LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY

- LIGO -

CALIFORNIA INSTITUTE OF TECHNOLOGY
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Document Type LIGO-T980094-03- E 11/17/1998

The Generic API’s
baseline specifications

James Kent Blackburn
Philip Ehrens, David Farnham

Distribution of this document:

LIGO LDAS Group

This is an internal working document
of the LIGO Project.

California Institute of Technology Massachusetts Institute of Technology
LIGO Project - MS 51-33 LIGO Project - MS 20B-145
Pasadena CA 91125 Cambridge, MA 01239
Phone (818) 395-2129 Phone (617) 253-4824
Fax (818) 304-9834 Fax (617) 253-7014
E-mail: info@ligo.caltech.edu E-mail: info@ligo.mit.edu

WWW: http://www.ligo.caltech.edu/

file WSIRIUS\kent\Documents\framemaker\GenericAPI\GenericSpecCover.fm - printed November 17,

The Generic API’s
baseline specification

James Kent Blackburn
Philip Ehrens, David Farnham

California Institute of Technology
LIGO Data Analysis Group
November 17, 1998

l. Introduction

A. General Description:

1. The genericAPI provides the base set of functionality in the form of an inter-
preted command language that exist in all LIGO Data Analysis System
(LDAS) distributed computing APl components.

a) The interpreted command language to be used is TCL/TK, which pro-
vides a command line, scripting and a graphical interface.

b) The TCL/TK commands are extended to support low level system inter-
faces and greater computational performance using C++ code that uti-
lizes the standard TCL/TK C code API library in the form of a TCL/TK
package.

2. The genericAPI TCL/TK script accesses a genericAPl.rsc file containing
needed information and resources to extend the command set of the TCL/TK
language using the genericAPI package, which exists in the form of a shared
object.

3. The genericAPI will provide setup and configuration for all socket and file
based communications used in all other LDAS distributed computing API
components.

B. The genericAPl.tcl Script’s Specification:

1. The following is a list of TCL/TK proceduregprfc’s) which are imple-
mented in the genericAPI.tcl script.

a) These commands are used as part of the genericAPI's on-line help facil-
ity, but may be used in other contexts as needed.

(1) renderHTML: Parses and renddidd ML content from a variety of
possible sources which are identified by the content of the first
parameter. It will accept a filename, a URL, or arbitrary HTML.
The logging systemdescribed later uses this method to produce
reports on demand. Extensions allow arbitrary data to be embedded
in HTML content which can be handled by call-backs associated
with tag names and attributes.

Usage renderHTML $var .text
where$var is a TCL/TK variable containing a filename, a URL, or

Page 1 of 20

The Generic API's baseline specification

HTML text and.text is the name of a text widget and. Ther is
required andtext will be initialized if necessary
Return object TCL/TK exception on error.

(2) showHelp: Compound command which collects and indexes
LDAS help files and generates HT ML text widget with appropri-
ate functionality for browsing the dynamic hyper-text help docu-
mentation. All files in a resource defined directory hierarchy which
match a regular expression search for file names are included auto-
matically, making the help system more flexible and extensible.
TheHTML 2.0subset is the base language for the help system.
Usage showHelp .text {topic} {path}
where.text is the name of an LDASITML text widget and is a
required parameter. Botfopic and path are optional. Theopic
parameter has a default value of “help” and the defsath is
given in the genericAPI’s resource file.

Return objectTCL/TK exception on complete absence of all help
files or if .text is an incompatible widget.

b) These commands are used as part of the genericAPI's message logging
facility but may be used in other contexts as needed.

(1) openLog: This is an internal function used by other log functions to
open a log file for appending. It is not typically called directly by
the user. If the file does not exist a non-interupting dialog will
appear which will not go away until you either ask it to open an
existing log or request that a new log file be created; looping back
to the dialog each time an illegal log file is used. All entries in all
log files are time-stamped and become available for automatic
report generation.

Usage set fileid [openLog logname]

wherefileid is the file ID returned from the command, logname is
the name of the log file. The default location for the log files are
given in the genericAPI’s resource file.

Return object The normal return value is the file ID of the opened
file. A TCL/TK exception will be when

(a) file already open,
(b) or group permissions restrict log file creation.

(2) closeLog:Closes a log file that has been opened mitbnLog
Usage closelLog logname
wherelognameis the name of the log file to which the entry is to
be added.
Return object TCL/TK exception when

(a) file is not open,

Page 2 of 20

3)

(4)

(5)

The Generic API's baseline specification

(b) or group permissions restrict log file closure.

addLogEntry: Adds a log entry to a specified log automatically
adding a time-stamp and user ID. Added log entries may consist of
any text. However, only those entries which are tagged properly can
become part of generated reports. Proper tags mulsfTb or
internal LDAS light-weight format. This function catipenLogif

the log file is not already open for adding entries, then add the entry
and finally closes the log file witltloseLog If the log file is
already open, then this command leaves it open after adding the
entry.

Usage addLogEntry logname message {tag}

where messageis the string to be added to the log file, and
logname is the name of the log filéag is anHTML or Internal
LDAS Light-Weight Formaag @efaults to <messagg>

Return object TCL/TK exception when

(a) an attempt is made to write to an illegal log file,
(b) group permissions restrict writing,
(c) orlog file does not exist.

watchLogs: Opens a list of log files fohot reading of log data.
Repeated calls twatchLogs at intervals results ireal-timemoni-
toring of log data. Logs can be dynamically added or removed from
the active list. The files will be opened and closed as necessary.
Usage set data [watchLogs .text $logs]

where.text is the name of an text widget or an un-initialized vari-
able which is used internally yatchLogs and$logsis a TCL/TK

list of log files to be watched.

Return objectReturns a fresh set of log entries after initialization
in HTML format. TCL/TK exception for

(&) group permission restrictions on log file(s).

queryLogs: Generates a Log content reports. Report contents are
determined by optional start and end times or menu selection, and
organized hierarchically. Times can be specified in local BRS

time and time pastgst minute, hour, etg.

