

LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY
- LIGO -

CALIFORNIA INSTITUTE OF TECHNOLOGY
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Document Type LIGO-T990086-02 E- 02/09/2000

The MPI API’s
baseline requirements

James Kent Blackburn

Distribution of this document:

LIGO LDAS Group

California Institute of Technology
LIGO Project - MS 51-33

Pasadena CA 91125
Phone (818) 395-2129
Fax (818) 304-9834

E-mail: info@ligo.caltech.edu

Massachusetts Institute of Technology
LIGO Project - MS 20B-145

Cambridge, MA 01239
Phone (617) 253-4824
Fax (617) 253-7014

E-mail: info@ligo.mit.edu

WWW: http://www.ligo.caltech.edu/

This is an internal working document
of the LIGO Project.

Table of Contents

Index

file \\SIRIUS\kent\documents\LDAS\mpiAPI\mpiAPIReqCover.fm - printed February 9, 2000

Page 1 of 12

The MPI (Message Passing Interface) API’s
baseline requirements

James Kent Blackburn

California Institute of Technology
LIGO Data Analysis Group

February 09, 2000

I. Introduction

A. General Description:

1. The mpiAPI is responsible for managing the advanced analysis processes
which are based on MPI and executing in the LDAS distributed computing
parallel cluster of nodes using an interpreted command language.

a) The interpreted command language to be used is TCL/TK, which pro-
vides a command line, scripting and a graphical interface.

b) The TCL/TK commands are extended to support low level system inter-
faces to the algorithms used to “communicate” the data, as well as pro-
vide greater computational performance using C++ code that utilizes the
standard TCL C code API library in the form of a TCL/TK package.

2. The mpiAPI’s TCL/TK script accesses the mpiAPI.rsc file containing neces-
sary information and configuration resources to extend the command set of
the TCL/TK language using the mpiAPI package, which exists as a shared
object.

3. The mpiAPI will receive its commands from the managerAPI, reporting back
to the managerAPI upon completion of each command. This command com-
pletion message will include the incoming identification used by the manager
to track completion of sequenced commands being handled by the assistant
manager levels of the managerAPI.

4. Because of the way MPI parallel jobs execute, the mpiAPI will only launch
MPI jobs on the LDAS distributed computing parallel cluster of nodes and
manage the job allocations based on queue configurations which can be
dynamically adjusted by algorithms and / or LDAS operators.

5. The mpiAPI will also monitor the state of all MPI parallel jobs and report the
status to the controlMonitorAPI using the “Internal Lightweight Data For-
mat” (ILWD).

B. The mpiAPI.tcl Script’s Requirements:

1. The mpiAPI.tcl script will provide all the functionality inherited by the
genericAPI.tcl script (i.e. help, logging, operator, jobstate & emergency
sockets, etc.).

2. The mpiAPI.tcl script will report to the managerAPI’s receive socket upon
completion of each command issued by the managerAPI’s assistant manager

The MPI (Message Passing Interface) API’s baseline requirements

Page 2 of 12

levels. This involves transmission of a message identifying the specific com-
mand completed as coded by the managerAPI (see LIGO-T980115-0x-E for
details).

3. The mpiAPI.tcl script will validate each command received on the operator,
jobstate or emergency socket as appropriate for the mpiAPI to evaluate. This
includes validation of commands, command options, encryption keys and
managerAPI identification indices.

4. In the event that an exception occurs while processing a command, the mpi-
API.tcl layer will report the exception to the ManagerAPI’s receive socket
along with the necessary command identification issued by the managerAPI
with the specific mpiAPI command.
Note: Once reported to the managerAPI, the appropriate assistant manager
will terminate the high level command and the userAPI that issued this high
level command will be notified of the exception.

5. The mpiAPI.tcl script will be responsible for spawning MPI parallel pro-
cesses using the unix “mpirun” command and all of its appropriate “options”.

6. Spawned jobs will have three levels of priority associated with there process-
ing, high, normal, low. These priorities will be used to borrow nodes in the
event that a job can not be balanced with the available number of nodes. Jobs
run in the high priority can dynamically borrow nodes first from low priority
jobs (and if needed from normal priority jobs). Jobs of normal priority can
borrow nodes only from low priority jobs. Borrowing only occurs when the
virtual queue (see 7 & 8 below) is empty.

