LASER INTERFEROMETER GRAVITATIONAL WAVE OBSERVATORY

- LIGO -

CALIFORNIA INSTITUTE OF TECHNOLOGY
MASSACHUSETTS INSTITUTE OF TECHNOLOGY

Document Type LIGO-T990107-00- E Nov. 1999

Mechanical Simulation Engine |
User’'s Manual

Giancalro Cella

Univ. of Pisa

Distribution of this draft:
Xyz

This is an internal working note
of the LIGO Project..

California Institute of Technology Massachusetts Institute of Technology
LIGO Project - MS 51-33 LIGO Project - MS 20B-145
Pasadena CA 91125 Cambridge, MA 01239
Phone (626) 395-2129 Phone (617) 253-4824
Fax (626) 304-9834 Fax (617) 253-7014
E-mail: info@ligo.caltech.edu E-mail: info@ligo.mit.edu

WWW: http://www.ligo.caltech.edu/

file /Thome/e2e/Software/docs/e2e/mechanics/MSE_users_manual.fm5 - printed November 19, 1999

MSE

— Version 0.1 November 6, 1999 —

A library for the simulation of mechanical systems.

Giancarlo Cella

MSE

Contents

MSE tutorial. — Some simple examples of system construction.cccviin.
1.1 Simple pendulum.
1.2 A composite suspended SYSteIm.
1.3 A simple attenuation chain.
High level library classes — The reference documentation for the C++ API
2.1 Beam — Complete model for a beam.
2.2 Clamp — A constraint between twWo frames.oouou it
2.3 ForceActuator — A generator of force.
2.4 ForceSensor — A force SEnSOT. ...
2.5 Frame — A frame owned by a mechanical object. o i
2.6 MObject — This is the base class for all object that can be composedinto a mechanical system.
2.7 Mse — This is the base class for all the mechanical classes.cccoiiiiiiiiiiionn..
2.8 MSystem — A mechanical subsystem.
2.9 PositionActuator — A position actuator. oot
2.10 PositionSensor — A PoSItion SEMSOT.ttt e et
2.11 RigidBody — A rigid body without internal structure.,
2.12 Spring — This is the model for a simple SPTiNg.o
2.13 TwoNodesElement — Base class for all the mechanical object with twoframes.
2.14 Wire — This is the model for a simple wire with torsional stiffness.
Low level library — The reference documentation for the utility library
Class Graph ...ttt ittt i i ittt ittt e tntasasasassessesencncnsnsanas

~N O

8

8
10
13
15
20
28
40
48

This page was generated with the help of DOC++

http://www.imaginator.com /doc+-+

November 6, 1999

MSE

Mechanical Simulation Engine documentation

The mechanical simulation engine is a library of C++ classes which can be used to simulate a mechanical
system in the time domain. It provides also additional capabilities of extracting, with some restrictions, frequency
domain informations (transfer functions).

The mechanical system is defined by making an instance of the MSystem class. Next different mechanical
objects can be added to the system and connected together. Each mechanical object is a derivate class of
the MObject, see the relative documentation for the common methods. The more important point is that the
configuration of a mechanical object is completely specified by a finite number of Frames. For details on the
definition of a frame see the documentation of the Frame class.

The connection of different mechanical object is specified by a rigid constraint between two frames, using the
Connect method of the MSystem class. When all the connections are done, the system can be decomposed in
clusters of unconnected frames. Each cluster is in a one-to—one correspondence with six degrees of freedom of
the system, three for the translations and three for the rotations.

On each frame a force and a torque is defined. For cluster of connected frames we can choose a representative
frame (which we call master frame) which parametrize the dynamics. In order to write the motion equations we
must evaluate the total force and torque applied to the master frame. This can be done using the relations

fi=1;
T = 7_'} + 7:;‘]‘ A fj
which connect the force and the torque between two different geometrical points (75; = 7; — 7 is the separation
between the two points).

The linearized dynamics can be written in the form

d’*z dx
— +A— 4+ Kz = 1
dt? dt / (1)
where M is a mass matrix, A a damping matrix and K a stiffness matrix. The symbol z stands for a vector
of six components, which are the three small linear variations and the three small angular variations, and f is a
vector with three forces and three torques

z = (6, 0y, 0z,005,86,,00.) (2)
fE(fxvfyva7vaTy7Tz) (3)
Each mechanical object provide on each of its frames the quantities f,M ,A and K, which must be added together

after a transformation to the reference of the master frame. This can be done in the following way. When we
write the motion equation in the reference of the master frame we get

MQx dgjlct]\fF +AQx dde\zF + KQxxur = Qrfur (4)
or)
QEIMQX% + Q' AQx dm;ZF +Qp' KQxzyp = fur (5)
and this means that the mass, damping and stiffness array transform as
Anr = Qr AQx (6)

More explicitly this means

Aiimr Ao mr _ I 0 A Aig I —7A)
A?l,MF AQQ,MF 'F/\ I A,{l A22 0 I ’

Note that the transformed array preserve its simmetry. Explicitly

This page was generated with the help of DOC++

November 6, 1999 3

http://www.imaginator.com /doc+-+

1 MSE tutorial.

1

MSE tutorial.

Some simple examples of system construction.

Names

1.1 Simple pendulum. ... 4

1.2 A composite suspended system. 6

1.3 A simple attenuation chain. 7
1.1

Simple pendulum.

We want to construct a very simple mechanical system, namely a pendulum. In the mse framework this can be
done by connecting a simple spring to a rigid body.

First of all we need to include some header files which contains the definition of the classes we will use. In
this case:

#include <mse/MSystem.H>

#include <mse/Spring.H>

#include <mse/RigidBody.H>
#include <mse/PositionActuator.H>
#include <mse/PositionSensor.H>

Now we start the main program, and we declare an instance of the MSystem class, which will represent the
pendulum.

int main()
{
MSystem pendulum;
pendulum. SetParameter("Name","Simple pendulum");

There are several parameters of the MSystem class which can be altered. We have changed the Name parameter,
for documentation purposes. Next we declare a spring of given rest length,

double wire_length = 1.0;

Spring wire = Spring();

wire.SetParameter ("Name","Pendulum wire");
wire.SetParameter ("Separation",&wire_length) ;

and a spherical rigid body of given mass

This page was generated with the help of DOC++

November 6, 1999 4

http://www.imaginator.com /doc+-+

1 MSE tutorial.

double body_mass = 1.0;

double body_inertia = 1.0;

RigidBody mass = RigidBody(Frame::d3(-1.0));
mass.SetParameter ("Name", "Pendulum mass");
mass.SetParameter("Mass",&body_mass) ;
mass.SetParameter ("Ixx",&body_inertia);
mass.SetParameter ("Iyy",&body_inertia);
mass.SetParameter ("Izz",&body_inertia) ;

Note the argument of the constructor, which is optional. It provides informations about the initial positioning of
the mass, and can be used to speed-up the search for the working point of the system.

In order to apply a force to our system we need an actuator, so we declare

PositionActuator piezo = PositionActuator();
piezo.SetParameter ("Name","Piezo");

and we need also a sensor to get informations about the evolution of the system

PositionSensor pos = PositionSensor();
pos.SetParameter ("Name","Sensor") ;

Now we have to construct the system, connecting together all the pieces. We want to move the top of the
pendulum wire, and to look at the movement of the mass. So we first attach to the system the position actuator

pendulum.Connect (piezo.frame(1), pendulum.frame(0), Frame::Coincident);

This instruction generate a rigid connection between the frame 1 of the position actuator and the frame 0 (the
unique one) of the mechanical system. The third argument describe the nature of this connection. In this case
we want the two frames completely overimposed.

The frame 0 of the position actuator must be attached to the top of the wire. As we can set the relative
position of the two frames in the position actuator, we will be able to move the top of the wire with respect to
the mechanical system fixed reference frame.

pendulum.Connect (piezo.frame(0), wire.frame(1l), Frame::Coincident);
Now we attach the mass at the bottom of the wire
pendulum.Connect (mass.frame(0), wire.frame(0), Frame::Coincident);
There is a single frame defined in the RigidBody class, which is positioned in the center of mass of the object.

As the third argument of the MSystem: : Connect class is Frame: :Coincident we attached the wire to the center
of mass of the body.

The last step of the construction phase is to attach a position sensor. We want to get the position of the
center of mass of the body relative to the reference frame, so we write

pendulum.Connect (mass.frame(0), pos.frame(0), Frame::Coincident);
pendulum.Connect (pendulum. frame(0), pos.frame(l), Frame::Coincident);

In order to use the mechanical system we constructed we must find its equilibrium position. This can be done
with the following sequence of instructions

This page was generated with the help of DOC++

November 6, 1999)

http://www.imaginator.com /doc+-+

1 MSE tutorial.

pendulum.FindWorkingPointInit();

do {

} while(pendulum.FindWorkingPoint());

pendulum.FindWorkingPointEnd () ;

Inside the do { } loop we can put some code which can be used to monitor the iterative search of the working
point. This loop ends when some accuracy requirement, which depends on the search algorithm, is reached. Both
the algorithm and the required accuracy can be entered as parameter of the MSystem class.

Now it is possible to start the evolution of the system. This can be done with the loop

pendulum. TimeDynamicsInit () ;

do {
piezo.set_x(sin(pendulum.CurrentTime()));
cout << pendulum.CurrentTime() << " " << pos.get_x() << "\n";

} while(pendulum.TimeDynamics());
TimeDynamicsEnd () ;

Inside the loops we put an example of an instruction that set the values of the actuator displacement with some
externally provided function (a sinusoidal function), and another that read the values of the current positions. In
the current example we print the current x displacement of the pendulum’s bottom.

We can also get informations about transfer function. In the following example we print a table with the real
and the imaginary part of the horizontal transfer function between the top and the bottom of the pendulum,
between 10! and 10° Hz.

double logstep = pow(10.0,0.1);
pendulum.FrequencyDynamicsInit () ;
piezo.set_x(1.0,Real);
piezo.set_x(0.0,Imaginary);
for(double f=0.1;f<=1.0e3;f*=logstep) {
pendulum.FrequencyDynamics(f) ;
cout << f << " " << pos.get_x(Real) << " " << pos.get_x(Imaginary) << "\n";
}

pendulum.FrequencyDynamicsEnd () ;

Note that the initialization of the system in the frequency domain set all actuators to the “no actuation”
condition, so it is redundant to set the imaginary part of the piezo amplitude to zero. If many actuators are
included in the system the amplitudes and the phases of each of them can be initialized in an arbitrary way.

1.2

A composite suspended system.

This page was generated with the help of DOC++

November 6, 1999 6

http://www.imaginator.com /doc+-+

1 MSE tutorial.

The system consist in a rigid body suspended to four wires.

1.3

A simple attenuation chain.

This is a toy model for a complete attenuation chain which provides attenuation both for horizontal and
vertical sollecitations. In is made of a triple inverted pendulum, with a double stage pendulum on the top. Each
stage of the double pendulum provide vertical attenuation capabilities, obtained with three cantilevered blades
mounted horizontally.

This page was generated with the help of DOC++

November 6, 1999 7

http://www.imaginator.com /doc+-+

High level library classes

2

High level library classes

The reference documentation for the C++ API

Names
2.1 class Beam : public TwoNodesElement

Complete model for a beam. 8
2.2 class Clamp : public Mse A constraint between two frames. 10
2.3 class ForceActuator : public TwoNodesElement

A generator of force. 13
2.4 class ForceSensor : public TwoNodesElement

A force SENSOT. ... 15
2.5 class Frame : public Mse A frame owned by a mechanical object. 20
2.6 class MObject : public Mse This is the base class for all object that can be

composedinto a mechanical system. 28
2.7 class Mse This is the base class for all the mechanical class-

B e 40
2.8 class MSystem : public MObject

A mechanical subsystem. 48
2.9 class PositionActuator : public TwoNodesElement

A position actuator. 53
2.10 class PositionSensor : public TwoNodesElement

A poSItion SenSOT. ... 60
2.11 class RigidBody : public MObject

A rigid body without internal structure. 64
2.12 class Spring : public TwoNodesElement

This is the model for a simple spring. 67
2.13 class TwoNodesElement : public MObject

Base class for all the mechanical object with t-

WOSTAMES. .. 69
2.14 class Wire : public TwoNodesElement

This is the model for a simple wire with torsional

SENESS. oo 71

2.1

class Beam : public TwoNodesElement

Complete model for a beam.

