LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY

- LIGO -

CALIFORNIA INSTITUTE OF TECHNOLOGY
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Document Type: LIGO-T980024-00- C 3/25/98

Data Acquisition Daemon (DAQD)
Client-Server Communication Protocol
Version 5

Alex lvanov

Distribution of this draft:

This is an internal working note
of the LIGO Project..

California Institute of Technology Massachusetts Institute of Technology
LIGO Project - MS 51-33 LIGO Project - MS 20B-145
Pasadena CA 91125 Cambridge, MA 01239
Phone (818) 395-2129 Phone (617) 253-4824
Fax (818) 304-9834 Fax (617) 253-7014
E-mail: info@ligo.caltech.edu E-mail: info@ligo.mit.edu

WWW: http://www.ligo.caltech.edu/

file /home/aivanov/frames/daqd/doc/com_prot - printed April 1, 1998

LIGO-T980024-00

1 ABSTRACT

This is a description of the communication protocol used by the DAQD and the client program.
Reliable delivery byte stream socket connection (TCP/IP) is used to send commands and deliver
the data.

2 KEYWORDS

2.1. ASCI|

The predominant character set encoding of present-day computers. The modern version uses
seven bits for each character, whereas most earlier codes (including an early version of ASCII)
used fewer. The change to seven bits allowed the inclusion of lowercase letters - a major win - but
it did not provide for accented letters or any other letterforms not used in English (such as the
German sharp-S or the ae-ligature which is a letter in, for example, Norwegian). It could be worse
though. It could be much worse. See EBCDIC to understand how.

2.2. Channel Group

A set of channels. Full channel can be in one and only one channel group.This group’s number
can be determined with ‘status channels’ command. Use ‘status channel-groups’ command to get
channel group names versus channel group numbers.

Groups can be used to display channel names selectively or to allow hierarchic channel selection
(select group first, then select channel within the group). Grouping is only logical and doesn’t
affect data processing.

2.3. Control Connection

Stream socket connection established by the client and used to send client command and to
receive server response.

2.4. Data Connection

The connection that is used by DAQD to transmit data (either full channels or trend channels) to
the client. Could be either separate or the same as the control connection.

2.5. Daemon

/day’'mn/ or /dee’mn/ (From the mythological meaning, later rationalized as the acronym “Disk
And Execution MONitor”) A program that is not invoked explicitly, but lies dormant waiting for
some condition(s) to occur. The idea is that the perpetrator of the condition need not be aware that
a daemon is lurking (though often a program will commit an action only because it knows that it
will implicitly invoke a daemon).

page 1 of 12

LIGO-T980024-00

2.6. DAQD

Data acquisition daemon. Multi-threaded UNIX program that does a number of tasks, including
channel trend calculation and client data request processing.

2.7. Full Channel

Data signal channel (no matter what speed, fast or slow), transmitted as it was sampled on a data
collection unit.

2.8. Socket

<networking> The Berkeley Unix mechanism for creating a virtual connection between pro-
cesses. Sockets interface Unix’s standard 1/0 with its network communication facilities. They can
be of two types, stream (bi-directional) or datagram (fixed length destination-addressed mes-
sages). The socket library function socket() creates a communications end-point or socket and
returns a file descriptor with which to access that socket. The socket has associated with it a
socket address, consisting of a port number and the local host’s network address.

2.9. Trend Channel

Data channel that represents either of three values (min, max, RMS) calculated on the full channel
over one second. Sampling rate for any trend channel is 1 Hz. Every full channel can have either
three trend channels or none. This depends on DAQD configuration and it is specified on the
server startup. Whether a trend is being calculated for the particular full channel or not can be
determined with ‘status channels’ command.

2.10. TCP/IP

Transmission Control Protocol over Internet Protocol.

The de facto standard Ethernet protocols incorporated into 4.2BSD Unix. TCP/IP was developed
by DARPA for internetworking, encompassing both network layer and transport layer protocols.

Note: generic definitions are from the on-line dictionary of computing at http://wfn-shop.princeton.edu/cgi-bin/foldoc

3 OVERVIEW

There are two parts to the data communication protocol of DAQD. First part is the protocol of the
client requests and the server responses to these requests. This is defined in the following section.
Second part is about the definition of the format of the data that is sent by the server as specified
by client’s request. This data is either full channel data (possibly decimated (averaged) down to
the required sampling rate) or trend channel data, which is three-tuple (min, max, RMS) values
for each channel, calculated over the period of one second. Data transmission format is specified
in the section five.

page 2 of 12

LIGO-T980024-00

Protocol allows requests and data transmissions of the on-line or current data, that is arriving each
second, or the off-line data, read from the filesystem storage. Each data block carries timestamp in
GPS seconds and nanoseconds residual.