7. The mpiAPI.tcl script will manage lists of node names and job queues which
are used to identify the various allocations of compute nodes that can be used
by each MPI parallel process. Note: This is intended to allow various job
sizes and guarentee uniqueness in the queues assignments for MPI jobs.

8. The mpiAPI.tcl script will keep track of the node allocation needs of MPI
jobs. As MPI jobs report a partial release of nodes needed to carry out an
active parallel task most efficiently, the mpiAPI.tcl script will manage virtual
job queues. For example, a MPI parallel process is started using a job queue
that has 64 nodes allocated to it. The MPI parallel process “learns” that it can
accomplish the task in the necessary time with minimal ideal cpu cycles after
a few iterations of its main loop using 56 nodes. The MPI process continues
to run in the 56 node queue but reports to the mpiAPI that 8 of the nodes in
the queue are no longer needed. This increases the size of the virtual queue
by 8 nodes which could be used by a different MPI parallel job to assist in
bringing its process time into balance with the real time arrival of data from
the interferometer, even after all of the “real” job queues may have been
started up already. In the event that a MPI process was started in a job queue
that was inadequate for its demands on the system, and all nodes were
already allocated to existing job queues, the MPI process could request extra

The MPI (Message Passing Interface) API’s baseline requirements

Page 3 of 12

nodes as they become available in the virtual queue. This in effect allows for
dynamic load balancing. (See figure below for example). The communication

used to communicate node allocation changes to the mpiAPI will be via the
jobstate socket of the mpiAPI. Each running MPI process will send com-
mands directly to the jobstate socket containing within the body of the com-
mand, the jobid, the nodes currently being used the nodes being released and
the nodes being requested. The mpiAPI will respond over the socket with a
verification signal, and in the event of a request for new nodes, with a new
queue for the job to grow into.

C. The mpiAPI.so Package Requirements:

1. The mpiAPI.so package will not have any functionality not already provided

MPI Job1

MPI Job2

MPI Job3

MPI Job1

MPI Job2

MPI Job3

Virtual Queue
Virtual Queue

MPI_Comm_All = 128 nodes

MPI_Comm_64 = 64 nodes

MPI_Comm_32 = 32 nodes

MPI_Comm_16 = 16 nodes

MPI_Virtual = 16 nodes

Start-up Job LoadStart-up Job Load

MPI_Comm_All = 128 nodes

MPI_Comm_64 = 56 nodes

MPI_Comm_32 = 32 nodes

MPI_Comm_16 = 32 nodes

MPI_Virtual = 8 nodes

Balanced Job LoadBalanced Job Load

DynamicDynamic
Job LoadJob Load
BalancingBalancing

The MPI (Message Passing Interface) API’s baseline requirements

Page 4 of 12

in the genericAPI.so package, i.e., it will only need to send and receive
“Internal LDAS Lightweight Data Formats” on command from the TCL/TK
layer. That is to say the mpiAPI.so package is simply the genericAPI.so
package.

D. The mpirun command Requirements:

1. The basic format of the mpirun command as it will be used by ldas is the fol-
lowing:

mpirun {mpirun options} wrapperAPI {wrapperAPI options}

where mpirun is a command script distributed with MPICH and wrapperAPI
is the name of the MPI executable developed by LDAS for parallel computa-
tion of template based algorithms.

2. The mpirun options requirements are:

a) -np N which is used to specify the number of processors N to used in the
parallel computation. The value of N is always an integer less than or
equal to the total number of processors in the LDAS Beowulf Cluster and
is set by mpiAPI and its queue management facilities.

b) -machinefile /path/file which is used to identify the list of machine host
names used to select our the first N processors required in the previous
-np N option. The full path and filename for this option must be speci-
fied. It is also possible that different instances of the mpirun could use
different machinefiles (at the discression of the mpiAPI). The format of
the machinefile is simple:

hostname1[:n]
hostname2[:n]
...

where the hostname most be of the form return by the unix “hostname”
command. This hostname may be followed by an optional “:” and an
integer number representing the number of CPUs on that particular host-
for SMP nodes.