This page was generated with the help of DOC++

http://www.imaginator.com /doc+-+

November 6, 1999 8

2 High level library classes

Inheritance

2.7

Mse \\L

2.6
MObject \\L
213 —
TwoNodesElement \\l/
2.1
Beam
Public Members
2.1.1 Beam () Default constructor.,
2.1.2 Beam (double length, double widthO, double height0, double widthl,
double heightl, double young, double poisson, double rho,
int elements)
Constructor with parameters.
2.1.3 “Beam () Destructor i
2.1.4 virtual char* name () Identificative string. oo,

Protected Members

virtual void UpdateForces (bool EvalJacobian=true)

virtual void psdraw (int i, int j, int lbl)

Complete model for a beam.
Parameters:

Parameter name & Parameter type & Description & Default value

Name & TYPE_STRING64 & The name of the instance of the class & 77
Separation & TYPE_DOUBLE & Length of the wire at rest & - --

Young Modulus & TYPE_DOUBLE & Young’s modulus of the material & - - -
Poisson Ratio & TYPE_DOUBLE & Poisson’s ratio of the material & - -
Initial Width & TYPE_DOUBLE & Initial width of the beam & - - -
Initial Height & TYPE_DOUBLE & Initial height of the beam & - - -
Final Width & TYPE_DOUBLE & Final width of the beam & - - -

Final Height & TYPE_DOUBLE & Final height of the beam & - - -
Density & TYPE_DOUBLE & Density of the material & - - -

Elements & TYPE_INT & Number of internal elements in the model & - - -

2.1.1

10

10
10
10

Beam ()

Default constructor.

This page was generated with the help of DOC++

http://www.imaginator.com /doc+-+

November 6, 1999

2 High level library classes

Default constructor.

2.1.2

Beam (double length, double width0, double height0, double widthl, double heightl,

double young, double poisson, double rho, int elements)

Constructor with parameters.

Constructor with parameters.

2.1.3

“Beam ()

Destructor

Destructor

2.1.4

virtual char* name ()

Identificative string.

Identificative string.

Return Value: the name of the class

2.2

class Clamp : public Mse

A constraint between two frames.

This page was generated with the help of DOC++

November 6, 1999 10

http://www.imaginator.com /doc+-+

2 High level library classes

Inheritance

2.7

Mse \\L

— 2.2

Clamp

Public Members

2.2.1 Clamp (Frame *f1, Frame *f2, const mech_frame& t2_1)
Constructor. i, 11
2.2.2 Frame* C1 () Actual first frame value. 12
2.2.3 Frame* C2 () Actual second frame value. 12
224 mech_frame F2.1 () Connection between the frames. 12
2.25 mech_frame F1.2 () Connection between the frames. 12
2.2.6 virtual void ~ PutOnStream (ostream& os)
Write on stream. ol 13
227 int& dof () Degree of freedom. —.......... 13
2.2.8 virtual char* name () Identificative string. 13
A constraint between two frames.
Parameters:
Parameter name & Parameter type & Description & Default value
Name & TYPE_STRING64 & The name of the instance of the class & ””
2.2.1
Clamp (Frame *f1, Frame *f2, const mech _frame& t2_1)
Constructor.

Constructor.
Parameters: f1 a pointer to the first frame
f2 a pointer to the second frame
2.2.2

Frame* C1 ()

Actual first frame value.

This page was generated with the help of DOC++

http://www.imaginator.com /doc+-+

November 6, 1999 11

2 High level library classes

Actual first frame value.

Return Value: a pointer to the first frame

2.2.3

Frame* C2 ()

Actual second frame value.

Return Value: a pointer to the second frame.

2.2.4

Actual second frame value.

mech_frame F2_1 ()

Connection between the frames.

Return Value:

2.2.5

Connection between the frames.

the transformation that map the first frame on the second one.

mech_frame F1_2 ()

Connection between the frames.

Return Value:

Connection between the frames.

the transformation that map the second frame on the first one.

This page was generated with the help of DOC++

http://www.imaginator.com /doc+-+

November 6, 1999 12

2 High level library classes

2.2.6

virtual void PutOnStream (ostreamé& os)

Write on stream.

Write on stream. This method can be used to write a description of the class instance on a stream.

Parameters: os the output stream to use

2.2.7

int& dof ()

Degree of freedom.

Return Value: the id of the degree of freedom this clamp belong

2.2.8

Degree of freedom.

virtual char® name ()

Identificative string.

Return Value: the name of the class

2.3

Identificative string.

class ForceActuator : public TwoNodesElement

A generator of force.

This page was generated with the help of DOC++

http://www.imaginator.com /doc+-+

November 6, 1999

13

2 High level library classes

Inheritance
2.7
Mse *\L
26
MObject \\L
213 00
TwoNodesElement ‘\L
2.3
ForceActuator
Public Members
2.3.1 ForceActuator () Default constructor. 15
2.3.2 virtual char®* name () Identificative string. 15
2.3.3 virtual void set_force (mech_dvec *frc, ComplexType sel=Real)

Set an internal generalized force to a given value.

virtual void set_fx (double f, ComplexType sel=Real)
virtual void set_fy (double f, ComplexType sel=Real)
virtual void set_fz (double f, ComplexType sel=Real)
virtual void set_tx (double t, ComplexType sel=Real)
virtual void set_ty (double t, ComplexType sel=Real)
virtual void set_tz (double t, ComplexType sel=Real)

Protected Members
virtual void psdraw (int i, int j, int lbl)

int InputMappingArray (double *m=0)

A generator of force. This object has two frames, which are completely independent during the search for the
working point (no forces and torques between them). During the linear evolution the force and the torque that
the frame 0 apply on the frame 1 can be specified, giving a way to apply forces on the system.

Parameters:

Parameter name & Parameter type & Description & Default value
Name & TYPE_STRING64 & The name of the instance of the class & 77

2.3.1

ForceActuator ()

This page was generated with the help of DOC++

November 6, 1999 14

http://www.imaginator.com /doc+-+

2 High level library classes

Default constructor.

Default constructor.

2.3.2

virtual char® name ()

Identificative string.

Identificative string.

Return Value: the name of the class

2.3.3

virtual void set_force (mech_dvec *frc, ComplexType sel=Real)

Set an internal generalized force to a given value.

Set an internal generalized force to a given value.

2.4

class ForceSensor : public TwoNodesElement

A force sensor.

Inheritance

Mse \\L

2.6

MObject \\L

2.13

TwoNodesElement \\L

2.4

ForceSensor

2.7

This page was generated with the help of DOC++

November 6, 1999 15

http://www.imaginator.com /doc+-+

2 High level library classes

Public Members

24.1 ForceSensor () Default constructor 17
virtual int LinearDim ()

2.4.2 virtual void get_force (mech_dvec *frc, ComplexType sel=Real)

Get the forces relative to the working point. ... 17
2.4.3 virtual double get_fx (ComplexType sel=Real)

Get the force in the x direction relative to the

working point. ... 17
2.4.4 virtual double get_fy (ComplexType sel=Real)

Get the force in the y direction relative to the

WOTKING POINt. ... 18
2.4.5 virtual double get_fz (ComplexType sel=Real)

Get the force in the z direction relative to the

WOrking Point. 18
2.4.6 virtual double get_tx (ComplexType sel=Real)

Get the torque in the x direction relative to the

WOTKING POINE. ..o 18
2.4.7 virtual double get_ty (ComplexType sel=Real)

Get the torque in the y direction relative to the

working point. 19
2.4.8 virtual double get_tz (ComplexType sel=Real)

Get the torque in the z direction relative to the

WOTKING POINt. ..o 19
249 virtual bool PositionConstrained (int {1, int {2)

Redefinition of PositionConstrained. 19
2.4.10 virtual char* name () Identificative string.coiiiia. 20

Protected Members

void psdraw (int i, int j, int 1bl)
2.4.11 virtual int StiffMatrix (double *m) This is a redefinion of the Stiff matriz for this
SYSTEM. o 20

virtual int OutputMappingArray (double *m=0)

A force sensor. This object has two coincident frames. It is not possible to change the relative position and
orientation of them, but the force and the torque that is applied on the frame 1 from the frame 0 can be obtained.
Parameters:

Parameter name & Parameter type & Description & Default value
Name & TYPE_STRING64 & The name of the instance of the class & ””

2.4.1

ForceSensor ()

Default constructor

This page was generated with the help of DOC++

November 6, 1999 16

http://www.imaginator.com /doc+-+

2 High level library classes

Default constructor

2.4.2

virtual void get_force (mech_dvec *frc, ComplexType sel=Real)

Get the forces relative to the working point.

Get the forces relative to the working point. The values returned by this method depend on the current state of
the mechanical system. If we are working in the time domain the current linear variations from the working point
forces are returned. These are real numbers, so the case sel=Imaginary is not applicable. If we are working
in the frequency domain the response at the current frequency is returned, the real part if sel=Real and the
imaginary part if sel=Imaginary.

Parameters: pos a pointer to the structure which the current displace-
ments are copied to.
sel select in the frequency domain if the real (sel=Real) or
the imaginary (sel=Imaginary) part is returned.

2.4.3

virtual double get_fx (ComplexType sel=Real)

Get the force in the x direction relative to the working point.

Get the force in the x direction relative to the working point. The value returned by this method depends on the
current state of the mechanical system. If we are working in the time domain the current x force increment relative
to the working point condition is returned. This is a real number, so the case sel=Imaginary is not applicable.
If we are working in the frequency domain the x response in force at the current frequency is returned, the real
part if sel=Real and the imaginary part if sel=Imaginary.

Return Value: the current x force relative to the working point condition
Parameters: sel select in the frequency domain if the real (sel=Real) or
the imaginary (sel=Imaginary) part is returned.

2.4.4

virtual double get_fy (ComplexType sel=Real)

Get the force in the y direction relative to the working point.

This page was generated with the help of DOC++

November 6, 1999 17

http://www.imaginator.com /doc+-+

2 High level library classes

Get the force in the y direction relative to the working point. The value returned by this method depends on the
current state of the mechanical system. If we are working in the time domain the current y force increment relative
to the working point condition is returned. This is a real number, so the case sel=Imaginary is not applicable.
If we are working in the frequency domain the y response in force at the current frequency is returned, the real
part if sel=Real and the imaginary part if sel=Imaginary.

Return Value: the current y force relative to the working point condition
Parameters: sel select in the frequency domain if the real (sel=Real) or
the imaginary (sel=Imaginary) part is returned.

2.4.5

virtual double get_fz (ComplexType sel=Real)

Get the force in the z direction relative to the working point.

Get the force in the z direction relative to the working point. The value returned by this method depends on
the current state of the mechanical system. If we are working in the time domain the current z force increment
relative to the working point condition is returned. This is a real number, so the case sel=Imaginary is not
applicable. If we are working in the frequency domain the z response in force at the current frequency is returned,
the real part if sel=Real and the imaginary part if sel=Imaginary.

Return Value: the current z force relative to the working point condition
Parameters: sel select in the frequency domain if the real (sel=Real) or
the imaginary (sel=Imaginary) part is returned.

2.4.6

virtual double get_tx (ComplexType sel=Real)

Get the torque in the x direction relative to the working point.

Get the torque in the x direction relative to the working point. The value returned by this method depends on
the current state of the mechanical system. If we are working in the time domain the current x torque increment
relative to the working point condition is returned. This is a real number, so the case sel=Imaginary is not
applicable. If we are working in the frequency domain the x response in torque at the current frequency is
returned, the real part if sel=Real and the imaginary part if sel=Imaginary.

Return Value: the current x torque relative to the working point condition
Parameters: sel select in the frequency domain if the real (sel=Real) or
the imaginary (sel=Imaginary) part is returned.

This page was generated with the help of DOC++

November 6, 1999 18

http://www.imaginator.com /doc+-+

2 High level library classes

2.4.7

virtual double get_ty (ComplexType sel=Real)

Get the torque in the y direction relative to the working point.

Get the torque in the y direction relative to the working point. The value returned by this method depends on
the current state of the mechanical system. If we are working in the time domain the current y torque increment
relative to the working point condition is returned. This is a real number, so the case sel=Imaginary is not
applicable. If we are working in the frequency domain the y response in torque at the current frequency is
returned, the real part if sel=Real and the imaginary part if sel=Imaginary.

Return Value: the current y torque relative to the working point condition
Parameters: sel select in the frequency domain if the real (sel=Real) or
the imaginary (sel=Imaginary) part is returned.

2.4.8

virtual double get_tz (ComplexType sel=Real)

Get the torque in the z direction relative to the working point.

Get the torque in the z direction relative to the working point. The value returned by this method depends on
the current state of the mechanical system. If we are working in the time domain the current z torque increment
relative to the working point condition is returned. This is a real number, so the case sel=Imaginary is not
applicable. If we are working in the frequency domain the z response in torque at the current frequency is
returned, the real part if sel=Real and the imaginary part if sel=Imaginary.

Return Value: the current z torque relative to the working point condition
Parameters: sel select in the frequency domain if the real (sel=Real) or
the imaginary (sel=Imaginary) part is returned.

2.4.9

virtual bool PositionConstrained (int {1, int 2)

Redefinition of PositionConstrained.

Redefinition of PositionConstrained. For a force sensor this function must return true.

Return Value: true if the relative position of frames f1,f2 is constrained, 0 otherwhise.
Parameters: f1 the first frame
f2 the second frame

This page was generated with the help of DOC++

November 6, 1999 19

http://www.imaginator.com /doc+-+

2 High level library classes

2.4.10

virtual char® name ()

Identificative string.

Identificative string.

Return Value: the name of the class

2.4.11

virtual int StiffMatrix (double *m)

This is a redefinion of the Stiff matrixz for this system.

