

LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY
- LIGO -

CALIFORNIA INSTITUTE OF TECHNOLOGY
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Document Type LIGO-T990037-00 E- 5/12/1999

The LightWeight API’s
baseline requirements

James Kent Blackburn

Distribution of this document:

LIGO LDAS Group

California Institute of Technology
LIGO Project - MS 51-33

Pasadena CA 91125
Phone (818) 395-2129
Fax (818) 304-9834

E-mail: info@ligo.caltech.edu

Massachusetts Institute of Technology
LIGO Project - MS 20B-145

Cambridge, MA 01239
Phone (617) 253-4824
Fax (617) 253-7014

E-mail: info@ligo.mit.edu

WWW: http://www.ligo.caltech.edu/

This is an internal working document
of the LIGO Project.

Table of Contents

Index

file \\Sirius\kent\Documents\LDAS\LightWeightAPI\LWAPIReqCover.fm - printed May 13, 1999

p
ent
 the

pro-
nts.

ter-

 uti-
e.

ile
set of
s a

ort-
com-
 by

led by

y
ts,

ket
istant
 spe-

the
The LightWeight API’s
baseline requirements

James Kent Blackburn

California Institute of Technology
LIGO Data Analysis Group

May 12, 1999

I. Introduction

A. General Description:

1. The lightweightAPI is responsible for reading, writing and customized LIGO
Light-Weight Format Documents which are based on the Extensible Marku
Language (XML) used by the LDAS distributed computing environm
using an interpreted command environment. More information about
LIGO Light-Weight Format can be found in LIGO-T990023-00.E.

a) The interpreted command language to be used is TCL/TK, which
vides a command line, scripting and a graphical interface environme

b) The TCL/TK commands are extended to support low level system in
faces to the XML based LIGO Light-Weight Format, system I/O and pars-
ing functions to the LIGO Light-Weight Format documents, as well as
providing greater computational performance using C++ code that
lizes the standard TCL-C API library in the form of a TCL/TK packag

2. The lightweightAPI’s TCL/TK script accesses the lightweightAPI.rsc f
containing needed information and resources to extend the command
the TCL/TK language using the lightweightAPI package, which exists a
shared object.

3. The lightweightAPI will receive its commands from the managerAPI, rep
ing back to the managerAPI upon completion of each command. This
mand completion message will include the incoming identification used
the manager to track completion of sequenced commands being hand
the assistant manager levels of the managerAPI.

B. The lightweightAPI.tcl Script’s Requirements:

1. The lightweightAPI.tcl script will provide all the functionality inherited b
the genericAPI.tcl script (i.e. help, logging, operator & emergency socke
etc.).

2. The lightweightAPI.tcl script will report to the managerAPI’s receive soc
upon completion of each command issued by the managerAPI’s ass
manager levels. This involves transmission of a message identifying the
cific command completed as coded by the managerAPI (see LIGO-T980115-
0x-E for details).

3. The lightweightAPI.tcl script will validate each command received on
Page 1 of 7

The LightWeight API’s baseline requirements

valu-
tion

s to

 light-

high

lan-
nd
lan-

ary

ate

O

ver-

d

id-
y of
operator or emergency socket as appropriate for the lightweightAPI to e
ate. This includes validation of commands, command options, encryp
keys and managerAPI identification indexes.

4. The lightweightAPI.tcl script will manage anonymous FTP connection
client machines for the purpose of transferring LIGO Light-Weight Format
Documents constructed within the lightweightAPI.

5. In the event that an exception occurs while processing a command, the
weightAPI.tcl layer will report the exception to the ManagerAPI’s emergency
socket along with the necessary command identification issued from the
managerAPI for the lightweightAPI command.
Note: Once reported to the managerAPI, the appropriate assistant manager
will terminate the high level command and the userAPI that issued this
level command will be notified of the exception.

C. The lightweightAPI.so Package Requirements:

1. The lightweightAPI.so package will be developed in C++ using the C
guage interface to TCL/TK to communicate with the TCL/TK comma
layer. The wrappers between C++ functionality and TCL/TK command
guage extensions will be machine generated using the SWIG API code gen-
erator.

