/* set up scale of the amplitude graph y-axis */
if (maxamp>0.9xdisplayamp) {
displayamp=1.3xmaxamp;

fprintf (stderr, "\aTracker: Line at %f Hz, amplitude just increased\n", fpreset);

}

else if (maxamp<0.4xdisplayamp && maxamp>0.0)
displayamp=1.3%xmaxamp;

graphout {tl, tl+displaytime, £fit,displayamp) ;
fflush(stdout);

}

/* now display set, then kill set */
npass++;
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}

top=MOD (top+1) ;

1

return 0;

void graphout (float tl,float t2,float freq, float displayamp) {

static int count=0;
int xmaj,xmin;

float ymaj,ymin=1.0;
int amprec;

xmin={t2—t1)/10.0;
xmaj=5*xmin;

if (ymin<=displayamp/10.0)
while (ymin<=displayamp/10.0) {
yminx=2.0;
ymaj=4.0xymin;

}
else
while (ymin>displayamp/10.0) {
ymin/=10.0;
ymaj=5.0xymin;
}

amprec={int)logl0 (ymaj) ;
if (amprec>1)

amprec=0;
else

amprec=l—amprec;

/= end of set marker */
printf ("&\n");

if (count==0) {
/* first time we draw the plot =/
printf ("@doublebuffer true\n");
printf("@focus off\n");
}
printf("@with g0\n");
printf{"@move g0.sl to gl.s0\n");
printf("@title \"\\-Line Tracker\"\n");
printf("@subtitle \"best estimate £=%f Hz\"\n", freq);
printf("@s0 linestyle 0\n");
printf("@s0 symbol color 4\n");
printf("@s0 symbol 2\n");
printf("@s0 symbol size 0.28\n");
printf("@s0 symbol £ill 1\n*"};
printf("@view 0.15, 0.53, 0.95, 0.90\n");
/* set up x-axis for amplitude */
printf("@world xmin %e\n*,tl);
printf (*e@world xmax %e\n",t2);
printf("@xaxis tick major %d\n",xmaj);
printf ("@xaxis tick minor %d\n",xmin);
printf("@xaxis ticklabel prec 1l\n");
printf ("@xaxis ticklabel off\n");

printf("@yaxis label \"\\-amplitude (ADC counts)\"\n");

printf (“@world ymin %e\n",0.0);
printf ("@world ymax %e\n",displayamp);
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printf ("@yaxis tick major %e\n",ymaj):
printf ("@yaxis tick minor %e\n",ymin);
if (amprec<4)

printf(*@yaxis ticklabel prec %d\n"', amprec);
else {

printf ("@yaxis ticklabel format general\n");

printf ("@yaxis ticklabel prec %d\n",1);
}
/* now do phase plot %/
printf("ewith gI\n");
printf(*@s0 linestyle 0\n");
printf(*@s0 linewidth 0\n");
printf("@s0 symbol color 2\n");
printf("@s0 symbol 2\n");
printf("@s0 symbol size 0.28\n");
printf("@s0 symbol £ill 1I\n");
printf(*eview 0.15, 0.1, 0.95, 0.47\n");
/* set up x-axis for phase %/
printf (*eworld xmin %e\n",tl);
printf("@world xmax %e\n",t2);
printf ("@xaxis tick major %d\n",xmaj);
printf("@xaxis tick minor %d\n",xmin);
printf ("eéxaxis ticklabel prec 1\n");
printf ("@xaxis label \"\\-time (sec)\"\n");
/* set up y-axis for phase %/
printf (“@world ymin %e\n",-180.0);
printf ("@world ymax %e\n",180.0);
printf("e@yaxis tick major 90\n");
printf ("@yaxis tick minor 45\n");
printf("@yaxis ticklabel prec 0\n");
printf ("@yaxis label \"\\-phase (degrees)\"“\n"};
printf("@xaxis label \"\\-time (sec)\"\n");
/* draw plot =/
printf ("@redraw\n");
printf("@kill sO0\n");
printf(*@with g0\n");
printf(*@kill sO0\n");

count++;

return;

Authors: Bruce Allen (ballen@dirac.phys.uwm.edu) and Adrian Ottewill (ottewill @relativity.ucd.ie).

