Update on the Detector Characterization Working Group

Keith Riles & Daniel Sigg University of Michigan & LIGO Hanford Observatory

LIGO Scientific Collaboration Meeting

LIGO Livingston Observatory

March 16, 2000

Aspects of Detector Characterization

- Commissioning*
- Online Diagnostics*
- Environmental Monitoring (installation & commissioning)
- Offline Data Monitoring
 - Performance Characterization:
 - Transient Analysis (subgroup chair: Fred Raab)
- Data Set Reduction (subgroup chair: Jim Brau)
- Data Set Simulation:
 - Parametrized Simulation (subgroup chair: Sam Finn)
 - End-To-End Model*

Working Group Web Site:

http://www-mhp.physics.lsa.umich.edu/~keithr/lscdc/tasktables.html

*Areas where LIGO Lab has main responsibility, but where other LSC groups assist Interferometer Commissioning:

- See parallel session talks by
 - Peter Fritschel (LIGO-MIT)
 - Steve Penn (Syracuse)
- Non-Lab LSC groups contributing:

Florida, LSU, Michigan, PSU, Syracuse

Online Diagnostics:

- See parallel session talk by
 - Daniel Sigg (LIGO-LHO)
- Non-Lab LSC groups contributing:

LSU, Oregon

Environmental Monitoring: (installation & commissioning)

- See parallel session talks by
 - Ed Daw (LIGO-MIT)
 - Dick Greenwood (La Tech)
 - Warren Johnson (LSU)
 - Evan Mauceli (Oregon)
 - Fred Raab (LIGO-LHO)
 - Anthony Rizzi (LIGO-LLO) (in ASIS session)
 - Robert Schofield (Oregon)
- Non-Lab LSC groups contributing:

La Tech, LSU, Oregon, PSU

Offline monitoring via the Data Monitor Tool (DMT)

 \implies See talk in parallel session by John Zweizig

DMT provides (considerable) infrastructure for passive offline monitoring on dedicated on-site SUN workstations

- Records periodic characterization info in meta-database
- Generates triggers (& control room alarms)
- Allows for first level of data reduction
- Provides convenient data types & filters (Finn)

Support provided for

- Background monitoring
- Foreground monitoring + graphics display (root-based)
- Operator communication with background processes using diagnostics test tool (Sigg) (under development)

Software can be run on "any" unix system with Gnu egcs/gcc compiler installed

- Full root version demonstrated on Sun, Linux so far (non-trivial compiler incompatibilities on other platforms)
- Downloadable from the Web
- Supports C procedures, but C++ more convenient for exploiting existing infrastructure

Compatibility with other LIGO software:

- DMT had to be ready in a hurry \implies John forged ahead
- Will provide "wrapper" for LDAS data conditioning API (Finn, Romano, Charlton) now under development
- DMT Interface to Meta-Database (Shawhan) in progress
- DMT code ported to Matlab for Frame writing (Daw)

Summary:

- DMT infrastructure up and running with powerful features (and more on the way)
- Many thanks to John!
- Our monitoring / characterization work is cut out for us...

At Stanford LSC meeting (July 1999) settled upon task assignments and priorities \implies White Paper

Original scheme

Priority 1 Needed at start of 2-km commissioning \implies Due 10/99

Priority 2 Needed during 2-km commissioning \implies Due 5/00

Priority 3 Needed 6 months before science run \implies Due 6/01

Priority R Research area for advanced LIGO

Summary table from White Paper:

Task Category	Priority	Institutions
Online Diagnostics & Measurements	1, 3	CIT LSU MIT Mich
Offline Monitoring Infrastr.	1	CIT
Environ. Monitoring (hardware)	1, 2, R	CIT LSU MIT LaTech Oreg PSU
Line Noise Identification	1	AEI ANU Dublin Flor LSU Mich PSU Wisc
Instrumental Correlations	1	Dublin PSU Wisc
Environmental Correlations	1, R	LSU LaTech Oreg PSU Syr
IFO State Summaries	1, 2, 3	ANU CIT LSU Flor Mich PSU Wisc
IFO–IFO Correlations	3	PSU
Transient ID / Analysis (instr.)	1, 2, 3	AEI IUCAA MIT Mich PSU
Transient ID / Analysis (instr.)	2, 3	CIT Oreg
Time / Frequency Analysis	2, 3	CIT Flor
Data Set Reduction	1, 2	Flor Oreg
Phenomenological Modelling	2	MIT PSU
End-To-End Modelling	1, 2	CIT Flor PSU Pisa

Only institutions with firm task commitments shown in summary table

Details at

http://www-mhp.physics.lsa.umich.edu/~keithr/lscdc/tasktables.html

On the bright side...

- Online diagnostics in good shape
- Offline monitoring infrastructure in good shape
- Much LSC activity in environmental monitoring (but more help needed!)

Problems:

- Almost no priority 1 offline software deadlines met (10/99)
- Some disagreements as to what tasks should be priority 1
- Some tasks not well defined (unclear "deliverable")
- DMT software threshold too high or learning time constant too long for some LSC groups with relevant hardware or analysis experience
- Other demands on time...

On the other hand...

 Some groups have now delivered (or very soon will deliver) first versions of DMT code (Even code that wasn't promised! - Oregon)

To discuss in parallel session:

- Most pressing needs \implies Revised (realistic) milestones?
- Consolidation of groups signed up for common tasks \implies Assignment of Lead Group for each deliverable?
- Better definition of DMT deliverable
 ⇒ Two stages?

