OVERVIEW OF MODE CLEANER STATUS

o History

- mode cleaner installed and rough-aligned, May '99; roughly
 months of in-vacuum operation to date
 - commissioning plan was written ahead of time
 - ~80% completed at LHO
 - some tasks planned for first occurrence at LLO

o Successes

- Iocks easily, and for long periods of time (days); control signals have plenty of headroom
- > length & frequency control servo: unity gain and cross-over frequencies tuned close to their design values
 - wavefront sensor-based alignment servo works
 - cavity finesse/linewidth is right (FWHM = 7.4 kHz)
 - > mode matching is good; fractional reflected power is 3%
- > Q's of the drumhead mode (28.2 kHz) for all three optics are high, meet requirement: $Q = 3.7 \times 10^5$, 7.8×10^5 , 1.3×10^6
- MC length set to within ~100 ppm of desired length; modulation frequency within 100 Hz of resonance (3rd f.s.r.)
 - stability of MC output beam direction

MC CHARACTERIZATION

o Problems uncovered

- Scattered 1064 nm light interacting with suspension local sensors; produces oscillations of suspension eigenmodes
 - MC lock can not be acquired with full input power; but can be turned up following lock acquisition at low power
 - solutions being pursued:
 - modulation/demodulation of the local sensor LED/PD
 - new local sensor design that is shielded from 1064 nm light (geometry + filter)
- > PSL frequency noise: phase stability of PSL VCO is compromised by servo; redistribution of filtering is req'd

Further performace characterization and integration work

- > length-alignment coupling
- > RF amplitude modulation at the MC output
- characterization of alignment system
- > beam pointing fluctuations in the GW band
- > implement power stabilization of MC output
- > automatic locking procedure
- > characterization of MC output frequency noise

Mode Cleaner Servo

- > loop unity gain frequency ~100 kHz
- > frequency path length path crossover: 3-5 Hz
- > frequency suppressing gain at 100 Hz: ~80 dB

LOOP GAIN MEASUREMENT

> unity gain frequency currently limited by electronics (& low power)

MC LENGTH-PSL FREQUENCY CROSSOVER

> difficult to measure because of high loop gain

· operate in p-polarization, lower overall gain

ALIGNMENT CONTROL

o 2 wavefront sensors control the 4 d.o.f.

- o Input beam direction is servoed to the mode cleaner cavity axis
 - mode cleaner axis more stable than the input beam
 - alignment scale: beam divergence angle is 200 $\mu rad;$ relative stability of ~10 μrad required
 - fluctuations are small; servo functions to find optimal alignment and compensate for drifts
 - servo is analog, with a bandwidth of ~1 Hz

ALIGNMENT CONTROL, CONT'D

LOCK ACQUISITION & STABILITY

- o Lock typically acheived with no bypass gain& lower overall gain
- o WFS alignment servo can be left on during acquisition
- o Electro-optic shutter operation
 - > must detect ~15% of input power to reach req'd shot noise sensitivity
 - > when unlocked, ~1W headed toward photodetector
 - > EO shutter closes quickly when MC falls out of lock; lets through an adjustable level of power (few percent) for locking
 - > when MC locks, shutter opens when trigger PD passes a threshold and stays there for more than some delay time (1 sec)
- o Remains locked for ~1 day (looses lock only when PMC falls out?)

LONG TERM DRIFT

> Recent data shows drift rate of 15 nm/min, and is much smaller than the frequency drift implied by the PSL reference cavity temperature drift

INTEGRATION WITH INTERFEROMETER (2KM CAVITY)

- o Frequency stabilization feedback to the mode cleaner to be tried on 2km cavity
 - > additive offset to mode cleaner error signal
 - > mode cleaner length correction signal
- o MC length fluctuations produce relatively large frequency fluctuations (100x arm length ratio)

REVISIONS FOR NEXT SERVO MODULE

- o Resonant gain stage (Q~10) at the first stack mode (1.5 Hz) in the MC length path
- o Notch filter at the SOS vertical mode (15 Hz) in the PSL/VCO control path
- o Elliptic low-pass filter in MC length path will be switchable (IN/OUT)
- o Low-pass filtering in the PSL/VCO path will be moved into the VCO module to preserve the VCO chip's phase noise
- o New variable gain stage with wide bandwidth, low noise
- o Will use LSC demodulation board, so that both I & Q phases are available
- DAQ channel outputs will have appropriate signal conditioning

w2k mode cleaner characterization measurements

- MC length
- MC cavity linewidth
- MC transmission
- MC output beam stability
- Internal Q's of MC mirrors