Comments: None.
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Sam, thank you very much for going to the trouble of writing this up
for me. I thought that the easiest way to reply would be to type my
remarks directly on your document, but in boldface, so that you can
print it out and read my remarks immediately after your own.

Bruce:

I believe that the algorithms used in GRASP to produce “calibrated” detector
output are conceptually incorrect. As documented (see GRASP manual vers. 1.5.2
84.7-§4.10) and coded, these routines do not correctly produce calibrated detector
output. The affected routines include GRcalibrate, GRnormalize, and all GRASP
routines that depend on them.

As you will see below, I don’t agree with this.

Summarizing the documentation, the procedure used to calibrate the detector

output is to

1. interpolate the swept sine calibration data, which is stored in the frequency
domain, to some convenient resolution;

2. form, from the interpolated data, what is believed to be the detector transfer
function in the frequency domain;

3. multiply, in the frequency domain, the interpolated transfer function with a
transformed segment of detector output;

4. invert the transform to yield the “calibrated” detector output.

A couple of comments here. First, the swept sine calibration data is
not only stored in the frequency domain, it is actually obtained in the
frequency domain. The output of the HP swept sine analyzer is actually
a 3 column file of data, containing freq, real, imag parts. The HP works
by driving the IFO coil voltage with a sinusoid of fixed frequency, waiting
till the IFO output settles down to a sine wave of the same frequency,
then outputing the ratio of output to input voltage, and the relative
phase of input and output. It then steps up to the next frequency.
There are two fundamental errors in this procedure:

1. the frequency domain interpolation of the swept sine data does not correctly
produce the transfer function; and
I don’t agree with this. Please look at Figure 12, on page 70 of the
GRASP 1.5 manual. This is the actual data from the HP, measured
at 801 frequencies. As you can see, it varies quite smoothly over the
frequency range of interest, having only a few smooth cycles from
DC to 5kHz. For this reason, interpolating in these two sampled
data sets (real and imaginary parts) will give an excellent fit to the
transfer function, provided that we interpolate at more than a few
hundred frequency values. .

2. the convolution of the (incorrect) transfer function with the raw data, which is
carried out here in the frequency domain, fails to accommodate itself to either
the periodic nature of the discrete Fourier transform (DFT) or the importance
of transient effects in the initial and final values of the filter output.

I don’t agree with this either. The only convolution carried out in

GRASP is in the find_chirp() routine. The only times that we use

this, we are always convolving a function which is non-zero for most

of its samples (a zero-padded chirp) with a section of the data set.

This is discussed in section 5.18 of the GRASP manual, beginning
i




on page 117. We have been quite careful to ONLY take values of
the output which are not affected by the periodic nature of the
DFT. In fact if you read the relevant lines of code from the optimal
program on page 134 of the GRASP manual, you will see how this
works. The chirp length is 13,000. A variable called chirplen is set
to this value plus a safety factor of SAFETY=1000 (more about
this below). Then the routine find chirp() searches the output of
the convolution only from 0 to npoint - chirplen. This is precisely
the procedure described in Numerical Recipes.

In the following two subsections I will outline how I believe calibration should be
carried out, noting where I think the GRASP routines are flawed.

I am not sure by what is meant by “how the calibration should be carried
out”, do you agree that the measured data from the HP is sufficient to
calibrate the instrument, or do you think it is not? If so, do you mean
“how you should be using the calibration information” If not, what do
you think is needed for calibrating the instrument?

After you have looked these notes over we should talk.

That would be nice.

I will be relatively inaccessible this week and out of town from Saturday throught
Tuesday. I will be back Wednesday 29 October, though I may be difficult to get a
hold of owing to the NSF review (I'll probably want to sit-in on some of the sessions
in order to learn more about what’s going on).