4

CLIENT REQUEST FORMAT

4.1. Sample requests

Receive all channels. To understand what channels are configured you will use “status chan-
nels’ command.
start net-writer “127.0.0.1:8090" all;

Receive one channel, specified by name.
start net-writer “204.152.167.20:8090” { “IFO_LOCK” };

Receive two channels.
start net-writer “127.0.0.1:8090” { “IFO_LOCK” “PEM_Seis_4"};

Optional data rate can be given for every channel.
start net-writer “127.0.0.1:8090” { “IFO_LOCK” 32 “PEM_Seis_4" 16 }

IP address is optional -- DAQD will connect to the client’s IP address.
start net-writer “8090” alll;

Port number is optional too -- DAQD will use control connection to send the data.
start net-writer all;

Receive last 15 seconds of data for all configured channels.
start net-writer “127.0.0.1:8090” 15 all;

Receive data for all channels for time period given in GPS time (570219219 seconds) and the
period (3600 seconds here):
start net-writer “127.0.0.1:8090” 570219219 3600 all;

Receive trend data on-line for one channel on port 9999.
start trend net-writer “9999” { “IFO_DMROQO” };

Receive datéramesfor time period:
start frame-writer 570219219 2 all;

Stop network writer (this will disconnect data connection from the DAQD side).
kill net-writer 123123;

Determine protocol version. | will increase version number when | change the protocol.
version;

Get the number of configured channels, channel names, rates and channel group numbers.
status channels;

Get the number of channel groups, channel group numbers and names.
status channel-groups;

page 3 of 12

LIGO-T980024-00

* Close control connection.
quit;

As you can see from the examples, various forms of data request command all start with ‘start net-
writer’ keywords. Absolutely any command ends with semicolon. Following optional parameter

is the TCP/IP address ((IP address, TCP port) tuple) given in the format, where IP address is sep-
arated from the TCP port by colon. It is very important to enclose the address in double quotes,
this makes it a token of string type. Semantically this address is the destination where requested
data will be sent. Server establishes a connection to that address and sends data. After all data is
sent server disconnects. If IP address is omitted, server will determine it from the clients request.
If the address parameter is omitted, server will not be establishing new connection. It will use the
connection on which it received the request (control connection) instead to send the data. Data
will follow server’s positive response to the client request.

After the optional address parameter there could be up to two time arguments. First is the time-
stamp, which is the first second of the requested data (in GPS seconds). Second time argument is
the number of seconds (time period) for which the data is requested. The timestamp can be omit-
ted; time period argument then indicate how many seconds of data up to current time is requested.
If both time arguments are omitted, then the data is sent on-line, continuously until either client or
server disconnects.

The last block of parameters in the net-writer start request is the channel names and sampling
rates definition. The simplest form of this is ‘all’, which instructs DAQD to send data for all con-
figured data channels. Client should use ‘status channels’ command to get channel names and
rates, so it can parse the data it receives from the server.

Channels could be specified by name, as seen from the examples; optional sampling rate (in
Hertz) can be specified after the channel name. Rate can be different for different channels in the
configuration set, could also be omitted for some of the channels (or for all channels). Rate must
lie between 1 and the channel actual rate and be a power of two.

4.2. Request to get on-line data.

The ‘start net-writer’ command with no time arguments will send you data on-line or continu-
ously until either you or the DAQD disconnects. DAQD wouldn’t normally disconnect unless
something happens (like it is being shutdown or similar).

‘start’ ‘net-writer’ optional_address channel_names;

4.3. Request to get off-line data

If you specify time arguments (one or both of them) you will be getting the data for specific time
period. There are two forms of this command. First form, with the only one time argument, sends
the data for last number of seconds. Another form has two time arguments that specify the first
second to be sent and the length of the transmission in seconds.

‘start’ ‘net-writer’ optional_address period_seconds channel _names;

‘start’ ‘net-writer’ optional_address gps_start_time period_seconds channel_names;

page 4 of 12

LIGO-T980024-00

4.4. Server response

Positive responses always starts with ‘0000’, i.e. it is literally four ASCII zero digit characters.
After that server sends net-writer ID. Net writer ID is unsigned long integer, which is sent in
ASCII as eight hexadecimal digits. For instance, ‘0023aef3’. Client must read this ID and can
keep it to be able to use in ‘kill net-writer’ command.