This is a redefinion of the Stiff matrix for this system. There are 18 variables (X, ¥1,¥s), where &; correspond to
the two clamps and A are six internal variables. In block form the stiffness array is

0o I -I
K= I 0 0 (8)
-I 0 0
where each block is a 6 x 6 array.
Return Value: the total storage required for the stiffness array (18 x 18)
Parameters: m a pointer to the start of the memory location where the

stiffness array must be copied. If m is a null pointer no
operation is performed, only the total storage required
for the stiffness array is returned.

2.5

class Frame : public Mse

A frame owned by a mechanical object.

Inheritance
2.7

Mse \\L

— 2.0 —

Frame

This page was generated with the help of DOC++

November 6, 1999 20

http://www.imaginator.com /doc+-+

High level library classes

Public Members

2.5.1
2.5.2
2.5.3

254
2.5.5
2.5.6
2.5.7
2.5.8
2.5.9
2.5.10
2.5.11

2.5.12

2.5.13

2.5.14

2.5.15

2.5.16

2.5.17

2.5.18

2.5.19
2.5.20

class MSystem Frame (MObject *o)

virtual

virtual

“Frame ()

The constructor.

The destructor.cco....

void PutOnStream (ostreamé& os)

char* name ()

mech_frame* frame ()

mech_mat* ee ()

double& ee (int i, int j)
double& o (int k)
double& f (int k)

MObject*& owner ()

static

static

static

static

static

static

static

static

bool

void

mech_frame
Coincident

mech_frame
dx (double d)

mech_frame
dy (double d)

mech_frame

dz (double d)

mech_frame

rx (double a)

mech_frame
ry (double a)

mech_frame

rz (double a)

mech_frame

Write on stream.

Identificative string.

Raw access to frame.,

Raw access to orientation.
Azes orientation.
Origin’s coordinate.
Equilibrium position force.

The owner of the frame.

A frame coincident with the reference

A frame aligned with the reference

translated in the xdirection.

A frame aligned with the reference

translated in the ydirection.

A frame aligned with the reference

translated in the zdirection.

A frame with the same origin of the

one.
one, but
one, but
one, but

reference

one, but rotated aroundthe x axis of a radiants.

A frame with the same origin of the

reference

one, but rotated aroundthe y axis of a radiants.

A frame with the same origin of the

reference

one, but rotated aroundthe z azis of a radiants.

dxdydz (double x, double y, double z)
A frame aligned with the reference one, but with

positioned ()
positioned (bool flag)

a general translation.

Positioned flag.

Set the positioned flag to a desired value.

22
22

23
23
23
23
24
24
24
25

25

25

25

26

26

26

27

27
27
28

A frame owned by a mechanical object. A frame is defined by a vector which defines its origin o and by a reference

This page was generated with the help of DOC++

http://www.imaginator.com /doc+-+

November 6, 1999

21

2 High level library classes

frame U, which is a set of three orthonormal vectors
U= (61,62,63)7 €; - ej = (Sij (9)

It is convenient also to see U as an orthogonal array, where e; is the ¢-th array’s column. The rigid connection
between two frames can be expressed in the following way:

U =UT (10)

o =o0+4+Ud (11)

where the orthogonal transformation 7" and the vector d do not depend on the external reference frame used to
specify U,U’,0,0’. The couple (T,d) can be interpreted as the frame (U’,0’) as seen from the reference frame

(U,0). We can write
T=U"U (12)

d=UT(0 - 0) (13)

Parameters:

Parameter name & Parameter type & Description & Default value
Name & TYPE_STRING64 & The name of the instance of the class & 77

2.5.1

class MSystem Frame (MObject *o)

The constructor.

The constructor. The orientation and the position of the constructed frame is the default Reference.

Parameters: o is the owner of the frame

2.5.2

“Frame ()

The destructor.

The destructor.

This page was generated with the help of DOC++

November 6, 1999 22

http://www.imaginator.com /doc+-+

2 High level library classes

2.5.3

virtual void PutOnStream (ostreamé& os)

Write on stream.

Write on stream. This method can be used to write a description of the class instance on a stream.

Parameters: os the output stream to use

2.5.4

virtual char* name ()

Identificative string.

Return Value: the name of the class

2.5.5

Identificative string.

mech_frame* frame ()

Raw access to frame.

Raw access to frame.

Return Value: a pointer
2.5.6
mech_mat™ ee ()
Raw access to orientation.
Raw access to orientation.
Return Value: a pointer

This page was generated with the help of DOC++

http://www.imaginator.com /doc+-+

November 6, 1999 23

2 High level library classes

2.5.7

double& ee (int i, int j)

Azes orientation.

Axes orientation. The orientation is described by a ortogonal 3x3 array which transform the fundamental base
vectors in the rotated ones. This array can be written in the form

R=| ée&1 | & | és (14)
where €; are the rotated base vectors
Return Value: the value of the (i,j) element of the orthogonal array
Parameters: i the row index of the rotation array

j the column index of the rotation array

2.5.8

double& o (int k)

Origin’s coordinate.

Origin’s coordinate.

Return Value: the value of the k-th coordinate of the origin.
Parameters: k the coordinate index
2.5.9

double& f (int k)

Equilibrium position force.

Equilibrium position force. This is the generalized force which acts on the frame in the equilibrium position.

Return Value: the k-th component of the generalized force
Parameters: k is the index of the component of the generalized force.

This page was generated with the help of DOC++

November 6, 1999 24

http://www.imaginator.com /doc+-+

2 High level library classes

2.5.10

MObject*& owner ()

The owner of the frame.

The owner of the frame.

Return Value: a pointer to the MObject which is the owner of the frame

2.5.11

static mech_frame Coincident

A frame coincident with the reference one.

A frame coincident with the reference one. All the components of the o vector are zero, and the U array is the
identity.

2.5.12

static mech_frame dx (double d)

A frame aligned with the reference one, but translated in the xdirection.

A frame aligned with the reference one, but translated in the xzdirection. The U array is the identity, and
o= (d,0,0).

Return Value: the frame (U, o).
Parameters: d the displacement
2.5.13

static mech_frame dy (double d)

A frame aligned with the reference one, but translated in the ydirection.

A frame aligned with the reference one, but translated in the ydirection. The U array is the identity, and
o=(0,d,0).

Return Value: the frame (U, o).
Parameters: d the displacement

This page was generated with the help of DOC++

November 6, 1999 25

http://www.imaginator.com /doc+-+

2 High level library classes

2.5.14

static mech_frame dz (double d)

A frame aligned with the reference one, but translated in the zdirection.

A frame aligned with the reference one, but translated in the zdirection. The U array is the identity, and
o= 1(0,0,d).

Return Value: the frame (U, o).
Parameters: d the displacement
2.5.15

static mech_frame rx (double a)

A frame with the same origin of the reference one, but rotated aroundthe x axis of a radiants.

A frame with the same origin of the reference one, but rotated aroundthe x axis of a radiants. The components
of the o vector are zero, and the array U is

1 0 0
U= 0 cosa sina (15)
0 —sina cosa
Return Value: the frame (U, o).
Parameters: a the rotation angle in radiants
2.5.16

static mech_frame ry (double a)

A frame with the same origin of the reference one, but rotated aroundthe y axis of a radiants.

A frame with the same origin of the reference one, but rotated aroundthe y axis of a radiants. The components
of the o vector are zero, and the array U is

cosa 0 sina
U= 0 1 0 (16)

—sina 0 cosa

Return Value: the frame (U, o).
Parameters: a the rotation angle in radiants

This page was generated with the help of DOC++

November 6, 1999 26

http://www.imaginator.com /doc+-+

2 High level library classes

2.5.17

static mech_frame rz (double a)

A frame with the same origin of the reference one, but rotated aroundthe z axis of a radiants.

A frame with the same origin of the reference one, but rotated aroundthe z axis of a radiants. The components
of the o vector are zero, and the array U is

cosa sina O

U=| —sina cosa 0 (17)
0 0 1
Return Value: the frame (U, o).
Parameters: a the rotation angle in radiants

2.5.18

static mech_frame dxdydz (double x, double y, double z)

A frame aligned with the reference one, but with a general translation.

A frame aligned with the reference one, but with a general translation. The U array is the identity, and the o
vector is o = (dz, dy, dz).

Return Value: the frame (U, o).

Parameters: dx the x component od the translation
dy the y component od the translation
dz the z component od the translation

2.5.19

bool positioned ()

Positioned flag.

Positioned flag. It is used to indicate that the frame was positioned explicitly.

Return Value: true if the frame was explicitly positioned, false otherwise
See Also: positioned(bool)

This page was generated with the help of DOC++

November 6, 1999 27

http://www.imaginator.com /doc+-+

High level library classes

2.5.20

void positioned (bool flag)

Set the positioned flag to a desired value.

Set the positioned flag to a desired value. The flag is used to indicate that the frame was explicitly positioned.

Parameters: flag the desired value of the flag
See Also: positioned()
2.6

class M Object : public Mse

Inheritance

2.7

2.6
MObject

Mse \\L

This is the base class for all object that can be composedinto a mechanical system.

2.13

> TwoNodesElement

2.11

—> RigidBody

2.8

—> MSystem

Public Members

2.6.1 class MSystem MObject (int NumberOfFrames)

Default constructor., 32
2.6.2 “MObject () Destructor.o i 32
2.6.3 Frame* frame (int k) Access to a predefined frame. 32
2.6.4 int frames () This method return the number of predefined

frames of the object. 33
2.6.5 virtual bool ValidFrame (int f) This method can be used to verify the presence of

a gen frame. ... 33
2.6.6 virtual bool LinearForceConstrained (int frame)

This page was generated with the help of DOC++ November 67 1999 28

http://www.imaginator.com /doc+-+

2 High level library classes

This method can be used to verify if the linearized
generalized force applied to the given frame is
constrained or not. i oo

2.6.7 virtual bool LinearPositionConstrained (int framel, int frame2)
This method can be used to verify if the linearized
relative displacement betweentwo frames is con-
strained or mot. ...

2.6.8 virtual bool ForceConstrained (int frame)
This method can be used to verify if the gener-
alized force applied to the given frame is con-
strained or not. ...

2.6.9 virtual bool PositionConstrained (int framel, int frame2)
This method can be used to verify if the relative
displacement betweentwo frames is constrained or

TOT. o
2.6.10 virtual char* name () Identificative string.c.cooo.o..
double random _force ()
int n_input
int n_output
double** inputs
double** outputs

Protected Members

2.6.11 int Inputs () This method return the number of input variables
that can be adjusted in the linear regime.

2.6.12 int Outputs () This method return the number of output vari-
ables that can be readin the linear regime.
void LinkOutput (int n, int offset, double *base)
void LinkInput (int n, int offset, double *base)
void SetFlag (unsigned int fl)
void ResetFlag (unsigned int fl)
bool TestFlag (unsigned int fl)

2.6.13 virtual void UpdateForces (bool EvalJacobian=true)
This method evaluate the forces applied by the
mechanicalelement on its nodes in the configura-
tion specified by thecurrent frame coordinates.

35
2.6.14 virtual int LinearDim () This method return the dimension of the mass,
damping and stiffnessarray which describe the
system in the linearized dynamic regime.

2.6.15 int InternalDim () This method return the number of internal vari-
ables added tothe description of this mechanical
element.

This page was generated with the help of DOC++

November 6, 1999

http://www.imaginator.com /doc+-+

High level library classes

2.6.16 virtual int BlockBase (int 1, int {2) This method return the base offset of the block in
themass, damping or stiffness array which con-
nect two given frames, or a given frame to the
internal variables space. 37
2.6.17 virtual int BlockRows (int f1, int 2) This method return the number of rows in the
block in themass, damping or stiffness array
which connect two given frames, or a given frame
to the internal variables space. 37
2.6.18 virtual int BlockCols (int f1, int {2) This method return the number of column in the
block in themass, damping or stiffness array
which connect two given frames, or a given frame
to the internal variables space. 38
2.6.19 virtual int BlockLeadingDimension (int f1, int 2)
This method return the leading dimension of the
block in themass, damping or stiffness array
which connect two given frames, or a given frame
to the internal variables space. 38
virtual int InputMapLeadingDimension ()
virtual int InputMapBlockBase (int f)
virtual int OutputMapLeadingDimension ()
virtual int OutputMapBlockBase (int f)
2.6.20 virtual int MassMatrix (double *m=0)
This method evaluate the current mass matriz for
the system. ... 38
2.6.21 virtual int DampMatrix (double *m=0)
This method evaluate the current damping matriz
for the system. i 39
2.6.22 virtual int StiffMatrix (double *m=0)
This method evaluate the current stiffness matrix
for the system. i i 39
virtual int InputMappingArray (double *m=0)
virtual int OutputMappingArray (double *m=0)
2.6.23 virtual void ApplyGravity (double ax, double ay, double az)
This method apply on the element an external
gravitationalconstant acceleration field. 40
doubleé& hess (int framel, int frame2, int i, int j)
mech_hess* hess_link (mech_hess *nh, int {1, int £2)
virtual void psdraw (int i, int j, int 1bl)
int nof
Frame** _frames
2.6.24 mech_hess** _hessians Local stiffness array. oo 40
int* allocated_h
static double strength
This page was generated with the help of DOC++ November 67 1999 30

http://www.imaginator.com /doc+-+

2 High level library classes

static double rnd

static int Internal

This is the base class for all object that can be composedinto a mechanical system. A mechanical object can be
seen as a set of Np frames. Each of them carries six degrees of freedom, which can be parametrized by the three
coordinates of the origin and by the three Euler’s angles which describe the orientation of the reference frame. A
mechanical element must provide:

1. A complete statical description of the system, that is a potential energy W which is function of all the
frames.

2. A linearized dynamical description, in term a set of mass, damping and stiffness array in the coordinate
space. 6 X N coordinates are the linearized version of the general coordinates of the Ny frames. Addictional
coordinates can be present, in order to carry informations about internal modes.