2. The lightweightAPI.so package will interface and parse LIGO Light-Weight
Documents using the C++ XML Class Library developed by IBM and modi-
fied by LDAS to support the Solaris and Linux OS environments. This libr
was originally implemented for AIX and Windows NT only.

3. The lightweightAPI.so package will inherit the functionality to communic
data through the data sockets from the genericAPI.so package.

4. The lightweightAPI.so package will support reading and writing of LIG
Light-Weight Documents as files on the local file system.

5. The lightweightAPI.so package will support streaming memory buffered
sions of LIGO Light-Weight Documents or files out the data sockets.

6. The lightweightAPI.so package will support construction of full LIGO Light-
Weight Format Documents from the contents of one or more ILWD formate
objects.

7. The lightweightAPI.so package will support extraction (parsing) of indiv
ual elements and attributes from the LIGO Light-Weight Format and an
its internal structures.

8. The lightweightAPI.so package will provide translation of subsets of LIGO
Light-Weight Format Documents into Internal LDAS Light Weight Data For-
mat objects (see LIGO-T980094-0x-E).
Page 2 of 7

The LightWeight API’s baseline requirements
II. Component Layers of the LDAS LightWeightAPI

genericAPI.rsc

lightweightAPI.rsc

Start-up Resource

TCL/TK Command Layer

lightweightAPI.tcl

genericAPI.tcl

C/C++ Package Layer

lightweightAPI.so

genericAPI.so

LDAS

XML Parser & I/O Library

LIGO Light-Weight

LightWeightAPI

Document
Files
Page 3 of 7

The LightWeight API’s baseline requirements

ith
rs, as
CL/

s pri-
d to

nts,
 used

L/
h are

K
PI’s.
t.

nd

fig-
eri-

evel-
ciated
t are

 and
f each

nd C
of all
e

A. LDAS Distributed LightWeightAPI:

1. The LDAS distributed lightweightAPI is made up of two major layers.

a) TCL/TK Layer - this layer is the command layer and deals primarily w
commands and/or messages and their attributes and/or paramete
well as communicate with the underlying Package Layer through T
TK extensions.

b) C/C++ Package Layer - this layer is the data engine layer and deal
marily with the binary data and the algorithms and methods neede
manipulate LIGO’s data

2. The TCL/TK layer consists of two internal and two external compone
designed to optimize code reuse at the level of the command language
in all LDAS API’s.

a) The lightweightAPI.tcl - this TCL/TK script contains specialized TC
TK procedures and specialized command language extensions whic
particular to the lightweightAPI in the LDAS architecture.

b) The genericAPI.tcl - this TCL/TK script contains the common TCL/T
procedures and command language extensions found in all LDAS A
the genericAPI.tcl code will be sourced in the lightweightAPI.tcl scrip

c) The lightweightAPI.rsc - this TCL/TK script contains the start-up a
configuration defaults which are unique to the lightweightAPI.

d) The genericAPI.rsc - this TCL/TK script contains the start-up and con
uration defaults which are common to each LDAS API. The gen
cAPI.rsc will be embedded in the lightweightAPI.rsc file.

3. The C/C++ package layer consists of two internal components, each d
oped in C++ and C to take advantage of the higher performance asso
with compiled languages which is needed for the types of activities tha
being carried out in this layer and loaded as shared objects.

a) The lightweightAPI.so - this shared object contains the C++ classes
C interface functions needed to extend the command language set o
lightweightAPI, allowing for more efficiently manipulation of LIGO
Light-Weight Format Documents.

b) The genericAPI.so - this shared object contains the C++ classes a
interface functions needed to extend the command language set
API’s in LDAS, allowing efficiency and optimal code reuse. It will b
linked into the lightweightAPI.so shared object directly.
Page 4 of 7

The LightWeight API’s baseline requirements

et
m-
ed to
he
et
rror

fined

k-

C++
 the

ire-

 fun-
TCL
appli-
n of
 is an
III. Communications within LightWeightAPI via GenericAPI

A. Socket Based Communications in LightWeightAPI:

1. The genericAPI will provide the lightweightAPI with an internet sock
within the TCL/TK layer that is the primary communication port for co
mands and messages of a normal priority. This port is commonly referr
as the Operator Socket to reflect its association with normal operations. T
genericAPI will also provide the lightweightAPI with the internet sock
used by th TCL/TK layer to communicate abnormal conditions and e
messages. This port is referred to as the Emergency Socket to reflect its asso-
ciation with exception handling. Requirements on this socket are that de
by the genericAPI.