Will report back on Saturday with revised task tables (detailed version with names)

Performance Characterization (ordered by priority)

- Line noise sources (priority 1)
 - See parallel session talks by
 - * Bob Coldwell (Florida)
 - * Sergey Klimenko (Florida)
 - * Adrian Ottewill (Dublin)
 - * Bernard Whiting (Florida)
- Seismic noise (priority 1)
 - See parallel session talks by
 - * Ed Daw (LIGO-MIT)
 - * Dick Greenwood (La Tech)
 - * Warren Johnson (LSU)
 - * Evan Mauceli (Oregon)
 - * Fred Raab (LIGO-LHO)
 - * Robert Schofield (Oregon)
- Stack Vibrations (priority 1)
- Inter-channel correlations (priority 1)
 - See parallel session talks by
 - * Adrian Ottewill (Dublin)
 - * Julien Sylvestre (LIGO-MIT)

*Presentation on DMT software

Performance Characterization (cont.)

- Bilinear Cross-Couplings (priority 1)
- Operational State (priority 1)
 - See parallel session talk by
 - * Keith Riles (Michigan)
- Band-limited RMS (priority 2)
- Time/Frequency plots (priority 2)
- Non-Gaussian noise (priority 2)
 - See parallel session talk by
 - * Albert Lazzarini (LIGO-CIT)
- Time-domain system ID (priority 3)
- 2km-4km WA correlations (priority 3)
- Inter-site correlated noise (priority 3)
- Summary (astrophysical metrics) (priority 3)
- Gravitational gradients (priority R)

*Presentation on DMT software

Offline Monitoring

Transient Analysis (ordered by priority) (Subgroup leader: Fred Raab)

- Frequency band transients (priority 1)
 - See parallel session talk by
 - * Julien Sylvestre (LIGO-MIT)
- Servo instability (priority 1)
 - See parallel session talk by
 - * Keith Riles (Michigan)
- Event catalog (priority 1)
- Flickering optical modes (priority 2)
- Impulse recognition (priority 2)
 - See parallel session talk by
 - * Eric Chassande-Mottin (AEI)
- Magnetic field transients (priority 2)
 - See parallel session talk by
 - * Robert Schofield (Oregon)
- Wind gusts / lightning (priority 3)
 - See parallel session talk by
 - * Robert Schofield (Oregon)
- *Presentation on DMT software

Offline Monitoring

Transient Analysis (cont.)

- Dust in beam (priority 3)
- Quake recognition (priority 3)
 - See parallel session talks by
 - * Ed Daw (LIGO-MIT)
 - * Dick Greenwood (La Tech)
 - * Warren Johnson (LSU)
 - * Evan Mauceli (Oregon)
 - * Robert Schofield (Oregon)
- Wavelet analysis (priority 3)
 - See parallel session talk by
 - * Sergey Klimenko (Florida)
- Automated transient ID (priority 3)

*Presentation on DMT software

(Subgroup leader: Jim Brau)

- See parallel session talk by
 - David Strom (Oregon)
- Basic infrastructure for designer / customized data sets in place at LHO
 - $-\operatorname{Can}$ save compressed to disk for long-term storage
 - Can write to tapes
- Need to discuss formal mechanism for distributing engineering data to LSC groups conveniently (tape format agreed upon at Stanford meeting)
- Oregon group has circulated proposed content (outline form) of default reduced data set (≈300 kB/s)
- Need to decide soon on default and implement / test

Two lines of attack:

- Parametrized modelling (Subgroup leader: Sam Finn) \implies See parallel session status report
- End-to-End (E2E) Model (Team leader: Hiro Yamamoto)
 ⇒ See parallel session talk:
 "Applications of the End-To-End Model to the LHO 2-km IFO"

Brief status of parametrized modelling:

- MATLAB program written to simulate (on the fly, in time domain) superposed sources of interferometer noise (Finn)
- First version released November 1, 1999 (as promised!)
- Contains shot noise, radiation pressure noise, suspension thermal noise, internal test mass thermal noise
- Second version in preparation (Finn/Daw)
- Will contain seismic noise, violin modes, better internal thermal noise, and Frame output
- Will be handed over to E2E team for algorithm incorporation

With (much appreciated) support from the Caltech group, Dick Gustafson (Michigan) & Steve Vass (Caltech) made two several-day data runs in fall 1999 with the 40 Meter prototype, following a summer of shaking down the instrument.

- First run: Sept. 17-21 (in coincidence with TAMA!) $\implies \sigma_{\delta L} \approx 2 \times 10^{-17} \text{ m}/\sqrt{\text{Hz}} \ 1 \text{ kHz}$
- Followed by more interferometer tweaking & tuning
- Second run: Sept. 30 Oct. 4 $\implies \sigma_{\delta L} \approx 4 \times 10^{-18} \text{ m}/\sqrt{\text{Hz}}$ 1 kHz $\implies \sigma_h \approx 1 \times 10^{-19}$ (nearly unattended running!)

Remarks:

- Noise dominated by electronics
- Data's astrophysics potential probably miniscule

But!

- Data from a fully recycled LIGO-like interferometer
- ≈ 100 data channels recorded, many at 16 kHz sampling
- Opportunity for real-world detector characterization (under combat conditions!)

Coincidence analysis with TAMA in the works

- Walid Majid (Caltech) coordinating the LIGO side of the analysis effort
 ⇒ See talk in parallel session
- Formal analysis proposal to LSC in preparation
- One goal of analysis is development / testing of detector characterization algorithms
 ⇒ See talk by Julien Sylvestre (LIGO-MIT)
- Analysis effort open to additional LSC participants

Web page for analysis effort:

http://www.ligo.caltech.edu/~wmajid/40m+tama/docs.html

Page 1

Note 1, Linda Turner, 05/09/00 09:32:23 AM LIGO-G000062-00-D