A generalized (statical) force is defined as minus the derivative of the potential energy with respect to a coordinate,
so on each frame six generalized forces are defined. For the three coordinates of the origin of the frame, the
generalized force is the traditional forces f;. For the variation of the angular coordinates we set a convention. A
general rotation array can be written as

Ao, ay, az) = Ro(oz) Ry (ay) Re () (18)
where R;(«) is a rotation of angle o around the i-th axis. The potential energy can be written as
w(--, ol 2® Ly =W ABT®) oR) 4 sk Ly (19)

which we can expand to the first order around the frame (U, 0). We obtain

(k) _ ow _ ow
= T T o .
and
w_ dw aw (oA
T T T T g ® (a o U (21)
@ ab @ ab

evaluated for a; = §; = 0.

We are interested also in the second order variation of the energy with respect to the coordinates. This can
be used in some algorithm in order to find the equilibrium position, and in the most common case it is simply
related to the stiffness array of the system. We get

2 2 (k) O
- (amw W= ?k)Wm = %u) = af@«) (22)
96,04 do; " Do, Ox; Ox;
- 92w _ 92W AAD 0 _ afi(k) (23)
a5Poa’ aoPoul) \ ool) - 9l
L Pw W <aA<k> U<k>> _ oM (24)
(%) 551 (%) 551 (k) 0]
da; 06 U, 00,7 \ Oy w O
Fw W <8A(k) U(k)> <8A(l) U(l)> sk _OW < AW (k)> or® o
L A O &) & 7 - (& & & =5 0O a4k
daMdal auoul) \ oo » Lol L ouly \oaPoalt , 0a) 0al
(25)
The UpdateForces () method evaluate these quantities.
This page was generated with the help of DOC++ November 6) 1999 31

http://www.imaginator.com /doc+-+

2 High level library classes

The linearized description is of the following form:
Md—2Y+AiY+KY—F (26)
dt? dt B

and is parametrized by the constant arrays M, A, K. The forcing variables F' is mapped on the input variables
X;n by the array A, and the output variables X,,; are mapped on the internal variables by the array B:

F= AXm, Xout = BY (27)
It is responsibility of the mechanical object to construct the arrays M ,A,K,A and B.

Parameters:

Parameter name & Parameter type & Description & Default value
Name & TYPE_STRING64 & The name of the instance of the class & 77

2.6.1

class MSystem MObject (int NumberOfFrames)

Default constructor.

Default constructor. There are no user-defined parameters for this class.

Parameters: NumberOfFrames is the number of independent frames

2.6.2

“MObject ()

Destructor.

Destructor.

2.6.3

Frame* frame (int k)

Access to a predefined frame.

Access to a predefined frame. On each mechanical object there is a set of predefined frames, which correspond
to independent generalized degrees of freedom. This method can be used to access them.

Return Value: a pointer to the k-th frame
Parameters: k the number of the frame, between 0 and frames()-1 (in-
clusive)

This page was generated with the help of DOC++

November 6, 1999 32

http://www.imaginator.com /doc+-+

2 High level library classes

2.6.4

int frames ()

This method return the number of predefined frames of the object.

This method return the number of predefined frames of the object. The frames can be accessed using the
frame(int) method.

Return Value: the max number of frames

2.6.5

virtual bool ValidFrame (int f)

This method can be used to verify the presence of a given frame.

This method can be used to verify the presence of a given frame.

Return Value: true if the given frame or internal space exists, false otherwhise
Parameters: f is the frame number. If f==MODbject::Internal the exis-
tence of internal degree of freedom is checked.

2.6.6

virtual bool LinearForceConstrained (int frame)

This method can be used to verify if the linearized generalized force applied to the given frame is constrained or
not.

This method can be used to verify if the linearized generalized force applied to the given frame is constrained or
not. This is the case, for example, for a force actuator.

Return Value: true if the force applied to the frame is constrained, false otherwise.
Parameters: frame the frame which must be tested

This page was generated with the help of DOC++

November 6, 1999 33

http://www.imaginator.com /doc+-+

2 High level library classes

2.6.7

virtual bool LinearPositionConstrained (int framel, int frame2)

This method can be used to verify if the linearized relative displacement betweentwo frames is constrained or not.

This method can be used to verify if the linearized relative displacement betweentwo frames is constrained or not.
This is the case, for example, for a position actuator.

Parameters: framel the first frame which must be tested
frame2 the second frame which must be tested

2.6.8

virtual bool ForceConstrained (int frame)

This method can be used to verify if the generalized force applied to the given frame is constrained or not.

This method can be used to verify if the generalized force applied to the given frame is constrained or not.

Return Value: true if the force applied to the frame is constrained, false otherwise.
Parameters: frame the frame which must be tested
2.6.9

virtual bool PositionConstrained (int framel, int frame2)

This method can be used to verify if the relative displacement betweentwo frames is constrained or not.

This method can be used to verify if the relative displacement betweentwo frames is constrained or not.

Parameters: framel the first frame which must be tested
frame2 the second frame which must be tested

2.6.10

virtual char® name ()

Identificative string.

Identificative string.

Return Value: the name of the class

This page was generated with the help of DOC++

November 6, 1999 34

http://www.imaginator.com /doc+-+

2 High level library classes

2.6.11

int Inputs ()

This method return the number of input variables that can be adjusted in the linear regime.

This method return the number of input variables that can be adjusted in the linear regime.

Return Value: The number of double precision (time domain) or complex (frequency domain)
variables that can be adjusted.

2.6.12

int Outputs ()

This method return the number of output variables that can be readin the linear regime.

This method return the number of output variables that can be readin the linear regime.

Return Value: The number of double precision (time domain) or complex (frequency domain)
variables that can be read.

2.6.13

virtual void UpdateForces (bool EvalJacobian=true)

This method evaluate the forces applied by the mechanicalelement on its nodes in the configuration specified by
thecurrent frame coordinates.

This method evaluate the forces applied by the mechanicalelement on its nodes in the configuration specified by
thecurrent frame coordinates. It must evaluate also, in the same configuration, the first order variation of forces
around the current position. This is an array of the following form

Hy, - Hy; - Hn,
H=| Hga - Hy - Hing (28)
I{]\/F71 HNF,j HNFvNF

where H; ; is a 6 x 6 block of the following form (Np=frames()).

ofs)0x0) of) oy 0f 020 9" (9l of” joay) OfL joa
ofy" j0xD) o) oy of” j0:0) af," j9al” of)” joa) of" joa
Of j0x @ of) oy 0f 1020 9f) j9al” 0fL” joay fL j9a %
or” /92 a7l joy) o7l 10200 07l j9aY) or) joay) orl j9al) @)
oy /920 ar{ jay D) ar 1020 a7 j0al) 07 j0a) 07" J0al)
8T£i)/8x(j) 8Tz(i)/8y(j) 8T§i)/8z(j) 8T§i)/8afcj) 87,5“/8045” 8Tz(i)/8a§j)

This page was generated with the help of DOC++

November 6, 1999 35

http://www.imaginator.com /doc+-+

2 High level library classes

where f,gi) T,Ei) are the components of the force and torque applied on the i-th frame while (), y(9), 2() and

ag) are the components of the position of the j-th frame. This is a default that set the forces and the Hessian
components to zero. If special actions must be done this method has to be redefined in the derived class. The
responsibility of evaluating the forces and the Hessian is completely demanded to the MObject. In this way
this information can be obtained using analytical expressions, if they are available, or approximate numerical
techniques.

Parameters: EvalJacobian If true both forces and Jacobian are evaluated (default).
If false only forces are evaluated.

2.6.14

virtual int LinearDim ()

This method return the dimension of the mass, damping and stiffnessarray which describe the system in the
linearized dynamic regime.

This method return the dimension of the mass, damping and stiffnessarray which describe the system in the
linearized dynamic regime. This can be greater than 6*frames(), because the array can contain informations
abouot internal degree of freedom

Return Value: the dimension of mass, damping and stiffness array

2.6.15

int InternalDim ()

This method return the number of internal variables added tothe description of this mechanical element.

This method return the number of internal variables added tothe description of this mechanical element. This is
equal to LinearDim()-6*frames()

Return Value: LinearDim-6*frames()

2.6.16

virtual int BlockBase (int f1, int 2)

This method return the base offset of the block in themass, damping or stiffness array which connect two given
frames,or a given frame to the internal variables space.

This page was generated with the help of DOC++

November 6, 1999 36

http://www.imaginator.com /doc+-+

2 High level library classes

This method return the base offset of the block in themass, damping or stiffness array which connect two given
frames,or a given frame to the internal variables space.

Return Value: an integer offset which is the start of the required block in the mass, damping
or stiffness array, or -1 if the f1,f2 values are incorrect
Parameters: f1 is the first frame, or the internal variables if

f1=MODbject::Internal

f2 is the second frame, or the internal variables if
f2=MObject::Internal

See Also: BlockRows

BlockCols

BlockLeadingDimension

MassMatrix

DampMatrix

StiffMatrix

2.6.17

virtual int BlockRows (int f1, int {2)

This method return the number of rows in the block in themass, damping or stiffness array which connect two
given frames,or a given frame to the internal variables space.

This method return the number of rows in the block in themass, damping or stiffness array which connect two
given frames,or a given frame to the internal variables space.

Return Value: an integer offset which is the number of rows in the required block in the mass,
damping or stiffness array, or -1 if the f1,f2 values are incorrect
Parameters: f1 is the first frame, or the internal variables if

f1=MODbject::Internal

f2 is the second frame, or the internal variables if
f2=MObject::Internal

See Also: BlockBase

BlockCols

BlockLeadingDimension

MassMatrix

DampMatrix

StiffMatrix

2.6.18

virtual int BlockCols (int f1, int {2)

This method return the number of column in the block in themass, damping or stiffness array which connect two
given frames,or a given frame to the internal variables space.

This page was generated with the help of DOC++

November 6, 1999 37

http://www.imaginator.com /doc+-+

High level library classes

This method return the number of column in the block in themass, damping or stiffness array which connect two
given frames,or a given frame to the internal variables space.

Return Value:

Parameters:

See Also:

2.6.19

an integer offset which is the number of columns in the required block in the
mass, damping or stiffness array
f1 is the first frame, or the internal variables if
f1=MObject::Internal
f2 is the second frame, or the internal variables if
f2=MObject::Internal
BlockBase
BlockRows
BlockLeadingDimension
MassMatrix
DampMatrix
StiffMatrix

virtual int BlockLeadingDimension (int f1, int 2)

This method return the leading dimension of the block in themass, damping or stiffness array which connect two

given frames,or a given frame to the internal variables space.

This method return the leading dimension of the block in themass, damping or stiffness array which connect two
given frames,or a given frame to the internal variables space.

Return Value:

Parameters:

See Also:

2.6.20

an integer offset which is the leading dimension of the required block in the
mass, damping or stiffness array
f1 is the first frame, or the internal variables if
f1=MObject::Internal
f2 is the second frame, or the internal variables if
f2=MObject::Internal
BlockBase
BlockRows
BlockCols
MassMatrix
DampMatrix
StiffMatrix

virtual int MassMatrix (double *m=0)

This method evaluate the current mass matrix for the system.

This method evaluate the current mass matrix for the system. The space for the data must be allocated by the

This page was generated with the help of DOC++

http://www.imaginator.com /doc+-+

November 6, 1999 38

2 High level library classes

calling procedure and the used space is returned. The array has LinearDim() rows and LinearDim() columuns.
This base definition simply return a matrix filled with zeros. The routine must be redefined for a derivate class.

Return Value: the total storage used in the workspace m
Parameters: m a pointer to the workspace where the mass matrix must
be copied. If m=0 (default) only the total storage is
evaluated and returned.
See Also: BlockBase
BlockRows
BlockCols
BlockLeadingDimension
DampMatrix
StifftMatrix

2.6.21

virtual int DampMatrix (double *m=0)

This method evaluate the current damping matriz for the system.

This method evaluate the current damping matrix for the system. The space for the data must be allocated by
the calling procedure and the used space is returned. The array has LinearDim() rows and LinearDim() columns.
This base definition simply return a matrix filled with zeros. The routine must be redefined for a derivate class.

Return Value: the total storage used in the workspace m
Parameters: m a pointer to the workspace where the mass matrix must
be copied. If m=0 (default) only the total storage is
evaluated and returned.
See Also: BlockBase
BlockRows
BlockCols
BlockLeadingDimension
MassMatrix
StiffMatrix

2.6.22

virtual int StiffMatrix (double *m=0)

This method evaluate the current stiffness matriz for the system.