2. The genericAPI will provide the lightweightAPI with dynamic internet soc
ets within the C/C++ layer that is used to communicate all data (typically
XML Document streams or ILWD binary data) in the form of streamed
binary data or distributed C++ class objects using the ObjectSpace
Component Series Socket Library. This port is commonly referred to as
Data Socket to reflect its primary duty in communicating data sets. Requ
ments on this socket are defined by the genericAPI.

IV. Software Development Tools

A. TCL/TK:

1. TCL is a string based command language. The language has only a few
damental constructs and relatively little syntax making it easy to learn.
is designed to be the glue that assembles software building blocks into
cations. It is an interpreted language, but provides run-time tokenizatio
commands to achieve near to compiled performance in some cases. TK

TCL/TK
 Layer

C/C++
 Layer

LightWeightAPI:GenericAPI

Master Interpreter

Master Interpreter

C++ Socket Class Object

Main Master
Interpreter

Operator Socket

Emergency Socket

Data Socket(s)
Binary Data:
Streamed & Objects

Exception Priority:
Errors & Messages

Normal Priority:
Commands & Messages
Page 5 of 7

The LightWeight API’s baseline requirements

ter-
uild
and
ative

C has
werful
 of C
pro-
ility
AN.
++

C++

ill

uta-
hich
epend
rally
ation

 (and
 is
ulti-

 from

aTeX
oc-
 hier-

red
ilar
TCL integrated (as of release 8.x) tool-kit for building graphical user in
faces. Using the TCL command interface to TK, it is quick and easy to b
powerful user interfaces which are portable between Unix, Windows
Macintosh computers. As of release 8.x of TCL/TK, the language has n
support for binary data.

B. C and C++:

1. The C and C++ languages are ANSI standard compiled languages.
been in use since 1972 and has become one of the most popular and po
compiled languages in use today. C++ is an object oriented super-set
which only just became an ANSI/ISO standard in November of 1997. It
vided facilities for greater code reuse, software reliability and maintainab
than is possible in traditional procedural languages like C and FORTR
LIGO’s data analysis software development will be dominated by C
source code.

C. SWIG:

1. SWIG is a utility to automate the process of building wrappers to C and
declarations found in C and C++ source files or a special interface file for
API’s to such languages as TCL, PERL, PYTHON and GUIDE. LDAS w
use the TCL interface wrappers to the TCL extension API’s.

D. Make:

1. Make is a standard Unix utility for customizing the build process for exec
bles, objects, shared objects, libraries, etc. in an efficient manor w
detects the files that have changed and only rebuilds components that d
on the changed files.Now that LDAS software has become architectu
dependent, it is be necessary to supplement make with auto-configur
scripts using automake and autoconfig.

E. CVS:

1. CVS is the Concurrent Version System. It is based on the public domain
is public domain itself) software version management utility RSC. CVS
based on the concept of a software source code repository from which m
ple software developers can check in and out components of a software
any point in the development history.

F. Documentation:

1. DOC++ is a documentation system for C/C++ and Java. It generates L
or HTML documents, providing for sophisticated online browsing. The d
uments are extracted directly from the source code files. Documents are
archical and structured with formatting and references.

2. TclDOC is a documentation system for TCL/TK. It generates structu
HTML documents directly from the source code, providing for a sim
Page 6 of 7

The LightWeight API’s baseline requirements

per-
online browsing system to the LDAS help files. Documents include a hy
text linked table of contents and a hierarchical structured format.
Page 7 of 7

	file \\Sirius\kent\Documents\LDAS\LightWeightAPI\LWAPIReqCover.fm - printed May 13, 1999
	Laser Interferometer Gravitational Wave Observatory
	- LIGO -
	LWAPI_BR.pdf
	The LightWeight API’s baseline requirements
	James Kent Blackburn California Institute of Technology LIGO Data Analysis Group May 12, 1999
	I. Introduction
	A. General Description:
	1. The lightweightAPI is responsible for reading, writing and customized LIGO Light-Weight Format...
	a) The interpreted command language to be used is TCL/TK, which provides a command line, scriptin...
	b) The TCL/TK commands are extended to support low level system interfaces to the XML based LIGO ...

