LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY

- LIGO -

CALIFORNIA INSTITUTE OF TECHNOLOGY
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Document Type LIGO-T980115-00- E 12/4/1998

The Manager API’s
baseline requirements

James Kent Blackburn

Distribution of this document:

LIGO LDAS Group

This is an internal working document
of the LIGO Project.

California Institute of Technology Massachusetts Institute of Technology
LIGO Project - MS 51-33 LIGO Project - MS 20B-145
Pasadena CA 91125 Cambridge, MA 01239
Phone (818) 395-2129 Phone (617) 253-4824
Fax (818) 304-9834 Fax (617) 253-7014
E-mail: info@ligo.caltech.edu E-mail: info@ligo.mit.edu

WWW: http://www.ligo.caltech.edu/

file \SIRIUS\kent\Documents\framemaker\ManagerAPI\ManagerAPIReqCover.fm - printed December

The Manager API’s
baseline requirements

James Kent Blackburn

California Institute of Technology
LIGO Data Analysis Group
December 4, 1998

Introduction

A. General Description:
1. The managerAPI is responsible for centralized administration of all LIGO

Data Analysis System (LDAS) distributed computing APl components using
an interpreted command language.

a) The interpreted command language to be used is TCL/TK, which pro-
vides a command line, scripting and graphical interface.

b) The first generation(s) of the managerAPI will be developed entirely in
TCL/TK. If a performance requirement is not being satisfied by the
purely TCL/TK based managerAPI, then C++ code can easily be used to
extend the language utilizing the standard TCL/TK C code API library in
the form of TCL/TK packages.

. The managerAPI TCL/TK script will be responsible for configuration and

initialization of the LDAS system. This involves testing communications

with all API's registered in the managerAPl.rsc resource file, initializing the

state of all API's and start-up of missing API's as outlined in the resource
file.

. All default behavior€.g., conduct binary inspiral searches at gitedl be

established after initialization from its resource file managerAPI.rsc.

. The managerAPI will act as the broker for user requests to the LDAS. All

request from User API's will be in the form of high level language com-
mands to the managerAPI which are queued in a FIFO queue.

The managerAPI.tcl Script's Requirements:
1. The managerAPl.tcl script will provide two additional communication sock-

ets beyond the Operator and Emergency sockets provided by the underlying
genericAPI, allowing interactions between LDAS API's and the manager.
These sockets are referred to as the Send and the Receive Sockets in the man-
agerAPI. As with the Emergency and Operator Sockets from the genericAPI,
the Send and Receive Sockets will each have their own interpreter. The Send
Socket will only connect to listening Operator Sockets on the LDAS API’s
and the Receive Socket will always listen for connections from the Operator
Sockets on the LDAS API’s.

2. The managerAPI will maintain three command queues used to store com-

Page 1 of 10

The Manager API’s baseline requirements

Page 2 of 10

mands and messages between users and the LDAS API’s.

a)

b)

The Command Queue is used to hold incoming high level language com-
mands from User API's. Each command in this queue is passed off to the
next available assistant manager interpreter for processing. This queue
will be capable of holding 25 high level commands. An attempt to com-
municate with the Operator Socket by a User API when this queue is full
results in acurrently unavailablenessage being sent via the Emergency
Sockets to the User API.

The Send Queue is used to send commands from individual assistant
managers to the LDAS API’s. This queue will be capable of holding 100
API specific commands before being full. If the queue is full the assistant
manager requesting to use the queue is told to wait. All commands placed
in this queue have an index associating them with the specific high-level
command from the Command Queue and the ID of the assistant manager
that pushed the command onto the Send Queue.

Each Assistant Manager requires a completion of requested command
response from the LDAS API before proceeding to the next LDAS API
command instruction associated with processing high level commands.
The LDAS API’s report completion of commands to the Receive Socket
on the managerAPIl. The completion message includes the index to the
high level command from the Command Queue and the ID of the assis-
tant Manager that requested the LDAS API to perform the command.
This queue will be capable of holding 100 APl command completion
messages. If this queue ever becomes full, the Receive Socket will not
accept a new message from the API, forcing it to retry the connection
when the queue is available.

. The managerAPI will use Assistant Manager interpreters to supervise the

execution of high level commands. There will be a minimum of three assis-
tant managers running in the managerAPI, with the possibility of more being
started if needed. Each Assistant Manager shares equally the CPU time with
the managerAPI while carrying out commands. Assistant Managers will be
comprised of three sub-processing kernels.

a)

b)

Command Parser - This sub-process is responsible for parsing the high
level command taken from the Command Queue and parsing it into a rec-
ognized procedure (TCL script) and the associated parameters that cus-
tomize the procedures behavior.