I should be available virtually anytime. My phone number at work is
414-229-6439.

1. THE TRANSFER FUNCTION

The measured transfer function is a linear filter determined by applying a known
force (in this case, a swept sine wave) to the detector and measuring its response.
Let the applied force be the sequence b[k] and the sampled response be a[k], where
k is the sample index. Define the z-transform of length N sequence c[k] by

N
Clz) =Y —1ck]z™* (1)
k=0
I assume that this is a typo, and also that z = exp(iwAt) where w is
frequency and At is the sample interval.
The z-transform H(z) of the transfer function h[k] which takes the measured
response to the applied force is given by

A(2)H(z) = B(2). 2)

In this way, from the applied a[k] and the measured b[k] we can determine the
transfer function as an ARMA (Auto-Regressive Moving-Average) filter:

ok

The length of the sequences a and b determine the accuracy with which the detectors
transfer function has been determined by the measurement process.

This is in fact not how the transfer function of the instrument is mea-
sured. You might want to talk with Stan Whitcomb, Fred Raab, or
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Jennie Logan, or even go to the lab and ask someone there to demon-
strate the procedure. A good way to do this is on a simple R-C circuit
for which you can easily compute the answer.

In order to obtain, from a measured response y the applied force z[k], we can
apply the filter H(z). We can do this in z-space; or, we can do it in the time
domain:

yinl = 3" okJoln — K] - 3 alklyln — 1 - K] @
k=0

k=0

The filter output depends on past states; it is for this reason that we call it auto-
regressive. (Note also that the filter has an infinite impulse response.)

Both of these remarks are relevant. Although the filter output depends
upon past states, the way that the calibration is typically measured is
using the steady-state response to a sinusoidal driving force as described
above. The HP is a fairly intelligent machine and actually waits until
the ouput of the IFO has settled down to a steady sinusoid of fixed
frequency and phase before it makes a measurement and steps to the
next frequency. This is measured by something called the “coherence”
which must be large for the instrument to make a measurement and step
on to the next frequency.

Since the filter response depends on past states, it is not sufficient to know
the applied force to determine the detector output. The filter output will have
an initial transient behavior associated with unknown past states. The response
of real systems eventually damps, however, and a long as we measure the system
response a[k] for a time longer than the sum of the duration of the applied force and
the damping time, the derived filter will accurately relate the force to the detector
output.

The impulse response of the instrument (response of the IFO_.DMRO
output to a delta-function gravitational strain) has a duration of about
3 msec. I show it in an attached graph, Figure 5.

‘We can also represent the filter in the frequency domain, which is what is done
in GRASP. We can assume that we know the applied force for as long as we have
measured the system response; so, the DFT of each has the same resolution in the
frequency domain.

The problem arise when you interpolate in the frequency domain. Interpolation

in the discrete frequency domain is equivalent to exztrapolating the applied force
and measured response in the time domain: in this case, extrapolating a response
unmeasured and unknown. The particular extrapolation carried out by the DFT
is periodic extrapolation: i.e., the detector response is assumed to be periodic. The
“transfer function” calculated by the GRASP routines thus bears no relationship
to the actual response function.
I think that the only effect of interpolating is the one that I described
above. Provided that the transfer function varies smoothly so that you
are not interpolating values of a wildly-oscillating function, there is no
problem. As you can see from the GRASP figure that I reference, there
is no problem here.

