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Abstract
With a network of gravitational wave detectors it is possible to
distinguish between instrument artifacts (or glitches) and un-modeled
gravitational wave signals. The LIGO-Virgo Burst group has de-
veloped several effective algorithms for detecting un-modeled, short
duration burst signals such as might be generated by core collapse
supernovae or associated with gamma ray bursts. Here we present a
new algorithm that uses Bayesian model selection to decide if features
in the data are better described as gravitational wave signals or
instrument glitches. As a by-product, even when no burst signals are
detected, this procedure produces cleaned data streams that are free of
loud glitches. The cleaned data can also be used by standard template
based searches for modeled signals such as binary inspirals, but now
with significantly reduced backgrounds, making it possible to detect
weaker signals.

Analysis Overview
Our analysis is conducted using a Markov Chain Monte Carlo (MCMC)
search of simulated LIGO-Virgo data in the wavelet domain[1].

Our data

• 3 interferometers (IFO): Hanford 4km, Livingston, Virgo

• colored gaussian noise (S5 noise curves)

• “glitch”: random amplitude spike
(sine-gaussian or high sigma gaussian fluctuation)

• signal: coherent sine-gaussian GW burst

The data can contain any combination of noise, glitches, and signal.
We analyze 16 seconds at a time and cover the frequency range from
32 to 512 Hz.
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Figure 1: A glitchy simulated datastream (transformed back to the time
domain) in 2 IFOs. The injected GW signal is at∼6s. Other loud spikes
are glitches.

The Glitch Model
We model the glitches as excess power in wavelet pixels. Each of the
three IFOs has its own glitch model. The amplitude of each pixel on the
wavelet grid is potentially a model parameter. The MCMC determines
both how many pixels are non-zero and the value of those non-zero
amplitudes.
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Figure 2: A time domain look at a simulated glitch in one IFO with the best fit glitch model superimposed. Also the same data after subtracting the best fit wavelets.

The Signal Model

• collection of wavelet pixels (potentially 16 384 params)

• one signal as seen at geocenter

• plus (+) and cross (×) polarizations
can target linear, circular or elliptical (+1 param)
unpolarized needs two wavelet grids (×2 pixels)

• one sky location of origin (+2 params)

• geocenter signal is projected onto detectors

A technical note
The time shifting and polarization relations are easily conducted in the time and
frequency domains respectively. To avoid costly wavelet transforms during run time,
we construct look-up tables in advance, telling how individual wavelet pixels respond
to such operations.

Types of Moves
Signal & glitch moves
amplitude move: propose new amplitudes for all pixels by a gaussian jump.

add pixel: propose to add a new pixel from a nearest neighbor histogram (see
Figure 4)

remove pixel: propose to remove an existing pixel from a nearest neighbor
histogram (set amp = 0).

Signal only moves
sky move: propose a new sky location of origin for the signal

polarization move: propose a new polarization angle or scale (linear or
elliptically polarized signals only)
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Figure 3: A wavelet pixel in the time and frequency domain. Wavelets are
compact in both time and frequency, making them ideal for modeling both
our signals and glitches

Glitch and Signal Together
The glitch and signal searches run simultaneously, both looking for excess power. The trick is that
using fewer pixels leads to a worse fit to the data, but our prior belief in a model with few pixels is
greater.

The posterior of the data, s, given model,M, is
the product of the likelihood of s givenM and
the prior belief inM.

P (s,M) = p(s|M) p(M) (1)

The signal model can exploit this by using one wavelet pixel to represent excess power in all three
IFOs, while the glitch model would need three.

Data Cleaning
For marginal detections we can “clean” the data
for use by template based analyses that perform
better on low SNR signals.

• run search to determine best fit coherent
signal and glitches

• subtract best fit glitches from initial data
stream

• rerun using different analysis technique

Targeted searches

• already look for clusters of pixels
with nearest neighbor proposals

• add prior to favor clustered pixels
e.g. p(x) = n+1

N+1 favors all
neighbors equally

• choose shape of cluster to target
specific waveforms

BH ringdown: only left/right neigh-
bors (const. frequency)

BH inspiral: right-up and left-
down (chirping signals)
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Figure 4: A didactic wavelet grid displaying the
nearest neighbor histogram. Red pixels are non-
zero, their neighbors are blue.

The Bayesian Approach
Our search is the Bayesian analog of Coherent Waveburst (CWb)[2][3].
Where CWb uses regularization techniques to conduct unstable matrix
inversions, we set constraints using prior knowledge.

Searle[4] showed that one method used by CWb to keep arbitrarily loud
signals being found on the detetectors’ “blind spots” is equivalent to a
gaussian prior on signal amplitude:

p(x) ∝ e−
1
2(xασ)

2

(2)

σ: standard deviation of the noise

α > 1: a tunable constant, smaller α =⇒ greater penalty.

• signals proposed in blind spots have no effect on the likelihood

• prior will penalize signals for being too loud

• equivalent to saying: “we do not expect any really loud GWs from
anywhere on the sky” (physically true)

The detection statistic
The use of a an MCMC allows for easy calculations of Bayesian
evidence and therefore the Bayes factor. The Bayes factor tells us how
much more likely it is that the data came from the first model relative to
the second. It is essentially a betting odds. There is no need to devise
and tune a detection statistic.
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Figure 5: a Reverse Jump histogram showing the number of chain
iterations in each non-zero pixel number model. All IFOs clearly show
existence of glitches in the data

Future work

• finalize code, implement binary wavelet decomposition

• apples to apples comparison with other LIGO burst searches
(CWb, Ω-pipeline)

• run on real data . . . detect GWs . . .
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