Command Scheduler - This sub-processor is responsible for integrating
the managerAPI’s configuration knowledge base with the output of the
Command Parser to produce a script of control commands that can suc-
cessfully be run based on the current LDAS configuration map. This
includes the integrations of parameters from the Command Parser into
the script.

The Manager API's baseline requirements

c) API Command Sequencer - This sub-process is responsible for carrying
out each command statement in the resulting script produced by the
Command Scheduler. Each individual command is sent to the Send
Queue where the ManagerAPI forward the command to the appropriate
API. The API Command Sequencer then polls the Receive Queue walit-
ing to be notified that the involved API has completed has completed the
command before repeating the procedure with the next command in the
script.

4. The managerAPI will inherit functionality from the genericAPIl.tcl script for
the purpose of providing logging, help, socket communications for the Oper-
ator and Emergency ports, resource management and other features found in
the genericAPl.tcl script.

5. The managerAPI will provide a GUI which shows the current status of all
sockets, queues, and system resources. This GUI will also provide a com-
mand interface which allows an operator at the ManagerAPI to issue com-
mands to the Command Queue. It will also allow for viewing of log files and
help documents using the standard set of tools provided by the genericAPI’s
TCL/TK script.

6. The managerAPIl.tcl script will continue to be expanding with newer more
detailed functionality as the LDAS API are developed. This means that a
complete specification of the functionality will evolve as the command sets
of the LDAS API’s are implemented.

7. The managerAPI will not buffer data sets as a go between path, in the Frame
Format or the LIGO Light Weight Format, as it is transferred between LDAS
API's. The LDAS API's will make direct socket connections between them-
selves as instructed to do so by the managerAPI and report back to the man-
ager upon completion of data transfers.

8. The managerAPI will maintain a list containing the performance statistics for
each high level command that appears on the command queue. This list will
act as a mini-database containing minimum, average, maximum execution
times for each high level command, along with the number of assistant man-
agers interpreters running for these execution times and the number of times
each particular command has been executed. The times will be measured
using wall clock times starting when an assistant manager first takes a com-
mand off the command queue and finishing when the assistant manager com-
pletes the command sequence for that high level command. This time will be
reported to the manager which uses it to update the list information

C. The managerAPl.so Package Requirements:

1. A managerAPIl.so package will not be implemented in the initial version of
the managerAPI.

2. If a future requirement for performance in the managerAPI requires a manag-

Page 3 of 10

The Manager API's baseline requirements

erAPl.so then it will be developed in C++ using the C language interface to
TCL/TK to communicate with the TCL/TK command layer. The wrappers

between C++ functionality and TCL/TK command language extensions will
be machine generated using the SWIG API code writer.

1. LDAS Command Flow Using the ManagerAPI

st Socket

ManagerAPI

Eggrgehcy._ N

Socket

Sog¢ket

Data Sockets

A. Command Flow using the ManagerAPI:

1. Operator Socket This socket receives incoming commands from the User-
API's and places them on the Command Queue. Prior to placing the com-

Page 4 of 10

The Manager API's baseline requirements

mand in the Command Queue, the managerAPI will collect the execution
statistics from the Command Statistics List and send these statistics back to
the UserAPI, along with the current load as measured by the number of
active Assistant Manager Interpreters. The UserAPI will then be given the
opportunity to continue or cancel the command based on this summary. If the
UserAPI decided to continue the high level command, then the command
will be placed on the Command Queue. If a UserAPI has opened a communi-
cations socket with the Operator Socket at a time when the Command Queue
is full, the Emergency Socket in the ManagerAPI reports to the Emergency
Socket on the connected API that the Queue is full, interrupting commands
from the UserAPI until such time that the Command Queue is again available
for new commands. Commands received at this socket will have return
address information attached to the command along with an optional
encrypted key needed by the ManagerAPI in order to carry out the requested
command. Assuming that the key matches, the command is pushed onto the
Command Queue.

Command Queue This queue receives commands from three sources, the
Operator Socket discussed above, the initialization script for the Manager-
API (managerAPIl.rsgand the managerAPI's Command GUI interface. Each
command in the queue includes information about the source of the com-
mand €.g., the UserAPI, or managerAPI's Command GUI)eftis infor-
mation includes return IP address, port number, etc. needed to identify and
report back if necessary to the originator of the command. This queue FIFO
(first in, first ou) queue and is supervised by the ManagerAPI with one
exception - all commands from the managerAPI's Command GUI interface
are pushed to the top of the queue for immediate execution.