This method evaluate the current stiffness matrix for the system. The space for the data must be allocated by the
calling procedure and the used space is returned. The array has LinearDim() rows and LinearDim() columns, and
must be destroyed by the calling procedure. This base definition simply return a matrix filled with the current
hessian. The routine must be redefined for a derivate class.

This page was generated with the help of DOC++

November 6, 1999 39

http://www.imaginator.com /doc+-+

2 High level library classes

Return Value: the total storage used in the workspace m
Parameters: m a pointer to the workspace where the mass matrix must
be copied. If m=0 (default) only the total storage is
evaluated and returned.
See Also: BlockBase
BlockRows
BlockCols
BlockLeadingDimension
MassMatrix
DampMatrix

2.6.23

virtual void ApplyGravity (double ax, double ay, double az)

This method apply on the element an external gravitationalconstant acceleration field.

This method apply on the element an external gravitationalconstant acceleration field. This is a default for a
generic mechanical element which does nothing. If special actions must be done this method has to be redefined
in the derived class.

Parameters: ax the x component of the gravitational acceleration
ay the x component of the gravitational acceleration
az the x component of the gravitational acceleration

2.6.24

mech_hess** _hessians

Local stiffness array.

Local stiffness array.

2.7

class Mse

This is the base class for all the mechanical classes.

This page was generated with the help of DOC++

November 6, 1999 40

http://www.imaginator.com /doc+-+

2 High level library classes
Inheritance
2.7
Mse
2.6
> MObject
2.5
—>1 Frame
2.2
—> Clamp

Public Members

271 Mse () Default constructor., 42
2.7.2 virtual “Mse () Destructor. i 42
2.7.3 virtual char* name () Identificative string. 43
2.7.4 int& id () Unique id. ..o 43
2.7.5 virtual void PutOnStream (ostreamé& os)

Write on stream. i 43
2.7.6 const char* uname () Get the user defined name. 43
2.7.7 void uname (const char *un) Set the user defined name. 44
2.7.8 int Parameters () Each mechanical element has some parameters

thatcan be changed. 44
2.7.9 char* ParametersName (int k) Each settable parameter is indexed with an inte-

gerwhich is between 0 and Parameters()-1 inclu-

SUUC. ettt et 44
2.7.10 int ParameterByName (char *name)

This method can be used to retrieve the index of

a parameter, given itsname. 45
2.7.11 int ParametersType (int k) This call return the type of the parameter indexed

by k. 45
2.7.12 int GetParameter (int k, void *val)

This method can be used to access the value of a

GIUEN PATAMELET. ..ottt 45
2.7.13 int GetParameter (char *name, void *val)

This method can be used to access the value of a

GIUET, PATAMELET. .« oottt ettt e 46
2.7.14 int SetParameter (int k, void *val)

This method can be used to set the value of a

GUUET, PATAMELET. .« oottt ettt 46
2.7.15 void SetParameter (char *name, void *val)

This page was generated with the help of DOC++ November 67 1999 41

http://www.imaginator.com /doc+-+

2 High level library classes

This method can be used to set the value of a

GIVEN PATAMELET. ..ottt 46
2.7.16 void operator= (Mse& el) This method set the value of the parameters of
this instance ofthe class to the same wvalue of
those in the el instance. 47
2.7.17 static ofstream™
logfile Log file stream.c.ccciiiiiiiiiiiiiiin. 47
2.7.18 static ofstream*
dumpfile Dump file stream. 47
Protected Members
2.7.19 int AddParameter (char *name, parameter_type type, void *val)
This method can be used to add a parameter to
the list of settableparameter for the class. 47

This is the base class for all the mechanical classes.

Parameters:

Parameter name & Parameter type & Description & Default value
Name & TYPE_STRING64 & The name of the instance of the class & 77

2.7.1

Mse ()

Default constructor.

Default constructor.

2.7.2

virtual ~“Mse ()

Destructor.

Destructor.

This page was generated with the help of DOC++

November 6, 1999 42

http://www.imaginator.com /doc+-+

2 High level library classes

2.7.3

virtual char® name ()

Identificative string.

Identificative string.

Return Value: the name of the class

2.7.4

int& id ()

Unique id.

Unique id.

Return Value: an unique integer associated to the class instance

2.7.5

virtual void PutOnStream (ostreamé& os)

Write on stream.

Write on stream. This method can be used to write a description of the class instance on a stream.

Parameters: os the output stream to use

2.7.6

const char®* uname ()

Get the user defined name.

Get the user defined name. This method return a null-terminated string which represent the name a mnemonic
identificator for the instance of the object. The identificator can be changed by the user using the uname(char*)
method.

Return Value: a pointer to a null-terminated string

This page was generated with the help of DOC++

November 6, 1999 43

http://www.imaginator.com /doc+-+

2 High level library classes

2.7.7

void uname (const char *un)

Set the user defined name.

Set the user defined name. This method can be used to set the string which identify the instance of the class.
The max length of the identification string is 63.

Parameters: un the new identification string. If its length is greather
than 63 the string is truncated.

2.7.8

int Parameters ()

FEach mechanical element has some parameters thatcan be changed.

Each mechanical element has some parameters thatcan be changed. This method returns the number of param-
eters defined for this class.

Return Value: the number of parameters.

2.7.9

char* ParametersName (int k)

FEach settable parameter is indexed with an integerwhich is between 0 and Parameters()-1 inclusive.

Each settable parameter is indexed with an integerwhich is between 0 and Parameters()-1 inclusive. Each param-
eter has also a name, which is returned by this method.

Return Value: the name of the parameter or NULL if the parameter is not defined
Parameters: k is a parameter index

This page was generated with the help of DOC++

November 6, 1999 44

http://www.imaginator.com /doc+-+

2 High level library classes

2.7.10

int ParameterByName (char *name)

This method can be used to retrieve the index of a parameter, given itsname.

This method can be used to retrieve the index of a parameter, given itsname.

Return Value: the index of the parameter
Parameters: name the name of the parameter
2.7.11

int ParametersType (int k)

This call return the type of the parameter indexed by k.

This call return the type of the parameter indexed by k. The available types are:

TYPE_UNDEF. An undefined parameter.

TYPE_DOUBLE. A double precision number.

TYPE_INT. An integer number.

TYPE_STRING64. An null-terminated string with a maximul length of 63 characters.

Return Value: the type of the parameter
Parameters: k is the index of the parameter
2.7.12

int GetParameter (int k, void *val)

This method can be used to access the value of a given parameter.

This method can be used to access the value of a given parameter. The value of the parameter is copied in a
position specified by a void pointer.

Parameters: k the index of the parameter
val a pointer to a location where the parameter value must
be copied. It is responsibility of the caller that the type
of the variable pointed by val is of the correct type.

This page was generated with the help of DOC++

November 6, 1999 45

http://www.imaginator.com /doc+-+

2 High level library classes

2.7.13

int GetParameter (char *name, void *val)

This method can be used to access the value of a given parameter.

This method can be used to access the value of a given parameter. The value of the parameter is copied in a
position specified by a void pointer.

Parameters: name the name of the parameter.
val a pointer to a location where the parameter value must
be copied. It is responsibility of the caller that the type
of the variable pointed by val is of the correct type.

2.7.14

int SetParameter (int k, void *val)

This method can be used to set the value of a given parameter.

This method can be used to set the value of a given parameter. The value of the parameter is copied from the
position specified by a void pointer.

Parameters: k the parameter index
val a pointer to the location the parameter value must be
copied from. It is responsibility of the caller that the
type of the variable pointed by val is of the correct type.

2.7.15

void SetParameter (char *name, void *val)

This method can be used to set the value of a given parameter.

This method can be used to set the value of a given parameter. The value of the parameter is copied from the
position specified by a void pointer.

Parameters: name the name of the parameter
val a pointer to the location the parameter value must be
copied from. It is responsibility of the caller that the
type of the variable pointed by val is of the correct type.

This page was generated with the help of DOC++

November 6, 1999 46

http://www.imaginator.com /doc+-+

2 High level library classes

2.7.16

void operator= (Mse& el)

This method set the value of the parameters of this instance ofthe class to the same value of those in the el
instance.

This method set the value of the parameters of this instance ofthe class to the same value of those in the el
instance. If a parameter of this instance is not present in the el instance its value is unchanged. Parameters in
the el instance which are not in this instance are ignored.

Parameters: el an instance of the class

2.7.17

static ofstream™ logfile

Log file stream.

Log file stream.

2.7.18

static ofstream™ dumpfile

Dump file stream.

Dump file stream.

2.7.19

int AddParameter (char *name, parameter_type type, void *val)

This method can be used to add a parameter to the list of settableparameter for the class.

This method can be used to add a parameter to the list of settableparameter for the class. Note that the parameter
is added only to the particular instance of the class.

Parameters: name the name of the new parameter
type the type of the new parameter
val a pointer to an (optional) initial value for the parameter

This page was generated with the help of DOC++

November 6, 1999 47

http://www.imaginator.com /doc+-+

High level library classes

2.8

class MSystem : public MObject

A mechanical subsystem.

Inheritance
2.7
Mse \\L
26 ——
MObject —\L
2.8
MSystem

Public Members

2.8.1 MSystem () Default constructor. 49
2.8.2 “MSystem () Destructor. ... 49
2.8.3 void Connect (Frame *f1, Frame *{2, const mech_frame& t12)

Element connection. 49
2.8.4 void FindWorkingPointInit () Initialize the search for the working point. 50
2.8.5 int FindWorkingPoint () Find working point of the system. 50
2.8.6 void FindWorkingPointEnd ()

Termination of the search for the working point.

... 51

2.8.7 void TimeDynamicsInit () Initialize the linear dynamics. 51
2.8.8 int TimeDynamics () Linear dynamics evolution. 51
2.8.9 void TimeDynamicsEnd () Termination of the linear dynamics evolution. o1
2.8.10 void BuildStateSpace () Construction of the system description in the s-

tate space. 52
2.8.11 double CurrentTime () Return the current value of elapsed time in the

linear evolution. 52
2.8.12 void FrequencyDynamicsInit ()

Initialization of the evaluation of system response

in the frequency domain. 52
2.8.13 void FrequencyDynamics (double f)

Evaluate the response of the system in the fre-

QUENCY AOMGIT. oot 53
2.8.14 void FrequencyDynamicsEnd ()

Termination of the evaluation of system response

in the frequency domain. 53
2.8.15 virtual char* name () Identificative string. 53

This page was generated with the help of DOC++ November 67 1999 48

http://www.imaginator.com /doc+-+

2 High level library classes

A mechanical subsystem. This class provides a single clamp, which is used specify an inertial reference frame.

In this sense it is a MObject, a sort of RigidBody with infinite mass. The main role of this class is to provide a

representation for all the system in its different aspects: geometric, static and dynamic. A mechanical system is
Parameters:

Parameter name & Parameter type & Description & Default value

Name & TYPE_STRING64 & The name of the instance of the class & 77

Initial strength & TYPE_ DOUBLE & Reduction factor for forces (initial value) &
Time step & TYPE DOUBLE & Time step for linear evolution & 0.001

gx & TYPE DOUBLE & The x component of gravitational force & 0.0

gy & TYPE DOUBLE & The y component of gravitational force & 0.0

gz & TYPE_DOUBLE & The z component of gravitational force & —9.8

a set of interconnected mechanical objects.

2.8.1

MSystem ()

Default constructor.

Default constructor.

2.8.2

“MSystem ()

Destructor.

Destructor.

2.8.3

void Connect (Frame *f1, Frame *{2, const mech_frame& t12)

FElement connection.

Element connection. This method is used to specify a connection between two element of the system. It is
designed to completely specify the relative position and orientation of the two elements. This is obtained by
enforcing the constraint

Us = U1Uz1 (30)

and
02 =01 +Ujo2,1 (31)

where (Ui, 01) and (Us, 02) are the first and the second frame, and (Uz,1,02,1) is a rigid transformation.

This page was generated with the help of DOC++

November 6, 1999 49

http://www.imaginator.com /doc+-+

2 High level library classes

Parameters: f1 a pointer to the first frame
f2 a pointer to the second frame
t12 a pointer to the rigid transformation

2.84

void FindWorkingPointInit ()

Initialize the search for the working point.

Initialize the search for the working point. There are several actions which must be done:

e The frames are numbered sequentially.

e A vector which contain, in sequential order, all the frames positions is allocated.

A vector which contain, in sequential order, all the forces which act on the frames is allocated.

e An array which contain the Hessian of the system with rigid constraint removed is allocated.

The current gravitational force is applied to all the mechanical objects which composes the system

The degrees of freedom which are irrelevant for the search of working point are freezed, adding additional
clamps.

The degrees of freedom are evaluated and initialized

2.8.5

int FindWorkingPoint ()

Find working point of the system.

Find working point of the system. The system is relaxed until the mechanical equilibrium configuration is found.
Each call to this method is equivalent to a single relaxation step.

Return Value: 1 if the equilibrium position is found, 0 otherwise.