Usage set data [queryLogs .text {$start} {$end} {$logs}]
where$start is a TCL/TK variable storing the start time aehd

is a TCL/TK variable storing the end time in one of the allowed
time formats given above agiiogsis an optional TCL/TK list of

log files to be watched which defaults to all available logs.

Return object Returns a log report as HTML format. TCL/TK
exception for

(@) illegally namedtext widget,

Page 3 of 20

The Generic API's baseline specification

(b) wrong widget type when using pre-existing widget,
(c) or group permission restrictions on log file(s).

(6) ArchiveLog: Closes current log file if open then moves the log file
to a standard archive directorgossibly NFS mountedThe next
call toaddLogEntry will automatically create a new log file for the
API. This command is meant to prevent log files from becoming
manageably large.
Usage archivelLog {$log}
where$log is an optional TCL/TK variable storing the name of log
files to be archived and defaults to the API’s log file. The path to the
archive directory is specified in the resource file.
Return objectTCL/TK exception for

(@) log files specified that do not exist,
(b) directory path that does not exist
(c) or group permission restrictions on log files.

c) These commands are used as part of the genericAPI's socket command
communications facility but may be used in other contexts as needed.

(1) initSock: Initializes a TCL/TK level socket connection in a TCL/
TK interpreter on either a local or remote machine for communicat-
ing commands for services provided by individual API's. The
genericAPI's resource file will provide aliases for common ports
and services.

This command also initializes a TCL/TK associated array element
of the form${hostname}($portyvhich contains the local socket ID.
The resulting arrays are globally available and together represent a
table of all sockets on all machines which are in use by the LDAS
system.

Usage set services [initSock hostname port]

where hostnameis the remotedr local is service is localhost
machine’s name or IP number apadrt is the alias for a port
defined in the genericAPI's resource file associated with the ser-
vice.

Return object Returns the socket ID for the services. TCL/TK
exception

(@) on failure to connect.

(2) closeSockcCloses a socket initialized with initSock. The associated
entry from the array of the form ${hostname}($port) containing the
socket ID is removed.

Usage closeSock hostname port
wherehostnameis the host machine’s name or IP number pord
is the alias for a port defined in the genericAPI's resource file asso-

Page 4 of 20

3)

(4)

(5)

The Generic API's baseline specification

ciated with the service.
Return objectTCL/TK exception

(@) if socket not currently open,
(b) or group permission restrictions prevent closing.

openListenSock:Opens a socket using an attendant TCL/TK inter-
preter. A hash table entry of the fofhostname}($aliasyvill con-

tain the socket ID. The port number and its alias are defined in the
genericAPI's resource file. The interpreter listening to the socket
can be a fully functional master or slave TCL/TK interpreter or a
safe master or slave TCL/TK interpreter, possessing a strictly
defined available command set depending on the context in which
openListenSockis used. The command set available at the inter-
preter is a part of the API thawnsthe socket. Akey may be
required to evaluate any or all commands as specified in the
resource file.

Usage set intID [openListenSock alias {safe}]

wherealias is the socket’s port number or alias as defined in the
genericAPI's resource file arghfeis an option used to specify a
safe interpreter.

Return Object Normally returns the interpreter ID, or a TCL/TK
exception if

(a) socket already open,

(b) port alias not specified in resource file,
(c) socket open fails,

(d) insufficient privilege.

closeListenSock:Safe close for listening socket which will finish
pending communications before closing the socket. The associated
TCL/TK interpreter will be explicitly terminated when the socket is
closed. The associated socket array entry will be modified to
remove its socket ID.

Usage closeListenSock alias

wherealias is the socket’'s port number or alias as defined in the
genericAPI’s resource file.

Return Object TCL/TK exception if

(@) socket not already open,

(b) interpreter terminates improperly,

(c) port alias not specified in resource file,
(d) insufficient privilege.

operatorCmd: Sends a command to an API to be processed by the
remote TCL/TK interpreter. Commands consist of TCL/TK code

Page 5 of 20

The Generic API's baseline specification

which may be interpreted by a safe interpreter. Certain exceptions
will cause a help window to be generated describing the commands
available at the remote API and a cross reference to API's which
know about the command that generated the exception if any. Com-
mands received at the remote API's interpreter are queued and
served to the interpreter on a FIFO basis.

Usage operatorCmd api command {key}

whereapi is the name of the remote LDAS API that will interpret
the extended TCL/TK code represeniedommand andkeyis an
optional security key used to authenticate privilege to execute com-
mands on a remote API with a default value determined by the
genericAPI’s resource file.

Return object TCL/TK exception if

(a) the socket for communication is not open,
(b) the remote socket is not listening and times out.

(6) emergencyCmd: High priority command used to communicate
commands which need to be evaluated immediately. This command
should have restricted usage.

Usage emergencyCmd api command {key}

whereapi is the name of the remote LDAS API that will interpret
the extended TCL/TK code represeniedommand andkey is an
optional security key used to authenticate privilege to execute com-
mands on a remote API with a default value determined by the
genericAPI’s resource file.

Return object TCL/TK exception if

(a) the socket for communication is not open,
(b) the remote socket is not listening and times out.

(7) pingAPI: Check to see that an API's ports are alive. Sends a ping to
both theoperatorandemergencyports of an API and then gener-
ates a log entry. If the ping does not return, an appropriate exception
is generated. The ping consists of the TCL/TK stgimg.

Usage set pingtime [pingAPI api {timeout}]

whereapi is the name of an LDAS API, the resource file will iden-
tify the hostname and ports for each named APl tiamebut is the
number of milliseconds to wait for a live responseféults to
5000.

Return objectReturns the ping round-trip time and local host and
remote host clock times. A TCL/TK exception if

(@) named API does not exist in resource file.

d) These are miscellaneous commands used as part of the genericAPI but
may be used in other context as needed.

Page 6 of 20

The Generic API's baseline specification

(1) popMsg: Pops up an undecorated message widget in a prominent
location which automatically disappears after a set time. Used for
low priority exception handling where it is only necessary to inform
the user that he is not going to get the expected action. Messages
will persist a minimum of 1 second and a maximum of 5 seconds. If
popMsg determines that the TK toolkit is not available, it defaults
to sending the messages to STDERR. If the variable LOCALLOG
is set to a path/filename in the resource file, all messages will be
time-stamped and copied to the file location specified by LOCAL-
LOG.