c) -nolocal is an option which specifies to mpirun that the local host is not
to be used in the configuration of the parallel processing job. This option
may be necessary when the mpiAPI starts a parallel processing job from
a host that is not in the core of the Beowulf Cluster (as will be the case in
general).

d) other mpirun options used to test and debug MPI processing will likely
be used during commissioning of the mpiAPI and the wrapperAPI. How-
ever, they will not be used in general. Thier use must not conflict with the

The MPI (Message Passing Interface) API’s baseline requirements

Page 5 of 12

operation of the wrapperAPI and its own set of command line arguments.
For more detail on these testing and debugging mpirun command line
arguments see the MPICH Users’ Guide and Installation Guide.

3. The wrapperAPI options requirements are:

a) -nodelist=[i-j,k,l,m-n,...] which is used to specify the subset of nodes to
be used by the MPI slave processes in actual calculation of the templated
filters. This list of nodes contains comma delimited node numbers and/or
ranges of nodes. All node numbers appearing in this list must be from 0
to N-1, where N is the number of nodes in the commworld specified in
the mpirun option -np described above.

b) -dynlib=/path/libname.a is used to specify the full path and file name of
the dynamically loaded library containing the templated filter algorithms.
Note: This library is must be a shared object library.

c) -mpiAPIport=[hostname, socketport] is used to specify the port on the
mpiAPI to connect with in order to communicate state information, job
progress, and make requests to balance the load by increasing or decreas-
ing the number of processes associated with the nodelist. The hostname
parameter specifies the name of the host the mpiAPI is running on and
the socketport parameter specifies the port the mpiAPI is listening at for
the purpose of communications with the wrapperAPI.

d) -dataAPI=[hostname, socketport] is used to specify the LDAS API
used to provide (serve) data in the ILWD format to the wrapperAPI. Typ-
ically this will be the dataConditioningAPI, but others are possible
through this argument. Again, the hostname specifies the name of the
host at with the LDAS API to serve data is running on and the socketport
parameter specifies the port the data serving LDAS API will be listening
at for the purpose of transmitting ILWD formated data.

e) -resultAPI=[hostname, socketport] is used to specify the LDAS API
which will receive data products that result from the parallel computa-
tion. Again, this data will be shared using the ILWD format. Typically the
resultAPI will be the eventManagerAPI, however other LDAS APIs
may be specified to receive the data products using this argument. The
hostname parameter specifies the name of the host the receiving API is
running on and the socketport parameter specifies the port the receiving
API is listening at for the purpose of receiving data products from the
wrapperAPI.

f) -templatesAtNode=N is the number of templates to be evaluated at each
node (in each slave process) per call to the filter algorithm. N must be an
integer lager than or equal to 1. The wrapperAPI will not allow this num-
ber to exceed the total number of templates divided by the number of pro-
cessors in the comm world. Smaller values of this number allow for more

The MPI (Message Passing Interface) API’s baseline requirements

Page 6 of 12

accurate measurements of progress and shorter time intervals for com-
mand exchanges between the wrapperAPI and the mpiAPI. Larger values
can marginally increase the parallel computation performance by reduc-
ing the number of messages passed between master and slave processes.

g) -filterparams=[a,b,c,d,...] is used to specify the list of parameters used
to control (customize) the parallel filter algorithm. When the designated
dynamically loaded library is recognized by the mpiAPI, the values in
this list will be validated as being consistant with the expected type,
range, and total number for that particular filter library. This will always
be the case for LDAS developed dynamically loaded filter libraries.
Other which wish to use this mechanism must provide the parameter
checks internal to the dynamically loaded library.

4. The master process of the wrapperAPI will be responsible for communicat-
ing all state information, warnings, errors, job progress, and make requests to
balance the load by increasing or decreasing the number of processes associ-
ated with the nodelist. This informations will be communicated using simple
textural strings sent to the mpiAPI’s listening socket designated by the -mpi-
APIport command line option using just a simple unix socket connection.
Supported command syntax which the wrapperAPI sends to the mpiAPI is as
follows:

a) “#:request add N” where # is the request ID (an incremental counter
starting at 1) and N is the number of nodes the wrapperAPI would like to
add to the process space associated with the current comm world. The
mpiAPI will respond to this request with one of the following three forms
of syntax (NOTE - a request to add may be answered with an order to
subtract nodes or even to kill the parallel job):

(1) “#:add N [i-j,k,l,m-n,...]” where # is the original request ID and N
may or may not agree with the requested number of nodes and is
zero or larger, but can not exceed the comm world. The list in
square brackets consists of the actual N nodes involved in the add.