This page was generated with the help of DOC++

November 6, 1999 50

http://www.imaginator.com /doc+-+

2 High level library classes

2.8.6

void FindWorkingPointEnd ()

Termination of the search for the working point.

Termination of the search for the working point. If the debugging is activated some informations about the actual
configuration are emitted. At the end of the procedure only the information about the equilibrium position of
the frames is preserved, in each frame.

2.8.7

void TimeDynamicsInit ()

Initialize the linear dynamics.

Initialize the linear dynamics. The working point must be setted correctly. The mass, damping and stiffness
array which describe the system are evaluated, and the correct model in the state space is built. Next the model
is simplified using the method ReduceModel()

2.8.8

int TimeDynamics ()

Linear dynamics evolution.

Linear dynamics evolution. Each call to this method is equivalent to a step in the evolution of the linearized
system.

Return Value: 1 if the evolution is finished, 0 otherwise

2.8.9

void TimeDynamicsEnd ()

Termination of the linear dynamics evolution.

Termination of the linear dynamics evolution. The memory allocated for the state space description is freed.

This page was generated with the help of DOC++

November 6, 1999 51

http://www.imaginator.com /doc+-+

2 High level library classes

2.8.10

void BuildStateSpace ()

Construction of the system description in the state space.

Construction of the system description in the state space. We start from a knowledge of the mass, damping and
stiffness array and we want to obtain a system of first order linear differential equations. We can write

(o e) () ®

2.8.11

double CurrentTime ()

Return the current value of elapsed time in the linear evolution.

Return the current value of elapsed time in the linear evolution.

Return Value: the elapsed time

2.8.12

void FrequencyDynamicsInit ()

Initialization of the evaluation of system response in the frequency domain.

Initialization of the evaluation of system response in the frequency domain. The working point must be setted
correctly.

See Also: BuildMassMatrix()
BuildStiffMatrix()
BuildDampMatrix()
BuildInputMap()
BuildOutputMap()
ReduceModel()

This page was generated with the help of DOC++

November 6, 1999 52

http://www.imaginator.com /doc+-+

2 High level library classes

2.8.13

void FrequencyDynamics (double f)

Evaluate the response of the system in the frequency domain.

Evaluate the response of the system in the frequency domain.

Parameters: f the frequency which the response must be evaluated at.

2.8.14

void FrequencyDynamicsEnd ()

Termination of the evaluation of system response in the frequency domain.

Termination of the evaluation of system response in the frequency domain.

2.8.15

virtual char® name ()

Identificative string.

Identificative string.

Return Value: the name of the class

2.9

class PositionActuator : public TwoNodesElement

A position actuator.

This page was generated with the help of DOC++

November 6, 1999 53

http://www.imaginator.com /doc+-+

High level library classes

Inheritance

2.7

Mse

2.6
MObject

H

2.13

H

TwoNodesElement ‘\L

2.9

PositionActuator

Public Members

2.9.1
2.9.2
2.9.3

294

2.9.5

2.9.6

2.9.7

2.9.8

2.9.9

virtual int

void

void

void

void

void

void

void

PositionActuator () Default constructor.
LinearDim () The number of variables in the object.

set_position (mech_dvec *pos, ComplexType sel=Real)
This method set the siz linear displacement of the
ACTUATOT. e e

set_x (double x, ComplexType sel=Real)
This method set the © displacement of the actua-
tor (the realor the imaginary part, when applica-
ble, accordingly to the second argument’s value).

set_y (double y, ComplexType sel=Real)
This method set the y displacement of the actua-
tor (the realor the imaginary part, when applica-
ble, accordingly to the second argument’s value).

set_z (double z, ComplexType sel=Real)
This method set the z displacement of the actua-
tor (the realor the imaginary part, when applica-
ble, accordingly to the second argument’s value).

set_ax (double ax, ComplexType sel=Real)
This method set the x angular displacement of the
actuator (the realor the imaginary part, when
applicable, accordingly to the second argument’s
ValUE). o

set_ay (double ay, ComplexType sel=Real)
This method set the y angular displacement of the
actuator (the realor the imaginary part, when
applicable, accordingly to the second argument’s
VALLE). oo

set_az (double az, ComplexType sel=Real)

%)
%)

56

96

o7

o7

57

o8

This page was generated with the help of DOC++

http://www.imaginator.com /doc+-+

November 6, 1999

54

2 High level library classes

This method set the z angular displacement of the

actuator (the realor the imaginary part, when

applicadble, accordingly to the second argument’s

VAlUE). o 58
2.9.10 void FindWorkingPointInit () Initialize internal structures before the working

POINE SEATCh. ... 58
2.9.11 virtual void LinearRegimelnit () Initialize internal structures before the time do-

main linearized evolution or the frequency do-

main transfer function evaluation. 59
2.9.12 virtual char* name () Identificative string. oL 59
2.9.13 virtual bool PositionConstrained (int f1, int {2)

Redefinition of PositionConstrained. 59
2.9.14 virtual int StiffMatrix (double *m) This is a redefinion of the Stiff matriz for this

SYSTEM. 59

Protected Members

virtual

virtual

void

int

psdraw (int i, int j, int 1bl)

InputMappingArray (double *m)

A position actuator. This object has two coincident frames, whose relative position and orientation cannot be
changed during the working point search. During the linear dynamics phase the relative position and orientation
between frame 0 and frame 1 can be altered. In this way we can apply an action on the system.

Parameters:

Parameter name & Parameter type & Description & Default value

Name & TYPE_STRING64 & The name of the instance of the class & 77

2.9.1

PositionActuator ()

Default constructor.

virtual

2.9.2

Default constructor.

int LinearDim ()

The number of variables in the object.

The number of variables in the object. There are two frames and six internal variables (lagrange multipliers), so
the total number of variables is 18.

This page was generated with the help of DOC++

http://www.imaginator.com /doc+-+

November 6, 1999

55

2 High level library classes

Return Value: the number of variables used to describe the system in the linear regime.

2.9.3

void set_position (mech_dvec *pos, ComplexType sel=Real)

This method set the six linear displacement of the actuator.

This method set the six linear displacement of the actuator.

Parameters: pos a pointer to the structure containing the six displace-
ments of the actuator (the real or the imaginary part,
when applicable, accordingly to the second argument’s
value).

sel select the real or the imaginary part of the six displace-
ments. If sel=Real (default) the real part of the displace-
ments is setted. If sel=Imaginary the imaginary part of
the displacements is setted.

294

void set_x (double x, ComplexType sel=Real)

This method set the x displacement of the actuator (the realor the imaginary part, when applicable, accordingly
to the second argument’s value).

This method set the x displacement of the actuator (the realor the imaginary part, when applicable, accordingly
to the second argument’s value).

Parameters: X is the x displacement of the actuator
sel select the real or the imaginary part of the displacement.
If sel=Real (default) the real part of the displacement
is setted. If sel=Imaginary the imaginary part of the
displacement is setted.

2.9.5

void set_y (double y, ComplexType sel=Real)

This method set the y displacement of the actuator (the realor the imaginary part, when applicable, accordingly
to the second argument’s value).

This page was generated with the help of DOC++

November 6, 1999 56

http://www.imaginator.com /doc+-+

2 High level library classes

This method set the y displacement of the actuator (the realor the imaginary part, when applicable, accordingly
to the second argument’s value).

Parameters: y is the y displacement of the actuator
sel select the real or the imaginary part of the displacement.
If sel=Real (default) the real part of the displacement
is setted. If sel=Imaginary the imaginary part of the
displacement is setted.

2.9.6

void set_z (double z, ComplexType sel=Real)

This method set the z displacement of the actuator (the realor the imaginary part, when applicable, accordingly
to the second argument’s value).

This method set the z displacement of the actuator (the realor the imaginary part, when applicable, accordingly
to the second argument’s value).

Parameters: z is the z displacement of the actuator
sel select the real or the imaginary part of the displacement.
If sel=Real (default) the real part of the displacement
is setted. If sel=Imaginary the imaginary part of the
displacement is setted.

2.9.7

void set_ax (double ax, ComplexType sel=Real)

This method set the x angular displacement of the actuator (the realor the imaginary part, when applicable,
accordingly to the second argument’s value).

This method set the x angular displacement of the actuator (the realor the imaginary part, when applicable,
accordingly to the second argument’s value).

Parameters: ax is the x angular displacement of the actuator
sel select the real or the imaginary part of the displacement.
If sel=Real (default) the real part of the displacement
is setted. If sel=Imaginary the imaginary part of the
displacement is setted.

This page was generated with the help of DOC++

November 6, 1999 57

http://www.imaginator.com /doc+-+

2 High level library classes

2.9.8

void set_ay (double ay, ComplexType sel=Real)

This method set the y angular displacement of the actuator (the realor the imaginary part, when applicable,
accordingly to the second argument’s value).

This method set the y angular displacement of the actuator (the realor the imaginary part, when applicable,
accordingly to the second argument’s value).

Parameters: ay is the y angular displacement of the actuator
sel select the real or the imaginary part of the displacement.
If sel=Real (default) the real part of the displacement
is setted. If sel=Imaginary the imaginary part of the
displacement is setted.

2.9.9

void set_az (double az, ComplexType sel=Real)

This method set the z angular displacement of the actuator (the realor the imaginary part, when applicable,
accordingly to the second argument’s value).

This method set the z angular displacement of the actuator (the realor the imaginary part, when applicable,
accordingly to the second argument’s value).

Parameters: az is the z angular displacement of the actuator
sel select the real or the imaginary part of the displacement.
If sel=Real (default) the real part of the displacement
is setted. If sel=Imaginary the imaginary part of the
displacement is setted.

2.9.10

void FindWorkingPointInit ()

Initialize internal structures before the working point search.

Initialize internal structures before the working point search.

This page was generated with the help of DOC++

November 6, 1999 58

http://www.imaginator.com /doc+-+

2 High level library classes

2.9.11

virtual void LinearRegimelnit ()

Initialize internal structures before the time domain linearized evolution or the frequency domain transfer
function evaluation.

Initialize internal structures before the time domain linearized evolution or the frequency domain transfer function
evaluation.

2.9.12

virtual char® name ()

Identificative string.

Identificative string.

Return Value: the name of the class

2.9.13

virtual bool PositionConstrained (int {1, int {2)

Redefinition of PositionConstrained.

Redefinition of PositionConstrained. For a position actuator this function must return true.

Return Value: true if the relative position of frames f1,f2 is constrained, 0 otherwhise.
Parameters: f1 the first frame
f2 the second frame

2.9.14

virtual int StiffMatrix (double *m)

This is a redefinion of the Stiff matriz for this system.

This is a redefinion of the Stiff matrix for this system. There are 18 variables (larr;bda, ¥y, ¥s), where Z; correspond
to the two clamps and A are six internal variables. In block form the stiffness array is

0 I -I
K= T 0 o (33)
—1 0 0

This page was generated with the help of DOC++

November 6, 1999 59

http://www.imaginator.com /doc+-+

2 High level library classes

where each block is a 6 x 6 array.

Return Value: the total storage required for the stiffness array (18 x 18)

Parameters: m a pointer to the start of the memory location where the
stiffness array must be copied. If m is a null pointer no
operation is performed, only the total storage required
for the stiffness array is returned.

2.10

class PositionSensor : public TwoNodesElement

A position sensor.

Inheritance
2.7
Mse *\L
26 — 000
MObject \\L
213
TwoNodesElement \\L
2.10
PositionSensor
Public Members
2.10.1 PositionSensor () Default constructor, 61
2.10.2 void get_position (mech_dvec *pos, ComplexType sel=Real)
Get the positions of the sensor frame relativeto
the working point. oo, 61
2.10.3 double get_x (ComplexType sel=Real)
Get the z position of the sensor frame relativeto
the working point. i, 62
2.10.4 double get_y (ComplexType sel=Real)
Get the y position of the sensor frame relativeto
the working point. 62
2.10.5 double get_z (ComplexType sel=Real)
Get the z position of the sensor frame relativeto
the working point., 62
2.10.6 double get_ax (ComplexType sel=Real)
Get the angular position of the sensor frame rel-
atiweto the working point. 63
2.10.7 double get_ay (ComplexType sel=Real)
This page was generated with the help of DOC++ November 67 1999 60

http://www.imaginator.com /doc+-+

2 High level library classes

Get the angular position of the sensor frame rel-

atiweto the working point. 63
2.10.8 double get_az (ComplexType sel=Real)
Get the angular position of the sensor frame rel-
atiweto the working point. 64
2.10.9 virtual char* name () Identificative string. 64
Protected Members
void psdraw (int i, int j, int Ibl)

virtual int OutputMappingArray (double *m=0)

A position sensor. This object has two frames, which are completely independent, in the sense that no forces and
torques can be applied between them. The relative position and orientation can be obtained.
Parameters:

Parameter name & Parameter type & Description & Default value
Name & TYPE_STRING64 & The name of the instance of the class & 77

2.10.1

PositionSensor ()

Default constructor

Default constructor

— 2.10.2

void get_position (mech_dvec *pos, ComplexType sel=Real)

Get the positions of the sensor frame relativeto the working point.