Usage popMsg message {time}

wheremessages the string to appear in the message widget and
time is the duration in milliseconds that the message is to appear,
ranging no less than 1000 millisecond and no more than 5000 milli-
secondsdefault value of 2500 milliseconds

Return object TCL/TK exception if unable to execute message.

e) These commands are used as part of the genericAPI’s resource file facil-
ity but may be used in other context as needed.

(1) sourceRsc:Initialization function which can be called from a TCL/
TK interpreter to cause modifications to the resource file to be
inherited.

Usage sourceRsc api

whereapi is the name of the LDAS API whose resource file is to be
interpreted.

Return object TCL/TK exception when

(@) named API doesn't exist,
(b) error occurs while sourcing resource file.

(2) validateRsc: Opens a resource file and verifies the contents,
prompting the user to set missing environment variables and verify-
ing that the settings are valid. A GUI is launched if anything vital is
missing. The GUI explains the problem and it’'s solution and points
to system specific help when applicable. This command is called by
sourceRscimmediately before the resource file is actually inter-
preted.

Usage validateRsc api

whereapi is the name of the LDAS API whose resource file is to be
interpreted.

Return object TCL/TK exception when

(@) named API doesn't exist,
(b) error occurs while sourcing resource file.
2. The genericAPl.rsc Resource File Specification:

Page 7 of 20

The Generic API's baseline specification

Page 8 of 20

a)

b)

9)

The genericAPl.rsc resource file, in common with other resource files
associated with different API's and interfaces in the LDAS, consists pri-
marily of individual lines of TCL/TK code with no interdependencies,
allowing essentially arbitrary ordering of resource information. The
resource file isourcedwhen an API is started up, and provides informa-
tion to the interpreter which is site specific or in the nature of a user inter-
face.

Typical resource information would include aliases for machine ports,
host names and API names, encrypted system and user keys for access
and authentication, local system defaults and environment variables, and
user preferences such as colors and fonts.

Users who write their own API's based on the genericAPI are encouraged
to source their own resource file, based on the genericAPI.rsc, to estab-
lish unique preferences and avoid conflicts.

A default resource file is included with the genericAPI with verbose com-
ments and a help file explaining it's use in detail.

If a required resource file is not found an exception is thrown with helpful
instructions for configuring the API (sseurceRsg.

Required parameters which would generate exceptions without specified
values include the default location for resource files, help files and LDAS
libraries, as well as the name of the local host computer.

The values of encrypted keys will be calculated by a standard message
digest or hashing algorithm.

Specification of the LDAS HTML text widget:

a)

a)

TheLDAS HTML text widgds a top-level window containing a plain TK

text widget, with associated menus, entries, and buttons as defined by the
showHelp command supporting a subsettbfML 2.0excluding tables,
forms, multi-columns JPEG images, and image mapthdse may be
made available in the futurelt will support additional tags defined for

the Internal LDAS Light-Weight Data FormaThe renderHTML and
therenderURL commands call thehowHelp command with the name

of the widget to be created. If the name provided for the widget is that of
an existing widget which is not consistent withL&DAS HTML text wid-

get theshowHelpcommand will throw an exception.

4. Specification of TCL/TK exceptions:

Each TCL/TK command returns with a TCL/TK exception when the cir-
cumstances associated with the call warrant throwing an exception.
These exceptions may be generated by more than one anomalous condi-
tion. To address the particulars of the condition that generated an excep-
tion, each TCL/TK exception will have associated with it unique integer
ID’s and descriptive messages allowing the exact cause of the exception

The Generic API's baseline specification

to be traced.

C. The genericAPl.so Package’s Specification:

1. The following is a list of C/C++ language based extension to the TCL/TK
command language which are implemented in the genericAPl.so shared
object package. These extended commands are added to TCL/TK through the
TCL/TK interface library and made available to the TCL/TK interpreter
using thdoadable packagenechanism in TCL/TK.

a) These extended commands are used to manage a C++ socket class library
which allows binary data to be communicated between LDAS API's in
either streams or as C++ objects.

(1) createDataSocket:Creates a data socket at the specified port and
address. The port and address are optional. The default address is
the IP address of the machine returnegdtpostnameThe default
port is zero, which cause the system to choose an unused port using
a call to thegetSocketPortcommand.

Usage set ptSok [createDataSocket {port} {address}]

whereport is an optional (but highly recommended) port number.
The addressis the optional IP number associated with the local
host, but may be used to specify particular IP addresses when used
on a gateway machin®&ote: In order to specify an address, the
port must also be specified!

Return objectThis command returns a pointer to a socket which
can be stored in a TCL/TK variable as in the cagg®bk above.

This command throws a TCL/TK exception under the following
conditions:

(@) bad_alloc - memory allocation fails,

(b) bind_failure - unable to bind socket to the specified address &
port,

(c) invalid_address - the address is not a valid IP address,
(d) invalid_host - the host to which address refers can't be found.

(2) createServerSocket:Creates a server socket at the specified port
and address and listens for connections. The port and address are
optional. The default address is the IP address of the machine
returned bygethostnameThe default port is zero, which causes the
system to choose an unused port using a call tgdtteerverPort
command.

Usage set ptSrv [createServerSocket {port} {address}]|

whereport is an optional (but highly recommended) port number
and addressis the optional IP number associated with the local
host, but may be used to specify particular IP addresses when used
on a gateway machin®&ote: In order to specify an address, the

Page 9 of 20

The Generic API's baseline specification

Page 10 of 20

3)

(4)

port must also be specified!

Return objectThis command returns a pointer to a socket which
can be stored in a TCL/TK variable as in the cagg®fv above.

This command throws a TCL/TK exception under the following
conditions:

(@) bad_alloc - memory allocation failed,

(b) bind_failure - unable to bind server to the specified address &
port,

(c) invalid_address - the address is not a valid IP address,
(d) invalid_host - the host to which address refers can't be found.

connectDataSocket:Connects the given socket to a server located
at the specified address and port.