(2) “#:sub N [i-j,k,l,m-n,...]” where # is the original request ID and N
may or may not agree with the requested number of nodes and is
zero or larger, but can not exceed the comm world. The list in
square brackets consists of the actual N nodes involved in the sub.

(3) “#:kill” where # is the original request ID and kill instructs the
wrapperAPI to cleanly shutdown all mpi parallel code and exit.

(4) “#:cont” where # is the original request ID and cont instructs the
wrapperAPI to continue processing without any changes.

b) “#:request sub N” where # is the request ID (an incremental counter
starting at 1) and N is the number of nodes the wrapperAPI would like to
subtract from the process space associated with the current comm world.

The MPI (Message Passing Interface) API’s baseline requirements

Page 7 of 12

The mpiAPI will respond to this request with one of the following three
forms of syntax (NOTE - a request to subtract may be answered with an
order to add nodes or even to kill the parallel job):

(1) “#:sub N [i-j,k,l,m-n,...]” where # is the original request ID and N
may or may not agree with the requested number of nodes and is
zero or larger, but can not exceed the comm world. The list in
square brackets consists of the actual N nodes involved in the sub.

(2) “#:add N [i-j,k,l,m-n,...]” where # is the original request ID and N
may or may not agree with the requested number of nodes and is
zero or larger, but can not exceed the comm world. The list in
square brackets consists of the actual N nodes involved in the add.

(3) “#:kill” where # is the original request ID and kill instructs the
wrapperAPI to cleanly shutdown all mpi parallel code and exit.

(4) “#:cont” where # is the original request ID and cont instructs the
wrapperAPI to continue processing without any changes.

c) “#:warning {list of warning messages}” where # is the request ID (an
incremental counter starting at 1) and warning reports that a warning
level exception has occured at some level of the wrapperAPI which is
described by the messages contained in the list. Typically warnings will
be used to indicate that a non-fatal condition exists in the wrapperAPI’s
execution. The mpiAPI log this warning message using the standard
LDAS log file system and then will respond to this request with one of
the following forms of syntax:

(1) “#:cont” where # is the original request ID and cont instructs the
wrapperAPI to continue processing without any changes.

(2) “#:kill” where # is the original request ID and kill instructs the
wrapperAPI to cleanly shutdown all mpi parallel code and exit.

d) “#:error {list of error messages}” where # is the request ID (an incre-
mental counter starting at 1) and error reports that a error level excep-
tion has occured at some level of the wrapperAPI which is described by
the messages contained in the list. Typically error will be used to indicate
that a fatal condition exists in the wrapperAPI’s execution. The mpiAPI
log this error message using the standard LDAS log file system and then
will respond to this request with one of the following forms of syntax:

(1) “#:kill” where # is the original request ID and kill instructs the
wrapperAPI to cleanly shutdown all mpi parallel code and exit.

(2) “#:cont” where # is the original request ID and cont instructs the
wrapperAPI to continue processing without any changes.

e) “#:progress nnn.mm%” where # is the request ID (an incremental
counter starting at 1) and nnn.mm% is the percent complete for the

The MPI (Message Passing Interface) API’s baseline requirements

Page 8 of 12

wrapperAPI’s parallel process job. The mpiAPI log this error message
using the standard LDAS log file system and then will respond to this
request with one of the following forms of syntax:

(1) “#:cont” where # is the original request ID and cont instructs the
wrapperAPI to continue processing without any changes.

(2) “#:kill” where # is the original request ID and kill instructs the
wrapperAPI to cleanly shutdown all mpi parallel code and exit.

f) “#:using N [i-j,k,l,m-n,...] nodes out of the M available in comm
world” where # is the request ID (an incremental counter starting at 1)
and N is the number of nodes being actively used (more specifically the
N found in the list [i-j,k,l,m-n,...]) from the M available in the comm
world. The mpiAPI log this warning message using the standard LDAS
log file system and then will respond to this request with one of the fol-
lowing forms of syntax:

(1) “#:cont” where # is the original request ID and cont instructs the
wrapperAPI to continue processing without any changes.