Negative responss always four bytes -- any four ASCII hexadecimal digit combination except
‘0000'. Error codes are defined in ‘dagc.h’ header file. See Appendix 3 “error codes” on page 11.

4.5. Status Channels command

‘status channels’ command is used to determine server clock rate, how many full channels there
are configured, channel names, rates, whether trend is calculated for a channel or not and the
channel group numbers. Server will send all that data on the control connection. Format is speci-
fied in the Appendix 2 server transmission grammar.

status channels;

4.6. Status Channel Groups command

‘status channel-groups’ command is used to get the list of channel group numbers and channel
group names. Channel group number should be matched with the corresponding number in the
data received with ‘status channel’ command to get channel group name for certain channel.

status channel-groups;

4.7. Version command

Can be used to check communication protocol version to avoid situations when old client is run
against the newer DAQD server and the new server has significant changes in the communication
protocol. Server will send version number on the control connection right after the positive
response (‘0000’). Version number transmission is represented as four ASCII hexadecimal digits.

version;

4.8. Kill net-writer command

This command is used to close data connection. This will not affect control connection, so if the
control and data connections are the same stream socket connection, sending ‘kill net-writer’
command will not disrupt the actual socket connection, but will stop any data transmission from
the DAQD for the specified net-writer ID. ‘kill net-writer’ causes DAQD to disconnect the socket
if data connection is separate from the control connection

kill net-writer <ID>;

page 5 of 12

LIGO-T980024-00

4.9. Quit command

Used to close control connection from the server side. Server will just close the socket, no
response to ‘quit’ command is sent.

quit;

4.10. Trend data request

Trend data request is syntactically similar to the full channel data request, except that there is
‘trend’ keyword used to indicate that the trend data is needed:

start trend net-writer all;
start trend net-writer {*IFO_DMRO.min” “IFO_DMRO.max” “IFO_DMRO.rms"};

Trend channel names are constructed by sticking one of the three predefined suffixes to the full
channel name. Suffixes are:

e “min’: Minimal sample over the period of one second
* ‘“‘max’: Maximal sample over the period of one second
* “rms’: Root Mean Square of samples over the period of one second.

Client should check if the trend is calculated for the channel, looking at the ‘status channels’ com-
mand data Trend Flag for each channel. If this flag is not set, then the trend is not calculated for
the channel and your ‘start trend net-writer’ request will fail.

You shouldn’'t put data rate in ‘start trend net-writer’ command.

4.11. Request to get frames

Request to get data in frame format, described in LIGO-T970130-05-E, Specification of a Com-
mon Data Frame Format for Interferometric Gravitational Wave Detectors.

There is no capability to receive frame online.

Request to get frames for last number of seconds is not supported.
Request format is:

‘start’ ‘frame-writer’ optional_address gps_start_time period_seconds ‘all’;

Server replies with positive ACK and sends net-writer ID on the control connection. Server sends
data on the data connection the in data format specified on page 7. Following block header, frame
data is sent (fiel®ata on Figure 1: Data Transmission). Frame data is a frame file read from disk.
Frame file has one frame one second long. Timestamp in the block header aRB®héld

valid, Nsecfield is not set. Valid timestamp can be retrieved from the frame data. Frame data
length equal8len - Hlen.

page 6 of 12

LIGO-T980024-00

5 SERVER DATA TRANSMISSION FORMAT

Channel data transmission is sent by DAQD in the response to ‘start net-writer’ or ‘start trend net-
writer’ command. Data is sent on the data connection. Control connection is used to send com-
mand to DAQD and receive response. Data connection and control connection could be the same
network connection. In that case DAQD data transmission will follow positive server response
defined by the control connection communication protocol, See 4.4. “Server response” on page 5..

Data is transmitted in blocks. Each data block is preceded with the block header. The very first
four bytes of the transmission is the number of blocks in the transmission.

Generic format of the data transmission is shown in Figure 1: Data Transmission.All data is in
binary form. Protocol components are defined as:

» Blocks: Number of transmission blocks. This number would be zero if data is sent on-line.

» Blen: Block length. Size of the block in bytes. Does not include size of Blen.

» Hlen: Header length. Size of the header in bytes, includes size of Hlen.

* GPS Timestamp of the first data sample in the block, measured in seconds since GPS time
origin

* Nsec Nanosecond residual of GPS timestamp.

» Data: channel (full or trend) data, as requested by ‘start net-writer’ command. The order of
the channels is the same as in the channel definitions section of ‘start net-writer’ command.
So, for each channel defined in the ‘start net-writer’ command there will be Rate * 2 bytes of
data. ‘Rate’ equals to the required sampling rate, if specified for the data channel. If rate was
not specified, channel sampling rate is used, as configured in DAQD and accessible via ‘status
channels’ command.