Usage connectDataSocket $ptSok address port

whereptSok is a socket pointer that has been returnedrbgte-
DataSocket addressis the IP address or hostname of the server to
connect to angort is the port number on which the server is listen-
ing.

Return objectnone.

This command throws a TCL/TK exception under the following
conditions:

(@) invalid_socket - the socket doesn't exist,

(b) connect_failure - the socket was unable to connect to the des-
ignatedaddress (for example, a server may not be listening at
thataddress),

(c) invalid_address - the address is not a valid IP address,
(d) invalid_host - the host to which address refers can't be found.

acceptDataSocket:Extracts the first pending connection request
and associates it with a socket. If an address and / or port is pro-
vided, then the connection is only accepted from the specified
address and / or port. The default port is zero, corresponding to any
port and the default address &) (empty stringcorresponding to

any address.

Usage set ptSok [acceptDataSocket $ptSrv {address} {port}]
whereptSrv is a server pointer that has been returnedrbgte-
ServerSocket addressis the optional IP address or hostname of
the client from which to accept communications and has a default
of any client addressvhen not specified. Theort is the optional

port number from which to accept communications and has a
default ofany client port In order to specify a port, the address
must also be specified or the address can be specified using an
empty string, allowing all addresses at a specific port.

The Generic API's baseline specification

Return objectThis command returns a pointer to a socket which
can be stored in a TCL/TK variable as in the cagg®bk above.

This command throws a TCL/TK exception under the following
conditions:

(@) invalid_server - the server does not exist,

(b) invalid_address - the address is not a valid IP address,

(c) invalid_host - the host to which address refers can't be found,
(d) bad_alloc - memory allocation failed,

(e) accept_failure - the unix accept command failed,

() identify_failure - the source socket's identity was unable to be
determined,

(g) illegal_connection - connection attempted from an unautho-
rized socket.

(5) closeDataSocketCloses and destructs a data socket, freeing any
memory allocated for it.
Usage closeDataSocket $ptSok
whereptSok is a socket pointer variable which has previously been
set by a call tereateDataSocket
Return objectnone.
This command throws a TCL/TK exception under the following
conditions:

(@) invalid_socket - the socket doesn't exist.

(6) closeServerSocketCloses and destructs a data server, freeing any
memory allocated for it.
Usage closeServerSocket $ptSrv
whereptSrv is a server pointer variable which has previously been
set by a call tareateServerSocket
Return objectnone.
This command throws a TCL/TK exception under the following
conditions:

(@) invalid_server - the server doesn't exist.

b) These extended commands are used to obtain information from the C++
socket class library associated with current instances of socket objects.

(1) getSocketlpAddress:Returns the socket's local IP address.
Usage set ptVar [getSocketlpAddress $ptSok]
whereptSok is a socket pointer variable which has previously been
set by a call tereateDataSocket
Return objectThis command returns a string containing the local
IP address of the socket which can be stored in a TCL/TK variable
as in the case @tVar above.

Page 11 of 20

The Generic API's baseline specification

Page 12 of 20

(2)

3)

(4)

(5)

This command throws a TCL/TK exception under the following
conditions:

(@) invalid_socket - the socket doesn't exist.

getSocketPort:Returns the socket's local port.

Usage set ptVar [getSocketPort $ptSok]

whereptSok is a socket pointer variable which has previously been
set by a call tareateDataSocket

Return objectThis command returns a string containing the local
port number of the socket which can be stored in a TCL/TK vari-
able as in the case pfvVar above.

This command throws a TCL/TK exception under the following
conditions:

(@) invalid_socket - the socket doesn't exist.

getServerlpAddress:Returns the server's local IP address.

Usage set ptVar [getServerlpAddress $ptSrv]

whereptSrv is a socket pointer variable which has previously been
set by a call tereateServerSocket

Return objectThis command returns a string containing the local
IP address of the socket which can be stored in a TCL/TK variable
as in the case @tVar above.

This command throws a TCL/TK exception under the following
conditions:

(@) invalid_server - the server doesn't exist.

getServerPort: Returns the server's local port.

Usage set ptVar [getServerPort $ptSok]

whereptSok is a socket pointer variable which has previously been
set by a call tereateServerSocket

Return objectThis command returns a string containing the local
port number of the socket which can be stored in a TCL/TK vari-
able as in the case pfVar above.

This command throws a TCL/TK exception under the following
conditions:

(@) invalid_server - the server doesn't exist.

getSocketPeerlpAddressReturns the peer’s IP address to which
this socket is connected.

Usage set ptVar [getSocketPeerlpAddress $ptSok]

whereptSok is a socket pointer variable which has previously been
set by a call tereateDataSocket

Return objectThis command returns a string containing the peer’s
IP address for the socket which can be stored in a TCL/TK variable
as in the case @tVar above.

The Generic API's baseline specification

This command throws a TCL/TK exception under the following
conditions:

(@) invalid_socket - the socket doesn't exist,
(b) unconnected_socket - the socket is not connected.

(6) getSocketPeerPort:Returns the peer’s port to which this socket is
connected.
Usage set ptVar [getSocketPeerPort $ptSok]
whereptSok is a socket pointer variable which has previously been
set by a call tereateServerSocket
Return objectThis command returns a string containing the peer’s
port number for the socket which can be stored in a TCL/TK vari-
able as in the case pfVar above.
This command throws a TCL/TK exception under the following
conditions:

(@) invalid_socket - the socket doesn't exist,
(b) unconnected_socket - the socket is not connected.

c) These extended commands are used to store, restore and reset the infor-
mation contained in C++ socket objects currently instantiated in the
genericAPI.

(1) save: Closes all sockets, writing information about their connec-
tions to the given filewhich is overwritten if it already exigts
Usage save filename
wherefilename is the name of the file where all socket objects are
to be stored.
Return objectnone.
This command throws a TCL/TK exception under the following
conditions:

(@) file_creation_failed - the file could not be created.