(2) “#:kill” where # is the original request ID and kill instructs the
wrapperAPI to cleanly shutdown all mpi parallel code and exit.

g) “#:projected ratio n.mmmmm” where # is the request ID (an incre-
mental counter starting at 1) and n.mmmmm is the ratio of the projected
time to completion to the amount of data being analyzed. The mpiAPI
log this error message using the standard LDAS log file system and then
will respond to this request with one of the following forms of syntax:

(1) “#:cont” where # is the original request ID and cont instructs the
wrapperAPI to continue processing without any changes.

(2) “#:kill” where # is the original request ID and kill instructs the
wrapperAPI to cleanly shutdown all mpi parallel code and exit.

The wrapperAPI will typically send a subset of these commands to the mpi-
API upon completion of each cycle of data through the slave processes.

5. The wrapperAPI will provide a method to estimate the number of nodes
needed to run the parallel process in real time and calculate the load balanc-
ing request as integer nodes, such that the projected ratio is less than or equal
to 1.00000, while remaining as close to 1.00000 as possible. This in itself
requires that the wrapperAPI be able to extract the length of the data
sequence in terms of collection time, while also measuring progress on anal-
ysing the data in wall clock time.

The MPI (Message Passing Interface) API’s baseline requirements

Page 9 of 12

II. Component Layers of the LDAS mpiAPI

A. LDAS Distributed mpiAPI:

1. The LDAS distributed mpiAPI is made up of two major layers.

a) TCL/TK Layer - this layer is the command layer and deals primarily with
commands and/or messages and their attributes and/or parameters, as
well as communicate with the underlying Package Layer through TCL/
TK extensions.

b) C/C++ Package Layer - this layer is the data engine layer and deals pri-
marily with the binary data and the algorithms and methods needed to
manipulate LIGO’s data

2. The TCL/TK layer consists of two internal and two external components,
designed to optimize code reuse at the level of the command language used
in all LDAS API’s.

a) The mpiAPI.tcl - this TCL/TK script contains specialized TCL/TK pro-

genericAPI.rsc

mpiAPI.rsc

Start-up Resource

TCL/TK Command Layer

mpiAPI.tcl

genericAPI.tcl

C/C++ Package Layer

mpiAPI.so =

= genericAPI.so

LDAS mpiAPI

The MPI (Message Passing Interface) API’s baseline requirements

Page 10 of 12

cedures and specialized command language extensions which are partic-
ular to the mpiAPI in the LDAS architecture.

b) The genericAPI.tcl - this TCL/TK script contains the common TCL/TK
procedures and command language extensions found in all LDAS API’s.
the genericAPI.tcl code will be sourced in the mpiAPI.tcl script.

c) The mpiAPI.rsc - this TCL/TK script contains the start-up and configura-
tion defaults which are unique to the mpiAPI.

d) The genericAPI.rsc - this TCL/TK script contains the start-up and config-
uration defaults which are common to each LDAS API. The generi-
cAPI.rsc will be embedded in the mpiAPI.rsc file.

3. The C/C++ package layer consists of one internal components, developed in
C++ and C to take advantage of the higher performance associated with com-
piled languages which is needed for the types of activities that are being car-
ried out in this layer and loaded as shared objects.

a) The genericAPI.so - this shared object contains the C++ classes and C
interface functions needed to extend the command language set of all
API’s in LDAS, allowing efficiency and optimal code reuse. It will be
linked into the mpiAPI.so shared object directly.