For example, see figures 1 and 1. The first figure shows the product of a Gaussian
and a sinusoid, which may be though of as the time domain representation of a
transfer function. The second figure shows what happens to this transfer function
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FIGURE 1. An example transfer function in the time domain.
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FIGURE 2. The transfer function of 1 after its DFT has been in-
terpolated to twice the resolution in the frequency domain and
transformed back to the time domain. Note that the filter has
been replicated in the extended points.

if we transform it to the frequency domain, double the resolution there by linearly
interpolating to the intermediate frequencies, and transform back via an inverse
DFT. The resulting “transfer function” now has twice the duration in the time
domain and, consistent with the periodic extrapolation of the DFT, the original
filter has been replicated in the extended points.
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Sam: to show that the problem that you describe here does not occur in
GRASP, I have written you a one-page demonstration program. It has
been used to produce the three graphs that follow. All the source code
and the ready-to-run executable can be found in ligo.caltech.edu:~ballen/FINN.
The code itself is very easy to read, and is included in Section 2 of this
document. The program is called sam.c; the executable is called sam.
To run the code, copy sam and swept-sine.ascii to your home directory
(you must have write permission in the directory that you run in) then
do the following commands:

cd ~

setenv GRASP.DATAPATH ‘pwd‘

sam

You will then be prompted for the number of frequency intervals. Enter
a number (for example 8192) and a graph will pop up. If you want to
play with the code, and you need help, please ask Kent or one of Kips
postdocs for help. The program calculates the IFO_DMRO output sig-
nal that would be produced by a 2 x 1.4 solar mass chirp. When you
run it, it prompts you for the number of frequency bins, then outputs a
file containing the IFO_DMRO signal as a two-column ascii file and also
displays a graph of that file.

I have included here output for 8192 frequency bins (Figure 3) and 32768
frequency bins (Figure 4). I show the output in two attached figures.
As you can see, the IFO_DMRO calculated in each case looks precisely
like what one would expect. The instrument has poor low-frequency
response due to the whitening filters used to overcome seismic noise,
so the low frequency part of the IFO_.DMRO has rather lower ampli-
tude than the corresponding gravitational strain h(t). The “doubling
problem” that you claim is present in GRASP does not occur.

Because you are interested in the impulse response of the instrument, I
have also included a line in this code (commented out) which calculates
the impulse response. It is about 3 msec long, which is the reason
for the SAFETY=1000 padding factor mentioned earlier. In fact since
the sample rate is about 10kHz SAFETY=50 would probably be more
than encugh. In fact you can see an effect of this in the calibrated
IFO_.DMRO outputs shown in the Figs 3 and 4. If you look very closely
at the first 2 msec or so you will see a small transient. This is because
the chirp is turned on abruptly so you see a little transient “wiggle” at
the start. This is commented on, on page 125 of the GRASP manual, in
the time_inject_chirp() routine. It turns out to be of no consequence.
This leads me to ask the question, were the graphs that you produced
made with GRASP or with code of your own? If they were produced
with GRASP I would be interested to see your code. I believe that
there are no errors of the type that you describe in any of the GRASP
example programs.
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FiGURE 3. This shows the GRASP-computed IFO_DMRO
that would be produced by 2 x 1.4 solar mass stars. The
chirp enters the band at 140 Hz at sample zero, on the
far left of the graph. However because of the poor low-
freq response of the instrument it does not appear in the
DMRO until about half a second later. This calibrated
output was computed using 8192 frequency bins.
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FIiGURE 4. This shows the GRASP-computed IFO_DMRO
that would be produced by 2 x 1.4 solar mass stars. The
chirp enters the band at 140 Hz at sample zero, on the
far left of the graph. However because of the poor low-
freq response of the instrument it does not appear in the
DMRO until about half a second later. This calibrated
output was computed using 32768 frequency bins. It does
not demonstrate or indicate any of the “doubling” prob-
lems claimed by Finn.
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FIGURE 5. This shows the GRASP-computed
IFO.DMRO’s impulse response. It is the response
of the IFO to a delta-function unit impulse at the 100’th
time sample. It falls off after about 3 msec = 30 samples.