. Assistant Manager The Assistant Manager processes are responsible for
seeing that the high level commands that are in the Command Queue are car-
ried out using the distributed LDAS API componemserylety. The Manag-

erAPI starts up with three such Assistant Managers (interpreters), but can add
more if commands are found to reside on the Command Queue for periods
longer than 2 seconds. However, the system will never support more than 10
Assistant Managers in order to minimize overhead associated with interpreter
context switching. Each Assistant Manager begins by taking the next avail-
able command off the Command Queue, starting a timer to measure execu-
tion time, and sending it to the Command Parser.

a) Command Parser This parser separates out all return address informa-
tion form the command, extracts the parameters which are used to spe-
cialize the commands behavior and identifies the ManagerAPI procedure
that the command maps into. If the command is found to be unrecogniz-
able by the parser, then an illegal command message is returned to the
source of the command via the Emergency Sodkai(dialog box in the
case of commands from issued from the resource file or th¢ Ghi

Page 5 of 10

The Manager API’s baseline requirements

Page 6 of 10

accepted command and its parameters are passed from the Command
Parser to the Command Scheduler.

b) Command Scheduler This scheduler takes commandsripted proce-
dureg, command parameters, and LDAS configuration informatiBn (
numbers, port numbers, ét@and produces a complete, ready for execu-
tion script which has had all variable entries assigned from the parame-
ters and configuration data. This script along with an index to the source
of the high level command which was used to produce the completed
script are then sent to the API Command Sequencer.

c) APl Command Sequencer This sequencer executes each command
found in the output script from the scheduler, one at a time, in order to
guarantee synchronization of the LDAS system in executing the high
level command which triggered the procedure. The sequencer send each
command from the scheduler script one at a time to the Send Queue. The
next command from the scheduler script will not be sent until the API
Command Sequencer finds a command completed message associated
with that scheduler command in the Receive Queue. Association is deter-
mined via an ID that determines the particular Assistant Manager, the
particular high level command and the line number in the scheduler
script. This ID information is sent out with the command to the Send
Queue and then to the Send Socket to the LDAS API which will perform
the command and is then returned with the command completion com-
mand to the Receive Socket and the Receive Queue for matching by the
corresponding Assistant Manager's APl Command Sequencer when
reading from the Receive Queue. When the last command in the
sequence has been completed, the high level command execution timer is
stopped and the wall time needed to complete the high level command is
reported to the managerAPI for inclusion in the statistics list.

3. Send Queue This queue takes commands from each Assistant Managers’
APl Command Sequencer along with the unique ID used to match up com-
mand completion messages in the Receive Queue. The ManagerAPI uses this
queue as a FIFO to send out LDAS APl command using the Send Socket.
Each command in the Send Queue is delivered to the Send Socket as soon as
the Send Socket is ready to send again.

4. Send SocketCommands (including the scheduler ID information discussed
above) along with the optional encryption key are sent out this socket to the
appropriate LDAS API for execution.

5. Receive SocketOnce an LDAS API has completed the requested command
delivered to the API form the managerAPI’s Send Socket, it will send back a
message stating such to the Receive Socket on the managerAPI with also
contains the unique ID associated with the Assistant Manager which placed
the requested command in the Send Queue. As these messages are received

The Manager API's baseline requirements

at the Receive Socket, they are placed on the Received Queue.

Receive QueueThis queue holds all messages coming back from LDAS
API's upon completion of their requested commands from the Assistant
Managers. All of the Assistant Managers monitor this queue waiting for the
unique message reporting that the last sent command has been completed,
thereby allowing the Assistant Managers to issue the next command from
their API Command Sequencers.

Emergency SocketsThese sockets are used to report exceptions in the exe-
cution of commands by the LDAS API's. The Assistant Managers will moni-

tor the Emergency Socket Queue looking for messages that one of their
issued commands was unsuccessful, causing the scheduled script to abort and
an exception message to be sent to the Emergency Socket on the UserAPI
which issued the original high level command that was used to generate the
command script that failed.

1. Communications Provided by ManagerAPI

Interpreter

Main Master

Master Interpreter I Normal Priority:
Operator Socket ‘> Commands & Message

)

Master Interpreter

I Exception Priority:
Emergency Socket ‘> Errors & Messages

TCL/TK
Layer Master Int t
y asternterpreter I - - Normal Priority:
Send Socket Commands to API's
Master Interpreter ..
Master Interpreter I 4 > Normal Priority:
Recv Socket Messages from API’s
ManagerAPI

A. Socket Based Communications in ManagerAPI:

1.

The ManagerAPI will provide an internet socket within the TCL/TK layer
that is the primary port for command communications from UserAPI’s. This
port, the Operator Socket will be inherited from the genericAPIl.tcl script
contained within the ManagerAPI. The requirements are a super-set to those
defined for the genericAPI, namely that

a) it run in either a Standard or Safe Master Interpreter depending on the

Page 7 of 10

The Manager API’s baseline requirements

Page 8 of 10

requirements of each specific LDAS API,

b) it have the option of requiring an encrypted key attached to each incom-
ing command for authentication prior to execution of the command as a
security safeguaradiépending on the nature of each specific)API

c) it will provide a queue for incoming commands, allowing for at least 25
commands to be staged in a FIFO during peak levels of communications.
If the FIFO ever fills up the UserAPI will be notified using tBmer-
gency Socketiscussed below.

d) each command is placed in the Command Queue along with communica-
tions connection information with the UserAPI issuing the command.

e) The Command Socket and the Command Queue are supervised by the
ManagerAPI itself. The Assistant Managers will request the next avail-
able command from the Command Queue.