III. Communications in mpiAPI from GenericAPI

A. Socket Based Communications in mpiAPI:

1. The genericAPI will provide the mpiAPI with an internet socket within the
TCL/TK layer that is the primary communication port for commands and
messages of a normal priority. This port is commonly referred to as the Oper-

TCL/TK
 Layer

C/C++
 Layer

mpiAPI(GenericAPI)

Master Interpreter

Master Interpreter

C++ Socket Class Object

Main Master
Interpreter

Operator Socket

JobState Socket

Data Socket(s)
Binary Data:
Streamed & Objects

Normal Priority:
Job Load Commands

Normal Priority:
Commands & Messages

Master Interpreter

Emergency Socket
Exception Priority:
Errors & Messages

The MPI (Message Passing Interface) API’s baseline requirements

Page 11 of 12

ator Socket to reflect its association with normal operations. Requirements
on this socket are that defined by the genericAPI. The genericAPI will also
provide the mpiAPI with an internel socket within the TCL/TK layer for
exception priority messages. This port is commonly referred to as the Emer-
gency Socket to reflect its association with exception handling. The mpiAPI
will also have a unique internet server socket within the TCL/TK layer that
will be used to receive requests to load balance the queues being managed by
the mpiAPI. This JobState Socket will be notified when an MPI job has
excess nodes which it does not need. It will also be used by MPI jobs to
request additional nodes (if available) for increasing MPI job performance.

2. The genericAPI will provide the mpiAPI with dynamic TCP/IP sockets
within the C/C++ layer that is used to communicate all data (typically binary
data) in the form of streamed binary data or distributed C++ class objects
using the ObjectSpace C++ Component Series Socket Library. This port is
commonly referred to as the Data Socket to reflect its primary duty in com-
municating data sets. Requirements on these sockets are defined by the
genericAPI.

IV. Software Development Tools

A. TCL/TK:

1. TCL is a string based command language. The language has only a few fun-
damental constructs and relatively little syntax making it easy to learn. TCL
is designed to be the glue that assembles software building blocks into appli-
cations. It is an interpreted language, but provides run-time tokenization of
commands to achieve near to compiled performance in some cases. TK is an
TCL integrated (as of release 8.x) tool-kit for building graphical user inter-
faces. Using the TCL command interface to TK, it is quick and easy to build
powerful user interfaces which are portable between Unix, Windows and
Macintosh computers. As of release 8.x of TCL/TK, the language has native
support for binary data.

B. C and C++:

1. The C and C++ languages are ANSI standard compiled languages. C has
been in use since 1972 and has become one of the most popular and powerful
compiled languages in use today. C++ is an object oriented super-set of C
which only just became an ANSI/ISO standard in November of 1997. It pro-
vided facilities for greater code reuse, software reliability and maintainability
than is possible in traditional procedural languages like C and FORTRAN.
LIGO’s data analysis software development will be dominated by C++
source code.

The MPI (Message Passing Interface) API’s baseline requirements

Page 12 of 12

C. MPI:

1. The parallel software components of the LDAS will use the public domain
version of MPI from MPICH, release 1.2 or greater.

2. The use of MPI code within LDAS will be restricted to the C++ interface
bindings and the use of object oriented design technologies whenever possi-
ble. The templated analysis filters and associated functions are not required
to be developed using C++ and object oriented design techniques. However,
they must support bindings to the core C++ slave processes.

D. SWIG:

1. SWIG is a utility to automate the process of building wrappers to C and C++
declarations found in C and C++ source files or a special interface file for
API’s to such languages as TCL, PERL, PYTHON and GUIDE. LDAS will
use the TCL interface wrappers to the TCL extension API’s.

E. Make:

1. Make is a standard Unix utility for customizing the build process for execut-
ables, objects, shared objects, libraries, etc. in an efficient manor which
detects the files that have changed and only rebuilds components that depend
on the changed files. The Make facility is being extended using AutoConfig,
AutoMake and LibTools, all from the public domain.

F. CVS:

1. CVS is the Concurrent Version System. It is based on the public domain (and
is public domain itself) software version management utility RSC. CVS is
based on the concept of a software source code repository from which multi-
ple software developers can check in and out components of a software from
any point in the development history.

G. Documentation:

1. DOC++ is a documentation system for C/C++ and Java. It generates LaTeX
or HTML documents, providing for sophisticated online browsing. The doc-
uments are extracted directly from the source code files. Documents are hier-
archical and structured with formatting and references.

2. TclDOC is a documentation system for TCL/TK. It generates structured
HTML documents directly from the source code, providing for a similar
online browsing system to the LDAS help files. Documents include a hyper-
text linked table of contents and a hierarchical structured format.