2. GRASP CODE USED TO PRODUCE ALLEN’S FIGURES

#include <stdio.h>
#include <memory.h>
#include "grasp.h"
#define HSCALE 1.e20

main() {

float fstart,srate,tcoal,*c0,*c90,*response;
int filled,i,nmax=1,nbins;

void realft(float*,unsigned long, int);
FILE *fp;

printf("Please enter the number of desired freq bins\n");
scanf ("%d",&nbins);

for (i=0;i<30;i++) if (nbins==(nmax+=nmax)) break;

if (i<12 |] i>=30) {

printf("This must be a power of two >=8192.\n");

exit(1);

}

nbins*=2;

/* allocate memory */

c0=(float*)malloc(sizeof (float)*nbins);
c90=(float*)malloc(sizeof (float)*nbins);
response={(float*)malloc(sizeof (float)*(nbins+1));

/* set start frequency, sample rate, make chirp */
make_filters(1.4,1.4,c0,c90,fstart=140.0,nbins,srate=9868.0,&filled,&tcoal,4000,4);
printf("Chirp length is %d.\n",filled);

/* Uncomment this line to see the impulse response of the instrument */
/* for (i=0;i<nbins;i++) c0[i]=0.0; ¢0[100]=1.0; */

/* put chirps into frequency domain */
realft(c0-1,nbins,1);

/* open file containing calibration data, get response, and scale */
fp=grasp_open("GRASP_DATAPATH","swept-sine.ascii");
normalize_gw(fp,nbins,srate,response);

for (i=0;i<nbins;i++) response[i]*=HSCALE;

/* avoid floating point errors in inversion */
nmax=0.05*fstart*nbins/srate;
for (i=0;i<nmax;i++) response[i]=1.e10;

/* determine IF0 channelQ input which would have produced waveform */
ratio(c0,c0,response,nbins/2);

/* invert FFT #*/
realft(c0-1,nbins,-1);

/* make a graph showing IFO_DMRO */

printf("File temp.graph contains IFO_DMRO produced by 2 x 1.4 solar masses.\n");
graph(c0,nbins,1);

}




3. CONVOLUTIONS

Consider a finite impulse response (FIR) or moving average (MA) filter b of
length N and indexed from 0:

N-1
nl = 3 bljeln - Kl )
k=0

The sequence y is the convolution of the two sequences b and x. This convolution
can be carried out in the discrete frequency domain if one is careful of the periodicity
imposed by the DFT.

The summation above has been written assuming that z and y have infinite
length. Suppose we have a finite length stretch of data z, indexed from 0 to M,
and that we wish to filter it with b to produce y. As written, y[0] depends on z[0]
and on previous values of x that are unknown. In fact, we don’t actually know all
the values of x needed to produce y until we are N samples into the response.

It is conventional to assume that z and b are zero at indices outside their defined
range. Suppose that b and z are extended to length N+ M, with = defined to be zero
at its final N points and b defined to be zero at its final M points. Finally, define
both these new sequences to be periodic, so that references to sequence elements k
outside the range 0... N+ M —1 evaluate to sequence elements k¥ mod (N+M —1).
With these definitions, one can verify that the summation

N+M-1

vl = blijaln — K] (©)
k=0

correctly produces the output y[n] for n =0... M — 1, in addition to non-physical
output at later times. Also note that y is defined for all n and is periodic with
period N + M, corresponding to the periodicity of b and z.

If we transform the periodic sequence y to the discrete frequency domain we will

find that §[k] is equal to b[k]#*[k]. Crucial for our ability to do this, and attain
this result, was our extension of z and b and the imposition of periodic boundary
conditions so that the sequence y was properly periodic. Were we not to extend
by zero-padding the sequences z and b, but try to evaluate the convolution in
the frequency domain, the DFT will enforce its own periodicity and, without the
zero-padding, cause the initial N — 1 elements of the sequence y to involve filter
coeflicients times the last coefficients of the input sequence z.
As I stressed above, the only GRASP routine that does convelution and
deconvolution is the find chirp() routine. The only times that we use
this routine, we do exactly what you describe: zero pad the filters then
only examine the part of the output which has not been “polluted” by
wraparound.