. The ManagerAPI will provide an internet socket within the TCL/TK layer

that is an exception communication port for commands and messages of a
highest priority. This port is commonly referred to asHEmeergency Socket

to reflect its association with critical operations. The Emergency Socket will
be inherited from the genericAPl.tcl script contained within the Manager-
API. The requirements are a super-set to those defined for the genericAPI,
namely that

a) itrunsin a Safe Master Interpreter supporting only a few exception hand-
ing commands for each specific API through the TCL/TK aliasing mech-
anism,

b) it have the option of requiring an encrypted key attached to each incom-
ing command for authentication prior to execution of the command as a
security safeguaradiépending on the nature of each specific)API

c) it will provide a queue for incoming commands, allowing for no more
than 10 commands to be staged in a FIFO during peak levels of commu-
nications. If the FIFO ever fills up the UserAPI’s will be notified.

. The ManagerAPI will provide a pair of sockets for communicating with the

LDAS API’'s needed to carry out high level command procedures. These are
known as the Send Socket and the Receive Socket pair. These sockets are
buffered through two queues, the Send Queue and the Receive Queue, each
having an initial capacity for 100 commands.

a) The Send Socket reads each command off the Send Queue as it appears
and sends the LDAS API command to the API address/port specified by
the Assistant Manager posting the command to the Send Queue. The
Assistant Managers only post new commands to the Send Queue, the
ManagerAPI is responsible for taking commands off the Send Queue and
pushing them out the Send Socket.

4.

The Manager API's baseline requirements

b) The Receive Socket takes tagged (index to the high level command and
Assistant Manager which originally sent the command) messages from
the LDAS API's and places them on the Receive Queue. The Manager-
API is responsible for supervising this Receive Socket and placing the
incoming messages in the Receive Queue.

The ManagerAPI does not use the Data Sockets provided by the GenericAPI.

V. Software Development Tools
A. TCL/TK:

1.

TCL is a string based command language. The language has only a few fun-
damental constructs and relatively little syntax making it easy to learn. TCL
is designed to be the glue that assembles software building blocks into appli-
cations. It is an interpreted language, but provides run-time tokenization of
commands to achieve near to compiled performance in some cases. TK is an
TCL integrated (as of release 8.x) tool-kit for building graphical user inter-
faces. Using the TCL command interface to TK, it is quick and easy to build
powerful user interfaces which are portable between Unix, Windows and
Macintosh computers. As of release 8.x of TCL/TK, the language has native
support for binary data.

B. Cand C++:

1.

The C and C++ languages are ANSI standard compiled languages. C has
been in use since 1972 and has become one of the most popular and powerful
compiled languages in use today. C++ is an object oriented super-set of C
which only just became an ANSI/ISO standard in November of 1997. It pro-
vided facilities for greater code reuse, software reliability and maintainability
than is possible in traditional procedural languages like C and FORTRAN.
LIGO’s data analysis software development will be dominated by C++
source code.

C. SWIG:
1. SWIG is a utility to automate the process of building wrappers to C and C++

declarations found in C and C++ source files or a spetiface filefor
API’s to such languages as TCL, PERL, PYTHON and GUIDE. LDAS will
use the TCL interface wrappers to the TCL extension API's.

D. Make:
1. Make is a standard Unix utility for customizing the build process for executa-

bles, objects, shared objects, libraries, etc. in an efficient manor which
detects the files that have changed and only rebuilds components that depend
on the changed files.If/when LDAS software becomes architecturally depen-
dent, it will be necessary to supplement make with auto-configuration

scripts.

Page 9 of 10

The Manager API’s baseline requirements

E. CVS:

1. CVS s the Concurrent Version System. It is based on the public domain (and
is public domain itself) software version management utility RSC. CVS is
based on the concept of a software source code repository from which multi-
ple software developers can check in and out components of a software from
any point in the development history.

F. Documentation:

1. DOC++ is a documentation system for C/C++ and Java. It generates LaTeX
or HTML documents, providing for sophisticated on-line browsing. The doc-
uments are extracted directly from the source code files. Documents are hier-
archical and structured with formatting and references.

2. TcIDOC is a documentation system for TCL/TK. It generates structured
HTML documents directly from the source code, providing for a similar on-
line browsing system to the LDAS help files. Documents include a hyper-text
linked table of contents and a hierarchical structured format.

Page 10 of 10