(2) restore: Restores socket connections as written in the given file
(which must have been written by the save comjnand
Usage restore filename
wherefilename is the name of the file where the socket objects
were previously stored with treavecommand.
Return objectnone.
This command throws a TCL/TK exception under the following
conditions:

(@) file_not_found - the file could not be located on system,
(b) bad_alloc - insufficient memory available.

(3) reset: Reset is used to clean up all C++ objects that have been
instantiated in the genericAPl.so package. This command is prima-

Page 13 of 20

The Generic API's baseline specification

Page 14 of 20

rily meant as a full reset to initial state for the package, freeing up
all dynamic memory that has been allocated.
Usage reset

Return objectnone.

d) These extended commands are used to communicate elements of the
Internal LDAS Light-Weight DatandRaw Binary Datebetween API’s
using theData Sockets

(1)

(2)

3)

sendElementAscii: This command sends &nternal LDAS Light-
Weight Dataset, called arElementbecause of its relationship to
XML elements, through Rata Socketn ASCIIform (this includes
base64formatted data) This method of sendinglementsis not
expected to be used often and is provided for completeness.
Usage sendElementAscii ptSok ptElem

whereptSok is a pointer to &ata Socketwhich has previously
been opened with theeateDataSocketcommand, angtElem is

a pointer to arclementobject that has previously been instantiated
in the C++ layer.

Return objectnone.

This command throws a TCL/TK exception under the following
conditions:

(@) invalid_socket - the socket doesn't exist,
(b) unconnected_socket - the socket isn’t connected,
(c) invalid_element - the element doesn’t exist.

sendElementObject: This command sends almternal LDAS
Light-Weight Dataset, called aklementbecause of its relationship
to XML elements, through Bata Socketas a C++Object This
method of sendinglementde used often because of efficiency.
Usage sendElementObject ptSok ptElem

whereptSok is a pointer to &ata Socketwhich has previously
been opened with theeateDataSocketcommand, angtElem is

a pointer to arfclementobject that has previously been instantiated
in the C++ layer.

Return objectnone

This command throws a TCL/TK exception under the following
conditions:

(@) invalid_socket - the socket doesn't exist,
(b) unconnected_socket - the socket isn’'t connected,
(c) invalid_element - the element doesn't exist.

sendRawBinary: This command sends a raw stream of binary data
through aData SocketThe binary data must have been previously
been instantiated in the C++ binary storage class which includes an

(4)

(5)

The Generic API's baseline specification

attribute for the number of bytes. This command is used to send raw
unstructured or arbitrarily structured data through the socket. No
attempt is made to understand the content of the data.

Usage sendRawBinary ptSok ptBin

whereptSok is a pointer to &ata Socketwhich has previously
been opened with theeateDataSocketcommand, angtBin is a
pointer to arBinary object that has previously been instantiated in
the C++ layer.

Return objectnone.

This command throws a TCL/TK exception under the following
conditions:

(@) invalid_socket - the socket doesn't exist,
(b) unconnected_socket - the socket isn’'t connected,
(c) invalid_element - the element doesn't exist.

recvElementAscii: This command receives aimternal LDAS
Light-Weight Dataset from aData Socketin ASCII form (this
includesbase64formatted data)

Usage set ptElem [recvElementAscii ptSok]

whereptSok is a pointer to &ata Socketwhich has previously
been connected with tleeceptDataSocketommand, angtElem

is a pointer to th&lementobject which is instantiated in the C++
layer by the receiver.

Return objectThis command returns a pointer toEEementobject
that has been received through tBata Socket The format
attribute for theElementis guaranteed to b&SClII after this com-
mand is called.

This command throws a TCL/TK exception under the following
conditions:

(@) invalid_socket - the socket doesn't exist,
(b) unconnected_socket - the socket isn’t connected,
(c) bad_alloc - insufficient memory for element.

recvElementObject: This command receives dnternal LDAS
Light-Weight Dataset from aData Sockein C++ object form.
Usage set ptElem [recvElementObject ptSok]

whereptSok is a pointer to &ata Socketwhich has previously
been connected with tleeceptDataSocketommand, angtElem

is a pointer to th&lementobject which is instantiated in the C++
layer by the receiver.

Return objectThis command returns a pointer toEelementobject
that has been received through Deta SocketThe incoming for-
mat attribute for th&lementis unaltered by this command.

Page 15 of 20

The Generic API's baseline specification

This command throws a TCL/TK exception under the following
conditions:

(@) invalid_socket - the socket doesn't exist,
(b) unconnected_socket - the socket isn’'t connected,
(c) bad_alloc - insufficient memory for element.

(6) recvRawBinary: This command receive a raw stream of binary
data through fronData SocketThis command is used to receive
raw unstructured or arbitrarily structured data from the socket. No
attempt is made to understand the content of the data.

Usage set ptBin [recvRawBinary ptSok]

whereptSok is a pointer to &ata Socketwhich has previously
been connected with threcceptDataSocketcommand, angtBin

is a pointer to thdinary object which is instantiated in the C++
layer by the receiver.

Return object This command returns a pointer t@enary object
that has been received through reda Socket

This command throws a TCL/TK exception under the following
conditions:

(@) invalid_socket - the socket doesn't exist,
(b) unconnected_socket - the socket isn’'t connected,
(c) bad_alloc - insufficient memory for raw binary.

e) These extended commands are used to communicate elements of the
Internal LDAS Light-Weight DatandRaw Binary Datao and from the
TCL/TK layer and the underlying C++ layer.

(1) putElement: This command puts aimternal LDAS Light-Weight
Dataset, called ailementobject, into the C++ layer from a binary
string variable the variable doesn’'t necessarily contain non-print-
able characteyr in the TCL/TK layer. The command returns a
pointer to the Element object which has been instantiated in the
C++ layer by this command. The data stored in the binary string
variable can be translated into a new format in the Element object
using the format and compress options.