Blocks Blen Hlers12 | GPS Nsec Data (Blen-Hlen bytes) g
| | | | | |
0 4 8 12 16 20 20 + Blen - Hlen
- header -
- one comm block >

Figure 1: Data Transmission

5.1. Zero length block

Zero length block is the communication block for whiBten’ is equal toHlen’ . This means

there is no data being sent. DAQD sends zero length block when it can’t access data for the time
specified in the block header. This could happen for a number of reasons, but for the normal
server operation it shouldn’t. Zero length block could be sent in the middle of the transmission.
Say, you requested data for three seconds: it is possible to receive the data for first second (in the
first transmission block), then receive zero length block and receive data for the third second. Cli-
ent should be prepared to handle events like the one just described.

page 7 of 12

LIGO-T980024-00

5.2. Full channel data

Full channel data is requested by ‘start net-writer’ command.

Full channel data should be interpreted as 16 bit signed integer. This is data type ‘short’ in C, C++
or Java. Let’s call such value a sample. There is certain number of samples sent for each requested
channel. Channels are requested in the channel _names section of the ‘start net-writer’ command.
This could be either *all’ or the channel names and, possibly, rates enclosed in curly braces:

start net-writer all;
start net-writer {“IFO_DMRO” “IFO_CMRQO” 16},

Figure 2: Two Forms of ‘start net-writer’ Command
For ‘all’ channels, channel order and sample rate of the data is the same as in the response to ‘sta-
tus channels’ command (or as configure in DAQD). For the second form, where channel names
and rates are specified, channel order and sample rate in the data transmission is exactly as speci-
fied by the command. For instance, for the second command in Figure 2: Two Forms of ‘start net-
writer’ Command, length oData’ would be 16K + 16 samples and there would be 16K samples
sent first for IFO_DMRO channel and after that there would be 16 samples of data sent for
IFO_CMRO channel.

Now, in the example above IFO_CMRO channels is the fast data channel, meaning that its rate is
16 KHz. In this case DAQD does data decimation, which is, actually, data averaging. For the case
above, it will average every 1K samples of IFO_CMRO channel data to get one data transmission
sample.

5.3. Trend channel data

Trend channel data is requested by ‘start trend net-writer’ command.

Again, the principal for the understanding tB&ata’ format is the same as for the full channel

data. You shouldn't really specify sampling rate in the ‘start trend net-writer’ command ever,
since it can’t be anything else than 1. Data rate is the same for “.min’ and ‘.max’ channels, but it is
different for “.rms’ channel. *.min’ and ‘.max’ values are 32bit signed integers, type intin C, C++
and Java (at least on Solaris 2.5). ‘.rms’ channel is 64bit double precision IEEE 754 floating point
value, type double in C, C++, Java.

For the ‘all’ channels configuration, the channel order is the same as for full channel data stream.
Within one full channel, the order of trend channels is as follows: ‘.min’, *.max’, ‘.rms’. This

order is very much preferred by DAQD. There will be less processing done for (min, max, rms)
than for (rms, max, min).

APPENDIX 1 CLIENT REQUEST GRAMMAR

Terminals are in " and <>

program: /* Nothing */

| commands

page 8 of 12

LIGO-T980024-00

commands: command ‘;’ commands
command: start | trend | frame | stop | ‘version’ | ‘status’ ‘channels’
start: ‘start’ ‘net-writer’ optional_address optional_times channel_names
trend: ‘start’ ‘trend’ ‘net-writer’ optional_address optional_times channel_names
frame: ‘start’ ‘frame-writer’ optional_address gps_start_time period_seconds ‘all’
optional_times: /* Nothing */

| gps_start_time period_seconds

| period_seconds
gps_start_time: <timestamp given in seconds measured from GPS time origin>
period_seconds: <unsigned long integer; the number of seconds>
optional_address: /* Nothing */

| “IP-address:port number” //“127.0.0.1:9090" for instance

| “IP-address” // for example “127.0.0.1"

| “port number” // for example “9090”
channel_names: ‘all’

| {* distinct_channel_names ‘}
optional_rate: /* Nothing */

| <unsigned long integer, should be less than or equal to the corresponding channel rate and must be power
of two>

distinct_channel_names: /* Nothing */

| channel_name optional_rate distinct_channel_names
channel_name: <string in double quotes, for example “IFO_Lock">
stop: ‘kill' ‘net-writer’ net_writer_id

net_writer_id: <unsigned long decimal integer number sent by the DAQD in response to ‘start’ command>