	2. The lightweightAPI’s TCL/TK script accesses the lightweightAPI.rsc file containing needed info...
	3. The lightweightAPI will receive its commands from the managerAPI, reporting back to the manage...

	B. The lightweightAPI.tcl Script’s Requirements:
	1. The lightweightAPI.tcl script will provide all the functionality inherited by the genericAPI.t...
	2. The lightweightAPI.tcl script will report to the managerAPI’s receive socket upon completion o...
	3. The lightweightAPI.tcl script will validate each command received on the operator or emergency...
	4. The lightweightAPI.tcl script will manage anonymous FTP connections to client machines for the...
	5. In the event that an exception occurs while processing a command, the lightweightAPI.tcl layer...

	C. The lightweightAPI.so Package Requirements:
	1. The lightweightAPI.so package will be developed in C++ using the C language interface to TCL/T...
	2. The lightweightAPI.so package will interface and parse LIGO Light-Weight Documents using the C...
	3. The lightweightAPI.so package will inherit the functionality to communicate data through the d...
	4. The lightweightAPI.so package will support reading and writing of LIGO Light-Weight Documents ...
	5. The lightweightAPI.so package will support streaming memory buffered versions of LIGO Light-We...
	6. The lightweightAPI.so package will support construction of full LIGO Light- Weight Format Docu...
	7. The lightweightAPI.so package will support extraction (parsing) of individual elements and att...
	8. The lightweightAPI.so package will provide translation of subsets of LIGO Light-Weight Format ...

	II. Component Layers of the LDAS LightWeightAPI
	A. LDAS Distributed LightWeightAPI:
	1. The LDAS distributed lightweightAPI is made up of two major layers.
	a) TCL/TK Layer - this layer is the command layer and deals primarily with commands and/or messag...
	b) C/C++ Package Layer - this layer is the data engine layer and deals primarily with the binary ...

	2. The TCL/TK layer consists of two internal and two external components, designed to optimize co...
	a) The lightweightAPI.tcl - this TCL/TK script contains specialized TCL/ TK procedures and specia...
	b) The genericAPI.tcl - this TCL/TK script contains the common TCL/TK procedures and command lang...
	c) The lightweightAPI.rsc - this TCL/TK script contains the start-up and configuration defaults w...
	d) The genericAPI.rsc - this TCL/TK script contains the start-up and configuration defaults which...

	3. The C/C++ package layer consists of two internal components, each developed in C++ and C to ta...
	a) The lightweightAPI.so - this shared object contains the C++ classes and C interface functions ...
	b) The genericAPI.so - this shared object contains the C++ classes and C interface functions need...

	III. Communications within LightWeightAPI via GenericAPI
	A. Socket Based Communications in LightWeightAPI:
	1. The genericAPI will provide the lightweightAPI with an internet socket within the TCL/TK layer...
	2. The genericAPI will provide the lightweightAPI with dynamic internet sockets within the C/C++ ...

	IV. Software Development Tools
	A. TCL/TK:
	1. TCL is a string based command language. The language has only a few fundamental constructs and...

	B. C and C++:
	1. The C and C++ languages are ANSI standard compiled languages. C has been in use since 1972 and...

	C. SWIG:
	1. SWIG is a utility to automate the process of building wrappers to C and C++ declarations found...

	D. Make:
	1. Make is a standard Unix utility for customizing the build process for executables, objects, sh...

	E. CVS:
	1. CVS is the Concurrent Version System. It is based on the public domain (and is public domain i...

	F. Documentation:
	1. DOC++ is a documentation system for C/C++ and Java. It generates LaTeX or HTML documents, prov...
	2. TclDOC is a documentation system for TCL/TK. It generates structured HTML documents directly f...