Usage set ptElem [putElement $bstring {format} {compress}]
wherebstring is a TCL/TK variable containing either an ASCII or
Binary string for arinternal LDAS Light-Weight Data Elemeithe
optional format and compressparameter is used to translate the
data within thebstring (along with the associated attributed) into a
different format within the instantiatdelementobject in the C++
layer, andotElem is a pointer to th&lementobject which is instan-
tiated in the C++ layer. Thiermat can be one ofdscii | binary |
base64. The compresscan be a single integer value fro {9}

Page 16 of 20

(2)

3)

The Generic API's baseline specification

where0 is no compression ar@is maximum compression. The
compress parameter is ignored when tliermat is ascii. The
default forformat is “attribute” causing thénternal LDAS Light-
Weight Data Formaattribute value to be used.

Return object This command returns a pointer to Efement
object.

This command throws a TCL/TK exception under the following
conditions:

(@) bad_alloc - insufficient memory for element,
(b) illegal_element - TCL/TK bstring format is illegal,
(c) illegal_format - translation format unrecognized,

getElement: This command gets aimternal LDAS Light-Weight
Data set which has previously been instantiated as an Element
object in the C++ layer and stores it in a binary string variable in the
TCL/TK layer. The format of the data in the bstring representation
of the Element object is optional and defaults to the attribute’s value
and if the format is binary or base64, then an optional compression
factor can be specified.

Usage set bstring [getElement ptElem {format} {compress}]|
whereptElem is a pointer to th&lementobject which is instanti-
ated in the C++ layer. The optiorfarmat can be one ofdscii |
binary | base64. The compressoption is a integer value between

0 and 9, including no string meaning to leave the data at its current
compression level as assigned by the attribute. ddrapress
parameter is ignored when tl@mat is ascii. Thebstring is the
TCL/TK variable to contain either an ASCII or Binary string for an
Internal LDAS Light-Weight Data Elemehte default fofformat

is “attribute” causing thénternal LDAS Light-Weight Data Format
attribute value to be used.

Return object This command returns aimternal LDAS Light-
Weight DateElementas a TCL/TK binary string.

This command throws a TCL/TK exception under the following
conditions:

(@) bad_alloc - insufficient memory for element,

(b) invalid_element - the element does not exist,

(c) illegal_format - translation format unrecognized.
putRawBinary: This command puts a raw binary data set into the
C++ layer in the form of a binary object containing the raw binary

data and the number of bytes associated with the raw binary data. It
returns a pointer to the binary object. No attempt is made to parse

Page 17 of 20

The Generic API's baseline specification

the raw binary data.

Usage set ptBin [putRawBinary $bstring $nbytes]

wherebstring is a TCL/TK variable containing the raw binary data,
nbytesis a TCL/TK variable containing the number of bytes asso-
ciated with the raw binary data, aptBin is a pointer to the binary
object instantiated in the C++ layer by this command.

Return objectThis command returns a pointer to the binary object
instantiated in the C++ layer when called.

This command throws a TCL/TK exception under the following
conditions:

(@) bad_alloc - insufficient memory for binary object.

(4) getRawBinary: This command gets a raw binary data set from a
binary object in the C++ layer, returning a binary string containing
the raw binary data and modifies the value of the second parameter
to be the number of bytes associated with the raw binary data. No
attempt is made to parse the raw binary data.

Usage set bstring [getRawBinary ptBin nbytes]

whereptBin is a pointer to a binary object in the C++ layer which
has previously been instantiatethytes is a TCL/TK variable
which will be updated to hold the number of bytes associated with
the raw binary data, arbtring is the TCL/TK variable to contain
the binary data after the call is made.

Return objectThis command returns a TCL/TK binary string.

This command throws a TCL/TK exception under the following
conditions:

(@) bad_alloc - insufficient memory for binary string,
(b) invalid_binary - binary object doesn’t exist.

(5) destructElement: This command deallocates memory for an ele-
ment object, removing it from the C++ layer. It takes one argument
which is a pointer to the element to be removed.

Usage destructElement ptElem

whereptElem is a pointer to an element object previously instanti-
ated in the C++ layer.

Return objectNone. This command returns a TCL/TK exception
under the following conditions:

(@) invalid_element - specified element doesn’t exist.

(6) destructRawBinary: This command deallocates memory for a raw
binary object, removing it from the C++ layer. It takes one argu-
ment which is a pointer to the raw binary object to be removed.
Usage destructRawElement ptElem
where ptElem is a pointer to a raw binary object previously instanti-

Page 18 of 20

The Generic API's baseline specification

ated in the C++ layer.
Return objectNone. This command returns a TCL/TK exception
under the following conditions:

(@) invalid_binary - specified raw binary object doesn’t exist.

D. The Internal LDAS Light-Weight Data Format Specification:

1. Thelnternal LDAS Light-Weight Data Format a subset of thelGO Light-
Weight Data FormatBoth are based oXML, the likely successor tdTML.
However, thdnternal LDAS Light-Weight Data Forméat designed to be the
minimal set of elements needed to move data through sockets and between
the TCL/TK layer and the extended commands found in the C/C++ layer. It
is primarily meant to be a machine oriented data format, and as such, relies
heavily on attributes over nested elements. The LDAS system will support
the full implementation of thelGO Light-Weight Data Formatising a spe-
cialized API, theLight-Weight Data Format ARWwhich will be specified in a
forthcoming set of documents.

2. Each element of tHaternal LDAS Light-Weight Data Format of the form:
<tag attributel="value” attribute2="value” ...>rawdata</tag>
where the element begins witkaharacter and is followed by tkeg-name
which identifies the base data type. Thendttabutes are listed, each set
equal to avalue enclosed in quotes and provide descriptions about the data.
The openindag is closed with & character. Theawdata then follows. The
element is terminated by the clositayy which is just the< character fol-
lowed by theg character followed by th@g-name and finally the character.

3. The tag-names are case-insensitive and can be any of the following for the
Internal LDAS Light-Weight Data Format

a) CHAR_S - signed byte,

b) CHAR_U unsigned byte,

c) INT_2S - 2 byte signed integer,

d) INT_2U - 2 byte unsigned integer,

e) INT_4S - 4 byte signed integer,

f) INT_4U - 4 byte unsigned integer,

g) REAL_4 - 4 byte IEEE 754 floating point number,

h) REAL_8 - 8 byte IEEE 754 floating point number,

i) COMPLEX_8 - pair of REAL_4’s ordered ase@l, imaginary,
j)) COMPLEX 16 - pair of REAL_8's ordered ase@l, imaginary.

