

LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY
- LIGO -

CALIFORNIA INSTITUTE OF TECHNOLOGY
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Document Type LIGO-T980117-00 E- 12/4/1998

The Frame API’s
baseline requirements

James Kent Blackburn

Distribution of this document:

LIGO LDAS Group

California Institute of Technology
LIGO Project - MS 51-33

Pasadena CA 91125
Phone (818) 395-2129
Fax (818) 304-9834

E-mail: info@ligo.caltech.edu

Massachusetts Institute of Technology
LIGO Project - MS 20B-145

Cambridge, MA 01239
Phone (617) 253-4824
Fax (617) 253-7014

E-mail: info@ligo.mit.edu

WWW: http://www.ligo.caltech.edu/

This is an internal working document
of the LIGO Project.

Table of Contents

Index

file \\SIRIUS\kent\Documents\framemaker\FrameAPI\FrameAPIReqCover.fm - printed December 4,

Page 1 of 6

The Frame API’s
baseline requirements

James Kent Blackburn

California Institute of Technology
LIGO Data Analysis Group

December 4, 1998

I. Introduction

A. General Description:

1. The frameAPI is responsible for reading, writing and customizing Common
Data Frame Format Files for Interferometric Gravitational Wave Detectors
(see LIGO-T970130-B-E) in the LDAS distributed computing environment
using an interpreted command language. However, it will not change any val-
ues stored in the Frame file.

a) The interpreted command language to be used is TCL/TK, which pro-
vides a command line, scripting and a graphical interface.

b) The TCL/TK commands are extended to support low level system inter-
faces to the Frames and system I/O functions to the Frame files, as well
as greater computational performance using C++ code that utilizes the
standard TCL C code API library in the form of a TCL/TK package.

2. The frameAPI’s TCL/TK script accesses the frameAPI.rsc file containing
needed information and resources to extend the command set of the TCL/TK
language using the frameAPI package, which exists as a shared object.

3. The frameAPI will receive its commands from the managerAPI, reporting
back to the managerAPI upon completion of each command. This command
completion message will include the incoming identification used by the
manager to track completion of sequenced commands being handled by the
assistant manager levels of the managerAPI.

B. The frameAPI.tcl Script’s Requirements:

1. The frameAPI.tcl script will provide all the functionality inherited by the
genericAPI.tcl script (i.e. help, logging, operator & emergency sockets, etc.).

2. The frameAPI.tcl script will report to the managerAPI’s receive socket upon
completion of each command issued by the managerAPI’s assistant manager
levels. This involves transmission of a message identifying the specific com-
mand completed as coded by the managerAPI (see LIGO-T980115-0x-E for
details).

3. The frameAPI.tcl script will validate each command received on the operator
or emergency socket as appropriate for the frameAPI to evaluate. This
includes validation of commands, command options, encryption keys and
managerAPI identification indexes.

The Frame API’s baseline requirements

Page 2 of 6

4. The frameAPI.tcl script will manage anonymous FTP connections to client
machines for the purpose of transferring Frame files or resulting Frame files
constructed by the FrameAPI.

5. The frameAPI.tcl script will provide the functionality to connect to the LIGO
Data Acquisition System (via a TCP/IP socket) for the purpose of listening
for announcements of new LIGO Frames written to the file system by the
DAQ.

6. The frameAPI.tcl scrip will provide the functionality to continuously read in
and process the next available Frame file written by the LIGO DAQ until a
command from the ManagerAPI stops the reads. This functionality should be
supported under a separate TCL/TK interpreter.

7. In the event that the LIGO Data Acquisition System is not on-line, the
frameAPI.tcl script shall be able to monitor / poll the filesystem in order to
detect the appearance of new Frame files for use in LDAS.

8. In the event that an exception occurs while processing a command, the
frameAPI.tcl layer will report the exception to the ManagerAPI’s emergency
socket along with the necessary command identification issued by the man-
agerAPI with the FrameAPI command.
Note: Once reported to the managerAPI, the appropriate assistant manager
will terminate the high level command and the userAPI that issued this high
level command will be notified of the exception.

C. The frameAPI.so Package Requirements:

1. The frameAPI.so package will be developed in C++ using the C language
interface to TCL/TK to communicate with the TCL/TK command layer. The
wrappers between C++ functionality and TCL/TK command language exten-
sions will be machine generated using the SWIG API code writer.

2. The frameAPI.so package will interface with Frames using the C++ Frame
Class Library developed by LIGO and VIRGO. This library is a C++ imple-
mentation of the LIGO-970130-B-E specification.

3. The frameAPI.so package will inherit the functionality to communicate data
through the data sockets from the genericAPI.so package.

4. The frameAPI.so package will support reading and writing of frame files on
the local file system.

5. The frameAPI.so package with extend the genericAPI.so package’s object
oriented data socket communications to support Frame Classes, in addition to
the objects handled immediately by the genericAPI.so package.

6. The frameAPI.so package will support streaming memory buffered versions
of frame or frame files out the data sockets.

7. The frameAPI.so package will support simplifying full LIGO frames into
reduced frames containing a subset of the original frames data sets.

The Frame API’s baseline requirements

Page 3 of 6

8. The frameAPI.so package will support concatenation of frames of similar
content into a single from of longer time duration.

9. The frameAPI.so package will support breaking up a long duration frame
into shorter time duration frames of specified time lengths.

10. The frameAPI.so package will support extraction of individual frame
attributes from the Frame or any of its internal structures.

11. The frameAPI.so package will provide translation of subsets of Frames into
Internal LDAS Light Weight Data Format objects (see LIGO-T980094-0x-E).