MC length measurements

- Method: RF resonant sideband detuning
 - >>add resonant sideband, f = 3 FSR
 - >>sweep the modulation frequency
 - >> measure the demodulated reflection
 - >>find the minimum f₀

$$L_{mc} = 3c / 2f_0$$

MC length measurements (cont'd)

Data Plot

MC length measurements (cont'd)

Results

$$f_0 = 29 \; 507 \; 915 \pm 100 \; Hz$$

$$L_{mc} = 15.239595 \; m \pm 50 \mu m$$

$$(L_{design} = 15.240 \; m)$$

Technical notes

- >>to improve S/N
 - Dither carrier frequency at a rate of ~ 1kHz
 - Measure demod signal with lock-in
- >>MC length measurements
 - -after the installation
 - -after length adjustment in air
 - -final in-vacuum measurement
- >> RFAM at MC output
 - -sensitive to MC length and RF frequency mis-match

MC cavity linewidth measurements

Methods

- >> Ringdown/up
 - -Square wave modulation of input power using AOM

Modulation depth 10%

- —Measure MC output power with fast PD
- Determine (average) ringdown/up time constant τ
- —Cavity linewidth Δf (FWHM) = $1/\pi\tau$
- >>Transfer function
 - —Using AOM to modulate laser power
 - —Measure output/input power transfer function
 - -Determine pole frequency fp
 - $-\Delta f = 2f_p$

MC cavity linewidth measurements(cont'd)

Ringdown Measurement

MC cavity linewidth measurements(cont'd)

Transfer Function measurement

MC cavity linewidth measurements(cont'd)

Measurement Results

Table 1: Cavity Linewidth

Method	Ringdown/up	X-function	Average
Δf (kHz)	7.24	7.38	7.31

Estimate Losses of the Cavity

>> Finesse from linewidth measurement

$$F = FSR/\Lambda f = 1346$$

>>Total round trip loss

$$\delta = 2\pi / F = 4668 \text{ ppm}$$

>> Measured mirror transmission

$$T_{mc1} = 2255 \text{ ppm}, T_{mc2} = 10 \text{ ppm}$$

>>Other losses in the cavity

$$\delta - (T_{mc1} + T_{mc2} + T_{mc3}) = 148 \text{ ppm } -> 49 \text{ppm/mirror}$$

MC Transmission

Input $I_i = 124 \pm 1\%$ mW, Output at AS $I_o = 0.632 \pm 1\%$ mW

Table 2: Transmission/Reflection of all optical elements in the beam path

Optics	Transmission/ (Reflection)	Errors
Input viewport	0.98	1%
SM1	0.995	0.1%
Faraday Isolator	0.90	1%
SM2 and MMTs	0.999	-
RM	0.025	4%
BS (T)	0.50	-
ITMy	0.97	-
BS (R)	0.50	-
APS and SMs	0.99	1%
Output viewport	0.99	1%
Total(T)	0.00521	4.5%

$$T_{mc} = (I_0/I_i)(1/T) = \underline{0.98 \pm 4.7\%}$$

MC output beam stability

Long-term fluctuation

-Measured with QPD placed 6m away from MC waist

Minute-trend data over 20 h, x: horizontal; y: vertical

UTC Time (20 hours full scale)

MC output beam stability (cont'd)

short term stability

-Measured with QPD placed 6m away from MC waist

Internal Q's of MC mirrors

Method

- >> excite internal modes by driving MC mirrors with random noise
- >> find resonance frequencies f in error signal spectrum
- >> set lock-in reference frequency close to the resonance to produce a beat at ~ 1Hz
- >>turn off noise source, measure ringdown time constant τ
- $Q=\pi\tau f$

Results

Table 3: Internal Q's of MC mirrors

Mirrors	Frequency(kHz)	$Q(10^6)$
MC1	28.233	0.75
MC2	28.199	0.37
MC3	28.233	1.29

Internal Q's of MC mirrors(cont'd)

Q-measurement data plot