4. The understood attributed for theernal LDAS Light-Weight Data Format
are @ll other attributes are ignored by the genericXPI

a) name = “name:attrl:attr2:...” - the name or names to be associated

Page 19 of 20

The Generic API's baseline specification

Page 20 of 20

b)

9)

h)

)

with this data. A set of naming attributes can appear after the name sepa-
rated with colons. This would be useful for describing generic objects
like graphs or tables where title, axis labels, etc. might be associated.
Defaults to an empty string if not present;

ndim = “integer” - the number of dimension in the rawdata and has a
default value of 1{ecto) if not present;

dims = “integer,integer,...” - ndim comma delimited integers telling the
number of elements in each dimension of the rawdata,; if ndisce0a()
then dims is ignored and defaults to 1,

units = “unitl,unit2,...” - ndim comma delimited unit names specifying
the units, if any, for each dimension of the rawdata. Defaults to an empty
string if not present;

mdorder = “f77 | ¢” - indicates whether a multidimensional data set is to
be incremented fastest on the first index “f77” or last index “c”; the
default is “c” if not present;

format = “ascii | base64 | binary”- the encoded format of the rawdata;
if “ascii” then compression is not allowed and each number is whitespace
(spaces, tabs, returnsgparated; the default is binary if not present;

compression = “0 - 9”- an integer between 0 and 9 specifying the level
of compression used for binary or base64 formats; the defaultns O (
compressiopif not present;

byteorder = “little | big” - whether integers are stored in little endian or
big endian order; the default is little endian if not present;

bytes = “integer” - number of bytes of rawdata between the element’s
tags-names; required if format is binary and compression not zero;

comment = “arbitrary text string” - optional and defaults to an empty
string if not present.

	file \\SIRIUS\kent\Documents\framemaker\GenericAPI...
	Laser Interferometer Gravitational Wave Observator...
	- LIGO -
	GenericAPI_BS.pdf
	The Generic API’s baseline specification
	James Kent Blackburn Philip Ehrens, David Farnham ...
	I. Introduction
	A. General Description:
	1. The genericAPI provides the base set of functio...
	a) The interpreted command language to be used is ...
	b) The TCL/TK commands are extended to support low...

	2. The genericAPI TCL/TK script accesses a generic...
	3. The genericAPI will provide setup and configura...

	B. The genericAPI.tcl Script’s Specification:
	1. The following is a list of TCL/TK procedures (p...
	a) These commands are used as part of the genericA...
	(1) renderHTML: Parses and renders HTML content fr...
	(2) showHelp: Compound command which collects and ...

	b) These commands are used as part of the genericA...
	(1) openLog: This is an internal function used by ...
	(a) file already open,
	(b) or group permissions restrict log file creatio...

	(2) closeLog: Closes a log file that has been open...
	(a) file is not open,
	(b) or group permissions restrict log file closure...

	(3) addLogEntry: Adds a log entry to a specified l...
	(a) an attempt is made to write to an illegal log ...
	(b) group permissions restrict writing,
	(c) or log file does not exist.

	(4) watchLogs: Opens a list of log files for hot r...
	(a) group permission restrictions on log file(s).

	(5) queryLogs: Generates a Log content reports. Re...
	(a) illegally named .text widget,
	(b) wrong widget type when using pre-existing widg...
	(c) or group permission restrictions on log file(s...

	(6) ArchiveLog: Closes current log file if open th...
	(a) log files specified that do not exist,
	(b) directory path that does not exist
	(c) or group permission restrictions on log files....

	c) These commands are used as part of the genericA...
	(1) initSock: Initializes a TCL/TK level socket co...
	(a) on failure to connect.

	(2) closeSock: Closes a socket initialized with in...
	(a) if socket not currently open,
	(b) or group permission restrictions prevent closi...

	(3) openListenSock: Opens a socket using an attend...
	(a) socket already open,
	(b) port alias not specified in resource file,
	(c) socket open fails,
	(d) insufficient privilege.

	(4) closeListenSock: Safe close for listening sock...
	(a) socket not already open,
	(b) interpreter terminates improperly,
	(c) port alias not specified in resource file,
	(d) insufficient privilege.

	(5) operatorCmd: Sends a command to an API to be p...
	(a) the socket for communication is not open,
	(b) the remote socket is not listening and times o...

	(6) emergencyCmd: High priority command used to co...
	(a) the socket for communication is not open,
	(b) the remote socket is not listening and times o...

	(7) pingAPI: Check to see that an API’s ports are ...
	(a) named API does not exist in resource file.

	d) These are miscellaneous commands used as part o...
	(1) popMsg: Pops up an undecorated message widget ...

	e) These commands are used as part of the genericA...
	(1) sourceRsc: Initialization function which can b...
	(a) named API doesn’t exist,
	(b) error occurs while sourcing resource file.

	(2) validateRsc: Opens a resource file and verifie...
	(a) named API doesn’t exist,
	(b) error occurs while sourcing resource file.

	2. The genericAPI.rsc Resource File Specification:...
	a) The genericAPI.rsc resource file, in common wit...
	b) Typical resource information would include alia...
	c) Users who write their own API’s based on the ge...
	d) A default resource file is included with the ge...
	e) If a required resource file is not found an exc...
	f) Required parameters which would generate except...
	g) The values of encrypted keys will be calculated...

	3. Specification of the LDAS HTML text widget:
	a) The LDAS HTML text widget is a top-level window...

	4. Specification of TCL/TK exceptions:
	a) Each TCL/TK command returns with a TCL/TK excep...

	C. The genericAPI.so Package’s Specification:
	1. The following is a list of C/C++ language based...
	a) These extended commands are used to manage a C+...
	(1) createDataSocket: Creates a data socket at the...
	(a) bad_alloc - memory allocation fails,
	(b) bind_failure - unable to bind socket to the sp...
	(c) invalid_address - the address is not a valid I...
	(d) invalid_host - the host to which address refer...