II. Component Layers of the LDAS FrameAPI

A. LDAS Distributed FrameAPI:

1. The LDAS distributed frameAPI is made up of two major layers.

a) TCL/TK Layer - this layer is the command layer and deals primarily with
commands and/or messages and their attributes and/or parameters, as

genericAPI.rsc

frameAPI.rsc

Start-up Resource

TCL/TK Command Layer

frameAPI.tcl

genericAPI.tcl

C/C++ Package Layer

frameAPI.so

genericAPI.so

LDAS FrameAPI

The Frame API’s baseline requirements

Page 4 of 6

well as communicate with the underlying Package Layer through TCL/
TK extensions.

b) C/C++ Package Layer - this layer is the data engine layer and deals pri-
marily with the binary data and the algorithms and methods needed to
manipulate LIGO’s data

2. The TCL/TK layer consists of two internal and two external components,
designed to optimize code reuse at the level of the command language used
in all LDAS API’s.

a) The frameAPI.tcl - this TCL/TK script contains specialized TCL/TK pro-
cedures and specialized command language extensions which are partic-
ular to the frameAPI in the LDAS architecture.

b) The genericAPI.tcl - this TCL/TK script contains the common TCL/TK
procedures and command language extensions found in all LDAS API’s.
the genericAPI.tcl code will be sourced in the frameAPI.tcl script.

c) The frameAPI.rsc - this TCL/TK script contains the start-up and configu-
ration defaults which are unique to the frameAPI.

d) The genericAPI.rsc - this TCL/TK script contains the start-up and config-
uration defaults which are common to each LDAS API. The generi-
cAPI.rsc will be embedded in the frameAPI.rsc file.

3. The C/C++ package layer consists of two internal components, each devel-
oped in C++ and C to take advantage of the higher performance associated
with compiled languages which is needed for the types of activities that are
being carried out in this layer and loaded as shared objects.

a) The frameAPI.so - this shared object contains the C++ classes and C
interface functions needed to extend the command language set of each
frameAPI, allowing it to more efficiently manipulate Frames.

b) The genericAPI.so - this shared object contains the C++ classes and C
interface functions needed to extend the command language set of all
API’s in LDAS, allowing efficiency and optimal code reuse. It will be
linked into the frameAPI.so shared object directly.

The Frame API’s baseline requirements

Page 5 of 6

III. Communications Provided to FrameAPI by GenericAPI

A. Socket Based Communications in FrameAPI:

1. The genericAPI will provide the frameAPI with an internet socket within the
TCL/TK layer that is the primary communication port for commands and
messages of a normal priority. This port is commonly referred to as the Oper-
ator Socket to reflect its association with normal operations. Requirements
on this socket are that defined by the genericAPI.

2. The genericAPI will provide the frameAPI with dynamic internet sockets
within the C/C++ layer that is used to communicate all data (typically binary
data) in the form of streamed binary data or distributed C++ class objects
using the ObjectSpace C++ Component Series Socket Library. This port is
commonly referred to as the Data Socket to reflect its primary duty in com-
municating data sets. Requirements on this socket are defined by the generi-
cAPI.

IV. Software Development Tools

A. TCL/TK:

1. TCL is a string based command language. The language has only a few fun-
damental constructs and relatively little syntax making it easy to learn. TCL
is designed to be the glue that assembles software building blocks into appli-
cations. It is an interpreted language, but provides run-time tokenization of
commands to achieve near to compiled performance in some cases. TK is an
TCL integrated (as of release 8.x) tool-kit for building graphical user inter-
faces. Using the TCL command interface to TK, it is quick and easy to build
powerful user interfaces which are portable between Unix, Windows and
Macintosh computers. As of release 8.x of TCL/TK, the language has native

TCL/TK
 Layer

C/C++
 Layer

FrameAPI(GenericAPI)

Master Interpreter

Master Interpreter

C++ Socket Class Object

Main Master
Interpreter

Operator Socket

Emergency Socket

Data Socket(s)
Binary Data:
Streamed & Objects

Exception Priority:
Errors & Messages

Normal Priority:
Commands & Messages

The Frame API’s baseline requirements

Page 6 of 6

support for binary data.

B. C and C++:

1. The C and C++ languages are ANSI standard compiled languages. C has
been in use since 1972 and has become one of the most popular and powerful
compiled languages in use today. C++ is an object oriented super-set of C
which only just became an ANSI/ISO standard in November of 1997. It pro-
vided facilities for greater code reuse, software reliability and maintainability
than is possible in traditional procedural languages like C and FORTRAN.
LIGO’s data analysis software development will be dominated by C++
source code.

C. SWIG:

1. SWIG is a utility to automate the process of building wrappers to C and C++
declarations found in C and C++ source files or a special interface file for
API’s to such languages as TCL, PERL, PYTHON and GUIDE. LDAS will
use the TCL interface wrappers to the TCL extension API’s.

D. Make:

1. Make is a standard Unix utility for customizing the build process for executa-
bles, objects, shared objects, libraries, etc. in an efficient manor which
detects the files that have changed and only rebuilds components that depend
on the changed files.If/when LDAS software becomes architecturally depen-
dent, it will be necessary to supplement make with auto-configuration
scripts.

E. CVS:

1. CVS is the Concurrent Version System. It is based on the public domain (and
is public domain itself) software version management utility RSC. CVS is
based on the concept of a software source code repository from which multi-
ple software developers can check in and out components of a software from
any point in the development history.

F. Documentation:

1. DOC++ is a documentation system for C/C++ and Java. It generates LaTeX
or HTML documents, providing for sophisticated online browsing. The doc-
uments are extracted directly from the source code files. Documents are hier-
archical and structured with formatting and references.

2. TclDOC is a documentation system for TCL/TK. It generates structured
HTML documents directly from the source code, providing for a similar
online browsing system to the LDAS help files. Documents include a hyper-
text linked table of contents and a hierarchical structured format.