The GRASP routines for producing the “calibrated” time domain output se-
quence of the interferometer makes exactly this mistake: they fail to extend and
zero-pad the input sequence and the filter before evaluating the convolution in the
frequency domain. The result is that sequence elements in the early part of the
“calibrated” output are contaminated by contributions from the late time detec-
tor output, and sequence elements at late times are contaminated by early time
elements.

Please stop making this claim! There are NO GRASP ROUTINES
THAT PRODUCE THE “CALIBRATED” TIME DOMAIN OUTPUT
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SEQUENCE OF THE INTERFEROMETER. In fact it does not make
sense to do this, although you can try. If you attempt to do this, you
will find that the h(t) can not be represented by a floating-point variable;
the IFO noise has such a large dynamic range that the the region from
0.1 to 100 Hz will occupy the entire floating-point dynamic range. If you
use a double-precision variable you might be able to represent h(t), how-
ever you will find that it is very un-interesting, dominated entirely by
the low frequency component. It will look like a noisy sinusoid at very
low frequency. Since the instrument has essentially zero low frequency
response, when you attempt to “invert” the IFO_.DMRO to obtain h(t)
you are dominated by low frequency components of the noise.

If you study GRASP you will notice that we NEVER attempt to cal-
culate or pass h(¢), for exactly this reason. I did notice that your new
postdoc Soma (hopefully this is the correct spelling) apparently tried to
do this, which she reported in Kip’s group meeting yesterday. As I said
this is not a smart or useful thing to do. I can suggest several experi-
ments that Soma can do if you’d like me to, as a way of understanding
this is a deep and profound way.

In fact, since the GRASP routines use a filter whose length is equal to the length
of the sequence being filtered, no element of the convolution between the filter and
the raw detector output is correctly evaluated (which, it could be commented, is
no great loss because, as we have already shown, the transfer function has been
incorrectly evaluated).

Again, in our filtering process, the filters are always zero padded and we
ignore the part of the convolution contaminated by wraparound.

A more extended discussion of how zero-padding is used and convolutions of a
reasonable length filter with indefinitely long times series can be accomplished using
the DFT can be found in most texts on digital signal processing, or in Numerical
Recipes [1].

It can also be found in GRASP section 5.18, and as I said already, the
code does this correctly.

Note that evaluation of filtering via a convolution is possible only with an
FIR filter: it is not possible with any kind of infinite impulse response (IIR) or
auto-regressive (AR) filter. If we form the transfer function as the ratio of the
z-transforms of the detector output and the calibrated input, the transfer function
will be an ARMA filter, which cannot be written as a straight convolution in this
way.

As I comment, the actual impulse response of the IFO is about 3 msec
long. Provided that we deal with data trains much longer than this, we
can treat it as a finite impulse response system.

4. CONCLUSIONS

As presently constructed, GRASP does not correctly produce h[k], the interfer-
ometer displacement measurement.
As I said earlier, there is NOTHING in GRASP that produces h[k]. And
it does not make much sense to try and do this.

It does not correctly form the transfer function that takes detector output to
strain, nor does it correctly implement a convolution in the frequency domain.
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I think that these are both done correctly. If you do not agree, then I
challenge you to the following: produce a graph showing the response
of the instrument IFO_DMRO channel to a 2 x 1.4 solar mass chirp,
and compare it with the GRASP-produced graphs that I have included
here.

All results that depend on GRASP calibrated detector output are, consequently,
suspect.

I do not agree with this conclusion.

Since the errors are conceptual in nature it is likely that they also appear else-
where in GRASP wherever filtering or convolution operations are performed; how-
ever, this has not been checked.

I have checked these operations rather carefully. I am quite willing to
believe that I may have errors in GRASP, however I do not believe that
this document describes any errors in GRASP.

Sam, on another topic, I would like to thank you for the help that you’ve
given Joe and me in finding and correcting several conceptual errors in
our stochastic background paper. In particular, I had not realized that
we could not use VN as a termination criteria.
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