	(2) createServerSocket: Creates a server socket at...
	(a) bad_alloc - memory allocation failed,
	(b) bind_failure - unable to bind server to the sp...
	(c) invalid_address - the address is not a valid I...
	(d) invalid_host - the host to which address refer...

	(3) connectDataSocket: Connects the given socket t...
	(a) invalid_socket - the socket doesn't exist,
	(b) connect_failure - the socket was unable to con...
	(c) invalid_address - the address is not a valid I...
	(d) invalid_host - the host to which address refer...

	(4) acceptDataSocket: Extracts the first pending c...
	(a) invalid_server - the server does not exist,
	(b) invalid_address - the address is not a valid I...
	(c) invalid_host - the host to which address refer...
	(d) bad_alloc - memory allocation failed,
	(e) accept_failure - the unix accept command faile...
	(f) identify_failure - the source socket's identit...
	(g) illegal_connection - connection attempted from...

	(5) closeDataSocket: Closes and destructs a data s...
	(a) invalid_socket - the socket doesn't exist.

	(6) closeServerSocket: Closes and destructs a data...
	(a) invalid_server - the server doesn't exist.

	b) These extended commands are used to obtain info...
	(1) getSocketIpAddress: Returns the socket's local...
	(a) invalid_socket - the socket doesn't exist.

	(2) getSocketPort: Returns the socket's local port...
	(a) invalid_socket - the socket doesn't exist.

	(3) getServerIpAddress: Returns the server's local...
	(a) invalid_server - the server doesn't exist.

	(4) getServerPort: Returns the server's local port...
	(a) invalid_server - the server doesn't exist.

	(5) getSocketPeerIpAddress: Returns the peer’s IP ...
	(a) invalid_socket - the socket doesn't exist,
	(b) unconnected_socket - the socket is not connect...

	(6) getSocketPeerPort: Returns the peer’s port to ...
	(a) invalid_socket - the socket doesn't exist,
	(b) unconnected_socket - the socket is not connect...

	c) These extended commands are used to store, rest...
	(1) save: Closes all sockets, writing information ...
	(a) file_creation_failed - the file could not be c...

	(2) restore: Restores socket connections as writte...
	(a) file_not_found - the file could not be located...
	(b) bad_alloc - insufficient memory available.

	(3) reset: Reset is used to clean up all C++ objec...

	d) These extended commands are used to communicate...
	(1) sendElementAscii: This command sends an Intern...
	(a) invalid_socket - the socket doesn't exist,
	(b) unconnected_socket - the socket isn’t connecte...
	(c) invalid_element - the element doesn’t exist.

	(2) sendElementObject: This command sends an Inter...
	(a) invalid_socket - the socket doesn't exist,
	(b) unconnected_socket - the socket isn’t connecte...
	(c) invalid_element - the element doesn’t exist.

	(3) sendRawBinary: This command sends a raw stream...
	(a) invalid_socket - the socket doesn't exist,
	(b) unconnected_socket - the socket isn’t connecte...
	(c) invalid_element - the element doesn’t exist.

	(4) recvElementAscii: This command receives an Int...
	(a) invalid_socket - the socket doesn't exist,
	(b) unconnected_socket - the socket isn’t connecte...
	(c) bad_alloc - insufficient memory for element.

	(5) recvElementObject: This command receives an In...
	(a) invalid_socket - the socket doesn't exist,
	(b) unconnected_socket - the socket isn’t connecte...
	(c) bad_alloc - insufficient memory for element.

	(6) recvRawBinary: This command receive a raw stre...
	(a) invalid_socket - the socket doesn't exist,
	(b) unconnected_socket - the socket isn’t connecte...
	(c) bad_alloc - insufficient memory for raw binary...

	e) These extended commands are used to communicate...
	(1) putElement: This command puts an Internal LDAS...
	(a) bad_alloc - insufficient memory for element,
	(b) illegal_element - TCL/TK bstring format is ill...
	(c) illegal_format - translation format unrecogniz...

	(2) getElement: This command gets an Internal LDAS...
	(a) bad_alloc - insufficient memory for element,
	(b) invalid_element - the element does not exist,
	(c) illegal_format - translation format unrecogniz...

	(3) putRawBinary: This command puts a raw binary d...
	(a) bad_alloc - insufficient memory for binary obj...

	(4) getRawBinary: This command gets a raw binary d...
	(a) bad_alloc - insufficient memory for binary str...
	(b) invalid_binary - binary object doesn’t exist.

	(5) destructElement: This command deallocates memo...
	(a) invalid_element - specified element doesn’t ex...

	(6) destructRawBinary: This command deallocates me...
	(a) invalid_binary - specified raw binary object d...

	D. The Internal LDAS Light-Weight Data Format Spec...
	1. The Internal LDAS Light-Weight Data Format is a...
	2. Each element of the Internal LDAS Light-Weight ...
	3. The tag-names are case-insensitive and can be a...
	a) CHAR_S - signed byte,
	b) CHAR_U unsigned byte,
	c) INT_2S - 2 byte signed integer,
	d) INT_2U - 2 byte unsigned integer,
	e) INT_4S - 4 byte signed integer,
	f) INT_4U - 4 byte unsigned integer,
	g) REAL_4 - 4 byte IEEE 754 floating point number,...
	h) REAL_8 - 8 byte IEEE 754 floating point number,...
	i) COMPLEX_8 - pair of REAL_4’s ordered as (real, ...
	j) COMPLEX_16 - pair of REAL_8’s ordered as (real,...

	4. The understood attributed for the Internal LDAS...
	a) name = “name:attr1:attr2:...” - the name or nam...
	b) ndim = “integer” - the number of dimension in t...
	c) dims = “integer,integer,...” - ndim comma delim...
	d) units = “unit1,unit2,...” - ndim comma delimite...
	e) mdorder = “f77 | c” - indicates whether a multi...
	f) format = “ascii | base64 | binary” - the encode...
	g) compression = “0 - 9” - an integer between 0 an...
	h) byteorder = “little | big” - whether integers a...
	i) bytes = “integer” - number of bytes of rawdata ...
	j) comment = “arbitrary text string” - optional an...