Get the positions of the sensor frame relativeto the working point. The values returned by this method depend on
the current state of the mechanical system. If we are working in the time domain the current linear displacements
from the working point position are returned. These are real numbers, so the case sel=Imaginary is not applicable.
If we are working in the frequency domain the responses at the current frequency are returned, the real part if
sel=Real and the imaginary part if sel=Imaginary.

Parameters: pos a pointer to the structure which the current displace-
ments are copied to.
sel select in the frequency domain if the real (sel=Real) or
the imaginary (sel=Imaginary) part is returned.

This page was generated with the help of DOC++

November 6, 1999 61

http://www.imaginator.com /doc+-+

2 High level library classes

2.10.3

double get_x (ComplexType sel=Real)

Get the x position of the sensor frame relativeto the working point.

Get the x position of the sensor frame relativeto the working point. The value returned by this method depends on
the current state of the mechanical system. If we are working in the time domain the current linear x displacement
from the working point position is returned. This is a real numbers, so the case sel=Imaginary is not applicable.
If we are working in the frequency domain the x response at the current frequency is returned, the real part if
sel=Real and the imaginary part if sel=Imaginary.

Return Value: the current x displacement relative to the working point position
Parameters: sel select in the frequency domain if the real (sel=Real) or
the imaginary (sel=Imaginary) part is returned.

2.10.4

double get_y (ComplexType sel=Real)

Get the y position of the sensor frame relativeto the working point.

Get the y position of the sensor frame relativeto the working point. The value returned by this method depends on
the current state of the mechanical system. If we are working in the time domain the current linear y displacement
from the working point position is returned. This is a real numbers, so the case sel=Imaginary is not applicable.
If we are working in the frequency domain the y response at the current frequency is returned, the real part if
sel=Real and the imaginary part if sel=Imaginary.

Return Value: the current y displacement relative to the working point position
Parameters: sel select in the frequency domain if the real (sel=Real) or
the imaginary (sel=Imaginary) part is returned.

2.10.5

double get_z (ComplexType sel=Real)

Get the z position of the sensor frame relativeto the working point.

Get the z position of the sensor frame relativeto the working point. The value returned by this method depends on
the current state of the mechanical system. If we are working in the time domain the current linear z displacement
from the working point position is returned. This is a real numbers, so the case sel=Imaginary is not applicable.
If we are working in the frequency domain the z response at the current frequency is returned, the real part if
sel=Real and the imaginary part if sel=Imaginary.

This page was generated with the help of DOC++

November 6, 1999 62

http://www.imaginator.com /doc+-+

2 High level library classes

Return Value: the current z displacement relative to the working point position
Parameters: sel select in the frequency domain if the real (sel=Real) or
the imaginary (sel=Imaginary) part is returned.

2.10.6

double get_ax (ComplexType sel=Real)

Get the angular position of the sensor frame relativeto the working point.

Get the angular position of the sensor frame relativeto the working point. The value returned by this method
depends on the current state of the mechanical system. If we are working in the time domain the current angular
displacement around the x axis, relative to the working point position, is returned. This is a real numbers, so the
case sel=Imaginary is not applicable. If we are working in the frequency domain the angular response around the
x axis at the current frequency is returned, the real part if sel=Real and the imaginary part if sel=Imaginary.

Return Value: the current angular displacement around the x axis relative to the working point
position
Parameters: sel select in the frequency domain if the real (sel=Real) or

the imaginary (sel=Imaginary) part is returned.

2.10.7

double get_ay (ComplexType sel=Real)

Get the angular position of the sensor frame relativeto the working point.

Get the angular position of the sensor frame relativeto the working point. The value returned by this method
depends on the current state of the mechanical system. If we are working in the time domain the current angular
displacement around the y axis, relative to the working point position, is returned. This is a real numbers, so the
case sel=Imaginary is not applicable. If we are working in the frequency domain the angular response around the
y axis at the current frequency is returned, the real part if sel=Real and the imaginary part if sel=Imaginary.

Return Value: the current angular displacement around the y axis relative to the working point
position
Parameters: sel select in the frequency domain if the real (sel=Real) or

the imaginary (sel=Imaginary) part is returned.

This page was generated with the help of DOC++

November 6, 1999 63

http://www.imaginator.com /doc+-+

2 High level library classes

2.10.8

double get_az (ComplexType sel=Real)

Get the angular position of the sensor frame relativeto the working point.

Get the angular position of the sensor frame relativeto the working point. The value returned by this method
depends on the current state of the mechanical system. If we are working in the time domain the current angular
displacement around the z axis, relative to the working point position, is returned. This is a real numbers, so the
case sel=Imaginary is not applicable. If we are working in the frequency domain the angular response around the
z axis at the current frequency is returned, the real part if sel=Real and the imaginary part if sel=Imaginary.

Return Value: the current angular displacement around the z axis relative to the working point
position
Parameters: sel select in the frequency domain if the real (sel=Real) or

the imaginary (sel=Imaginary) part is returned.

2.10.9

virtual char* name ()

Identificative string.

Identificative string.

Return Value: the name of the class

2.11

class RigidBody : public MObject

A rigid body without internal structure.

Inheritance

Mse \\L

2.6

MObject \\L

— 2.11
RigidBody

2.7

This page was generated with the help of DOC++

November 6, 1999 64

http://www.imaginator.com /doc+-+

2 High level library classes

Public Members

2.11.1 RigidBody () Default constructoro i, 65
2.11.2 RigidBody (const mech_frame& pos0)
Constructor with initial position 66
2.11.3 RigidBody (double mass, double *Iij)
Constructor with parameters —................. 66
2.11.4 RigidBody (double mass, double *Iij, const mech_frame& pos0)
Constructor with parameters and initial position
... 66
2.11.5 virtual char* name () Identificative string. 66
Protected Members
virtual void ApplyGravity (double ax, double ay, double az)
virtual void UpdateForces (bool EvalJacobian=true)
2.11.6 virtual int MassMatrix (double *m=0)
This method evaluate the current mass matrix for
the SYSEEM. ..o 67
2.11.7 virtual double cm (int i) This method gives the position of the center of
mass of the objectrelative to the frame 0. 67
void psdraw (int i, int j, int 1bl)

A rigid body without internal structure.
Parameters:

Parameter name & Parameter type & Description & Default value

Name & TYPE_STRING64 & The name of the instance of the class & 77

Mass & TYPE_DOUBLE & The total mass of the body & 0.0

Ixx & TYPE_DOUBLE & The I, component of the inertia tensor of the body & 0.0
Ixy & TYPE_DOUBLE & The I, component of the inertia tensor of the body & 0.0
Ixz & TYPE_DOUBLE & The I, component of the inertia tensor of the body & 0.0
Iyy & TYPE_DOUBLE & The I, component of the inertia tensor of the body & 0.0
Iyz & TYPE_DOUBLE & The I, component of the inertia tensor of the body & 0.0
Izz & TYPE_DOUBLE & The I,, component of the inertia tensor of the body & 0.0

2.11.1

RigidBody ()

Default constructor

Default constructor

This page was generated with the help of DOC++

November 6, 1999 65

http://www.imaginator.com /doc+-+

2 High level library classes

2.11.2

RigidBody (const mech_frame& pos0)

Constructor with initial position

Constructor with initial position

2.11.3

RigidBody (double mass, double *1ij)

Constructor with parameters

Constructor with parameters

2.11.4

RigidBody (double mass, double *1ij, const mech_frame& pos0)

Constructor with parameters and initial position

Constructor with parameters and initial position

2.11.5

virtual char® name ()

Identificative string.

Identificative string.

Return Value: the name of the class

This page was generated with the help of DOC++

November 6, 1999 66

http://www.imaginator.com /doc+-+

2 High level library classes

2.11.6

virtual int MassMatrix (double *m=0)

This method evaluate the current mass matrix for the system.

This method evaluate the current mass matrix for the system. The space for the data must be allocated and the
used space is returned. The array has 6 rows and 6 columns. The mass matrix is of the following form:

m 0 0 0 —MZem MYcm
O m 0 MmzZem O —MITem
_ 0 0 m —MYern MTem 0
M= 0 Mmzem —MYem Ia:z Izy Imz (34)
—MZem, 0 MTem Iy I, 1.
MYem —MIem 0 I:cz Iyz Izz

where m is the total mass, (Zem, Yem, Zem) 1S the current position of the center of mass relative to the frame, and
I;; is the inertia tensor of the body (with the current orientation). Note that in our case the frame is coincident
by definition with the center of mass of the object, so the mass matrix does not mix angular and linear variables.

Return Value: the total storage used in the workspace m

Parameters: m a pointer to the workspace where the mass matrix must
be copied. If m=0 (default) only the total storage is
evaluated and returned

2.11.7

virtual double cm (int i)

This method gives the position of the center of mass of the objectrelative to the frame 0.

This method gives the position of the center of mass of the objectrelative to the frame 0.

Return Value: the component of the displacement vector
Parameters: i the index of the component of the displacement vector
2.12

class Spring : public TwoNodesElement

This is the model for a simple spring.

This page was generated with the help of DOC++

November 6, 1999 67

http://www.imaginator.com /doc+-+

High level library classes

Inheritance

2.7

Mse *\L

Default constructor.

2.6
MObject \\L
213
TwoNodesElement \\L
2.12
Spring
Public Members
2121 Spring ()
2.12.2

2.12.3 virtual char*

Protected Members

virtual void
virtual void

2.12.4 virtual void

virtual int

Spring (double length, double k)

name ()

Constructor with parameters.

Identificative string.

UpdateForces (bool EvalJacobian=true)

psdraw (int i, int j, int 1bl)

.......................... 68

................. 69
.......................... 69

FindWorkingPointInit () This method must be called before the simulation-

phase.

StiffMatrix (double *m=0)

This is the model for a simple spring.

Parameters:

Parameter name & Parameter type & Description & Default value

Name & TYPE_STRING64 & The name of the instance of the class & 7”7

Separation & TYPE_DOUBLE & Length of the spring at rest & 1.0
K & TYPE_DOUBLE & Stiffness of the spring & 1.0

— 2121

....................... 69

Spring ()

Default constructor.

Default constructor.

This page was generated with the help of DOC++

http://www.imaginator.com /doc+-+

November 6, 1999

68

2 High level library classes

2.12.2

Spring (double length, double k)

Constructor with parameters.

Constructor with parameters.

2.12.3

virtual char® name ()

Identificative string.

Identificative string.

Return Value: the name of the class

2.12.4

virtual void FindWorkingPointInit ()

This method must be called before the simulationphase.

This method must be called before the simulationphase.

2.13

class TwoNodesElement : public MObject

Base class for all the mechanical object with twoframes.

Inheritance

Mse \\L

2.6

MObject \\L

2.7

This page was generated with the help of DOC++

November 6, 1999 69

http://www.imaginator.com /doc+-+

High level library classes

2.13
TwoNodesElement
2.14
—>1 Wire
2.12
—>1 Spring
2.10
—>1 PositionSensor
2.9
—>1 PositionActuator
2.4
—>1 ForceSensor
2.3
—>1 ForceActuator
2.1
> Beam
Public Members
2.13.1 TwoNodesElement () Default constructor.
2.13.2 virtual char* name () Identificative string.

Base class for all the mechanical object with twoframes.

Parameters:

Parameter name & Parameter type & Description & Default value

Name & TYPE_STRING64 & The name of the instance of the class & ””

2.13.1

TwoNodesElement ()

Default constructor.

2.13.2

Default constructor.

virtual char® name ()

Identificative string.

This page was generated with the help of DOC++

http://www.imaginator.com /doc+-+

November 6, 1999

70

2 High level library classes

Identificative string.

Return Value: the name of the class

2.14

class Wire : public TwoNodesElement

This is the model for a simple wire with torsional stiffness.

Inheritance
2.7
Mse \\l/
26 — 000
MObject \\L
213 —
TwoNodesElement \\l/
2.14
Wire
Public Members
2.14.1 Wire () Default constructor., 72
2.14.2 Wire (double length, double r, double youngm, double poissonr)
Constructor with parameters. 72
2.14.3 virtual char* name () Identificative string.coiiiiia.. 72
Protected Members
virtual void UpdateForces (bool EvalJacobian=true)
virtual void psdraw (int i, int j, int lbl)
This is the model for a simple wire with torsional stiffness.
The model is defined by a potential of the form
k k
U= (lor =02 = 1o)* + 5 (w-m)? (35)
This page was generated with the help of DOC++ November 67 1999 71

http://www.imaginator.com /doc+-+

2 High level library classes

where w is the rotation vector between the two frames of the wire.
Parameters:

Parameter name & Parameter type & Description & Default value

Name & TYPE_STRING64 & The name of the instance of the class & ””
Separation & TYPE_DOUBLE & Length of the wire at rest & 1.0

Young Modulus & TYPE_DOUBLE & Young’s modulus of the material & 1.0 x 10%
Poisson Ratio & TYPE_DOUBLE & Poisson’s ratio of the material & 0.5

Radius & TYPE_DOUBLE & Radius of the wire circular section & 1.0

2.14.1

Wire ()

Default constructor.

Default constructor.

2.14.2

Wire (double length, double r, double youngm, double poissonr)

Constructor with parameters.