APPENDIX 2 SERVER TRANSMISSION GRAMMAR

This defines datastream from DAQD to the client program supported by DAQD

net-writer (‘start net_writer’ and ‘start trend net-writer’ commands)

‘long(0)’ means ‘long’ token that has value ‘0’
‘byte{N}' means ‘N’ bytes, where ‘N’ is an integer expression
‘long’ and ‘byte’ are terminals (in fact, terminal variables here)
stream: num_of_blocks blocks
num_of_blocks: long(0) // unknown length (online data feed)
| long
blocks: /* Nothing */
| block blocks
block: length header data

page 9 of 12

LIGO-T980024-00

length: long

header: header_length timestamp
timestamp: long long

data: byte{length - header_length}
header_length: long

long: <any four bytes as they are in long variable on the machine DAQD is running on>

Following is the spec on the transmission of the channel data

as requested by ‘status channels’ command.

stream: num_of _channels blocks
blocks: /* Nothing */
| channel_desc blocks
num_of_channels: four_hex_digits
channel_desc: channel_name data_rate trend_flag channel_group_num
channel_name: char{MAX_CHANNEL_NAME_LENGTH = 25} /* defined in channel.h */
data_rate: four_hex_digits
trend_flag: four_hex_digits
channel_group_num: four_hex_digits
four_hex_digits: hex_digit{4}
hex_digit: ‘O'|'1’|'2"|'3'4'5'|'6'|'7'8''9’|'a|'b’|'c’|'d’|'e’'f’

char: <any one byte, usually printable ASCII character>

Following is the spec on the transmission of the channel group data

as requested by ‘status channel-groups’ command.

stream: num_of_groups clock_freq blocks
blocks: /* Nothing */
| group_desc blocks
clock_freq: four_hex_digits
num_of_groups: four_hex_digits
group_desc: channel_group_name channel_group_num
channel_group_name: char{MAX_CHANNEL_NAME_LENGTH = 25} /* defined in channel.h */
channel_group_num: four_hex_digits
four_hex_digits: hex_digit{4}
hex_digit: ‘O'|'1’|'2"|'3'4'5'|'6'|'7'8''9’|'a’|'b’|'c’|'d’|'e’['f’

char: <any one byte, usually printable ASCII character>

page 10 of 12

LIGO-T980024-00

APPENDIX 3 ERROR CODES
Table 1: Communication Errors

Error Code | Description In Response To

1 Parse error. This is either syntax or lexical error. Check tlzety command
your request is in the format described in this document] All
keywords are case-sensitive, all should be in lower case.

You can't ever omit double quotes and should terminate|any
command with semicolon.

2 DAQD not configured. Indicates problems with DAQD comny command
figuration.

3 Invalid IP address. Check if IP address (the one in the | start net-writer
address “IP:port” is all right). IP address is specified in ‘|’ start trend net-writer
notation -- check inet_ntoa(3N) manual page for further
description.

4 Invalid channel name. Check that the name is all right. | start net-writer
Channel name is case sensitive. Use ‘status channels’ tosgett trend net-writer
channel names.

5 Couldn't create data connection socket. start net-writer

start trend net-writer

6 Couldn’t set socket option for data connection socket start net-writer

start trend net-writer

7 Couldn’t establish data connection (connect() failed) start net-writer

start trend net-writer

8 DAQD is busy. This could happen if DAQD is overloadedstart net-writer
and wouldn’t start new net-writer. There is a limit of numbestart trend net-writer
of net-writers running at the same time. It depends on
DAQD configuration and couldn’t be greater than 32.

9 Server memory exhausted any command

12 No such net-writer. kill net-writer

13 Requested data is not found or not available start net-writer

start trend net-writer

page 11 of 12

(off-line data request only

LIGO-T980024-00

Table 1: Communication Errors

Error Code | Description In Response To
14 Couldn’t get caller’s IP address start net-writer
start trend net-writer
15 Couldn’t do dup() on control connection start net-writer
start trend net-writer
16 Invalid channel data rate. Rate must be a power of 2 andstart net-writer
must lie between 1 and channel’s actual data rate. start trend net-writer
17 Socket shutdown failed kill net-writer
18 Trend data is not available, meaning server doesn’t calcuksttat trend net-writer
or allow access to trend data.
19 Full channel data is unavailable. start net-writer
20 No off-line data is available. start net-writer

start trend net-writer

page 12 of 12