Constructor with parameters.

2.14.3

virtual char® name ()

Identificative string.

Identificative string.

Return Value: the name of the class

This page was generated with the help of DOC++

November 6, 1999 72

http://www.imaginator.com /doc+-+

3 Low level library

3

Low level library

The reference documentation for the utility library

Names
struct _mech_dvec
struct _mech_vec
struct _mech_mat
struct _mech_frame
struct _mech_hess
typedef struct double
10
extern C void mech_beam_force (mech_dvec *f; mech_hess *h, mech_frame *r1,
mech_frame *r2, beam_local_parameters *bp)
3.1 extern C void mech_rotation_mat (mech_vec *v, mech_mat *e)
Extraction of angular velocity. 75
extern C void mech_mat_rotation_ordered (mech_mat *e, double wx, double wy,
double wz)
extern C void mech_mat_rotation (mech_mat *e, double wx, double wy, double wz)
extern C void mech_dvec_random (mech_dvec *dv, double eps)
extern C void mech_dvec_randomize (mech_dvec *dv, double eps)
extern C double mech_dvec_square (mech_dvec *dv)
extern C void mech_integrate_velocity (mech_frame *fm, mech_dvec *v, double feps,
double teps)
extern C mech_frame
mech_mech_frame (double o1, double 02, double 03, double al,
double a2, double a3)
3.2 extern C void mech_sum _force (mech_frame *res, const mech_frame *op,
const mech_frame *src)
This operation evaluate the total force and torque
applied on a givenpoint, 75
3.3 extern C void mech_compose_hessian (mech_hess *hres, mech_hess *h, mech_dvec *{,
mech_frame *f1, mech_frame *f1_0,
mech_frame *f2, mech_frame *2_0)
Composition of frame hessians into dof hessians.
... 76
3.4 extern C void mech_add_element_block (double *dst, int dst_base, int dst_ld,
double *src, int src_base, int src_ld,
mech_frame *f1, mech_frame *f1_master,
mech_frame *f2, mech_frame *f2_master,
mech_dvec *v)
This page was generated with the help of DOC++ November 67 1999 73

http://www.imaginator.com /doc+-+

Low level library

3.5

3.6

3.7

3.8

3.9

3.10

3.11

extern C void

extern C void

extern C void

extern C void

extern C void

extern C void

extern C void

extern C void

extern C void

extern C void

extern C void

extern C void

extern C void

extern C void

extern C void

Add an element to the linear representation. .. 76

mech_right_transform (double *base, int rows, int ld,
mech_frame *slave, mech_frame *master)

mech _left_transform (double *base, int cols, int ld, mech_frame *slave,
mech_frame *master)

mech_apply (mech_frame *res, const mech_frame *op,
const mech_frame *src)
This operation apply a transformation to a refer-
ENCe frame. 77

mech_connection12 (mech _frame *f2_1, const mech_frame *f1,
const mech_frame *{2)
This operation evaluate the frame f2 in the refer-
ence frame of fl. ... 7

mech_compose_connection (mech_frame *f3_1, const mech_frame *{3_2,
const mech_frame *{2_1)
This operation find the frame f3 in the reference
frame of f1, given theframe f3 in the reference
frame f2 and the frame f2 in the reference frame
Pl 78

mech_invert_connection (mech_frame *f1_2, const mech_frame *2_1)
This operation evaluate the frame 1 in the refer-
ence frame 2, given the frame 2 in the reference
frame 1. 78

mech_identity _array (mech_mat *r)
This operation build a 3r3 identity matrix. ... 79

mech_mat_euler (mech_mat *r, double al, double a2, double a3)
This operation build a rotation array
parametrized by three Fuler’sangles. 79

mech_copy_array (mech_mat *dest_array, const mech_mat *src_array)
This operation copy a source 3x3 array in a des-
tination 3T3 array. ... 79

mech_mul_mat_mat (mech_mat *array, const mech_mat *m1,

const mech_mat *m?2)

mech_mul_mat_matT (mech_mat *array, const mech_mat *ml,
const mech_mat *m2)

mech_mul_matT _mat (mech_mat *array, const mech_mat *ml,
const mech_mat *m2)

mech_mul_matT_matT (mech_mat *array, const mech_mat *ml,
const mech_mat *m?2)

mech_mul_mat_vec (mech_vec *vec, const mech_mat *a,
const mech_vec *v)

mech_mul_matT _vec (mech_vec *vec, const mech_mat *a,
const mech_vec *v)

This page was generated with the help of DOC++

http://www.imaginator.com /doc+-+

November 6, 1999 74

3 Low level library

extern C void mech_copy_vec (mech_vec *dst, const mech_vec *src)
extern C void mech_transpose (mech_mat *dst, const mech_mat *src)

extern C void mech_array_copy (int m, int n, double *a, int lda, double *b, int ldb)

3.12 extern C void mech_array_copy_lc (int m, int n, double *a, int lda, double *b,
int 1db, double alpha, double beta)
Linear combination. 80

extern C void mech_array_print (int m, int n, double *a, int tda)

3.1

extern C void mech_rotation_mat (mech_vec *v, mech_mat *e)

Extraction of angular velocity.

Extraction of angular velocity. A rotation array can be represented as a rotation of a finite angle around a given
axis. This routine, given a rotation array calculate the fixed axis and the rotation angle around it.

Parameters: v a pointer to the results, which is a vector directed along
the rotation axis with length equal to the rotation angle.
e a pointer to the rotation array.

3.2

* LS

extern C void mech_sum force (mech frame *res, const mech frame *op, const

mech_frame *src)

This operation evaluate the total force and torque applied on a givenpoint

This operation evaluate the total force and torque applied on a givenpoint

3.3

extern C void mech_compose_hessian (mech_hess *hres, mech_hess *h, mech_dvec *f,

mech_frame *f1, mech_frame *f1_0, mech_frame

*f2, mech_frame *£2_0)

Composition of frame hessians into dof hessians.

This page was generated with the help of DOC++

November 6, 1999 75

http://www.imaginator.com /doc+-+

3 Low level library

Composition of frame hessians into dof hessians. In order to construct the Hessian array of the constrained
system, with dof entries, starting from the Hessian of the unconstrained system, with frame entries, we use

H(Dl,DQ) — Z Z R(Fl)H(FLFQ)T(FQ) (36)
F, Fs

with F} € Dy and F5 € Dy. Here Dy and D5 are dofs, and Fy,F, are frames. The array TE) ig given by

I —an
(F) _
©=(o 1)

I 0
(F) _
R = < on I) (37)

where 0 is the displacement between the frame F and the master frame. This routine evaluate one term of the
sum.

and the array R(P) is

Parameters: hres a pointer to the result
h a pointer to the unconstrined hessian between the frames
f1 and 2

f1 a pointer to the frame f1
f1.0 a pointer to the master frame of frame f1
£2 a pointer to the frame 2
£2.0 a pointer to the master frame of frame 2

3.4

extern C void mech_add_element_block (double *dst, int dst_base, int dst_ld, dou-
ble *src, int src_base, int src_ld, mech_frame
*f1, mech_frame *f1_master, mech_frame *f2,

mech_frame *f2_master, mech_dvec *v)

Add an element to the linear representation.

Add an element to the linear representation.

This page was generated with the help of DOC++

November 6, 1999 76

http://www.imaginator.com /doc+-+

3 Low level library

Parameters: dst is a pointer to the base of the linear array of the system
dst_base is an offset to the position of the block in the linear array
of the system

dst_1d is the leading dimension of the linear array of the system

src is a pointer to the array which describe the element

src_base is an offset to the base of the array which describe the
element

src_1d is the leading dimension of the array which describe the
element

f1 the first frame

f1 master the master frame of the degree of freedom the f1 frame
belongs to

f2 the second frame

f2_master the master frame of the degree of freedom the f2 frame
belongs to

v a pointer to first order variation

3.5

extern C void mech_apply (mech_frame *res, const mech_frame *op, const mech_frame

*sre)

This operation apply a transformation to a reference frame.

This operation apply a transformation to a reference frame. If F; = (01, R1) is the reference frame and O = (o, R)
the operation the transformed reference frame is defined by

F¥ = (01 + 0, RR)) (38)

Parameters: res a pointer to the result (transformed frame)
op a pointer to the transformation
src a pointer to the frame that must be transformed

3.6

extern C void mech_connection12 (mech_frame *f2_1, const mech_frame *fl, const

mech_frame *2)

This operation evaluate the frame f2 in the reference frame of fI.

This operation evaluate the frame 2 in the reference frame of 1. If F; = (01, R1) and F» = (02, R2) we have

Fy1 = (R] (02 — 01),R] Ry) (39)

This page was generated with the help of DOC++

November 6, 1999 77

http://www.imaginator.com /doc+-+

3 Low level library

Parameters: £2.1 a pointer to the result (the reference 2 from the reference
1)
f1 a pointer to the reference frame f1
f2 a pointer to the reference frame 2
3.7

extern C void mech_compose_connection (mech_frame *f3_1, const mech_frame *{3_2

const mech_frame *f2_1)

This operation find the frame f3 in the reference frame of f1, given theframe f3 in the reference frame f2 and the
frame f2 in the reference frame f1.

This operation find the frame f3 in the reference frame of f1, given theframe 3 in the reference frame f2 and the
frame f2 in the reference frame f1. If F 1 = (ba1, R2,1) and F5 9 = (b3 2, R32) we have

F31=(b21+ Ro1b32, R21R32) (40)

Parameters: £3_1 a pointer to the result (the reference 3 from the reference

1)
£3_2 the reference 3 from the reference 2
£2_1 the reference 2 from the reference 1

3.8

extern C void mech_invert_connection (mech_frame *f1 2, const mech_frame *f2_1)

This operation evaluate the frame 1 in the reference frame 2, given the frame 2 in the reference frame 1.

This operation evaluate the frame 1 in the reference frame 2, given the frame 2 in the reference frame 1. If

F31 = (b2.1, R2,1) whe have
Fip= (—R%:lbg,l,RQTJ) (41)

Parameters: 1.2 a pointer to the result (the reference 1 from the reference
2)
£2_.1 a pointer to the reference 2 from the reference 1

This page was generated with the help of DOC++
November 6, 1999 78

http://www.imaginator.com /doc+-+

3 Low level library

3.9

extern C void mech_identity array (mech_mat *r)

This operation build a 3x3 identity matrix.

This operation build a 3x3 identity matrix. This correspond to no rotations.

Parameters: r a pointer to the result

3.10

extern C void mech_mat_euler (mech_mat *r, double al, double a2, double a3)

This operation build a rotation array parametrized by three Euler’sangles.

This operation build a rotation array parametrized by three Euler’'sangles. The array can be written as

COS (x1 COS (x3 — COS (o Sin g Sinaig €OS ag Sin vp + €OS (v €COS (v Sin vy sin g sin ag
— COS (xg COS (x3 Sin (v — COS (v1 SiN (x3 COS (¥] COS (v COS (x3 — Sin (v1 Sin vz COS (x3 Sin vy (42)
sin a7 sin ap — coS (1 sin iy COS (v

where a1,a0 and ag are the three Euler’s angles.

Parameters: r a pointer to the result
al the first Euler’s angle
a2 the second Euler’s angle
a3 the third Euler’s angle

3.11

extern C void mech_copy_array (mech mat *dest_array, const mech mat *src_array)

This operation copy a source 3x3 array in a destination 3x3 array.

This operation copy a source 3x3 array in a destination 3x3 array. The memory space for the result must be
allocated yet.

Parameters: src_array a pointer to the array that must be copied
dest_array a pointer to where the array must be copied into

This page was generated with the help of DOC++

November 6, 1999 79

http://www.imaginator.com /doc+-+

Low level library

3.12

extern C void mech_array_copy_lc (int m, int n, double *a, int 1da, double *b, int ldb,

double alpha, double beta)

Linear combination.

Linear combination. The following operation is executed:

Parameters:

=]

1lda

1db
alpha
beta

A—aA+ BB

is the number of rows of A and B

is the number of columns of A and B
the matrix A

the leading dimension of A

the matrix B

the leading dimension of B

the value of «

the value of 8

(43)

This page was generated with the help of DOC++

http://www.imaginator.com /doc+-+

November 6, 1999

80

Class Graph

Class Graph

2.7
S e 40
2.6
—> MODJect | e 28
2.13
—>1 TwoNodesElement | o 69
2.14
—>1 WiIre 71
2.12
—>1 SPring | 67
2.10
—>1 PositionSensor | L 60
2.9
—>1 PositionActuator | 53
2.4
—>1 ForceSensor | 15
2.3
—>1 Force Actuator | 13
2.1
— Beam | 8
_ 2.11
—> RigidBody | e 64
2.8
— MSYSEEI | e 48
2.5
> Frame | 20
2.2
—> Clamp | e 10
This page was generated with the help of DOC++ November 6 1999 81
b

http://www.imaginator.com /doc+-+

	MSE_users_manual.fm5.pdf
	file /home/e2e/Software/docs/e2e/mechanics/MSE_users_manual.fm5 - printed November 19, 1999
	Laser Interferometer Gravitational Wave Observatory
	- LIGO -

