Coincidence gravitational wave burst experiments with wide-band detectors of differing sensitivity

Massimo Tinto

Jet Propulsion Laboratory California Institute of Technology

References:

- [1] R.W.P. Drever, Y. Gursel, and M.Tinto, In preparation.
- [2] R.W.P. Drever, Y. Gursel, and M.Tinto, In: Proceedings of the sixth Marcel Grossmann Meeting, Editors: H. Sato and T. Nakamura, World Scientific, Vol. 2, 1471 (1991)
- [3] B.F. Schutz, In: Detection of Gravitational Radiation, Editor D. Blair (CUP, 1989)
- [4] Y. Gursel, and M.Tinto, Phys. Rev. D, 40, 3884, 1989

INTRODUCTION

- The possibility of coincidence experiments, involving three or more wide-band gravitational wave detectors, makes it important to identify the overall experiment sensitivity.
- LIGO will operate 3 interferometers in coincidence .
- 2 of them (with arm lengths differing by a factor of two) will be located at one site; the remaining interferometer at the other site will have an arm length equal to the arm length of the longer interferometer at the first site.
- The use of the half-length interferometer can give significant improvement in effective experiment sensitivity when the dominant noise sources do not depend on the arm length (spurious pulses from gas bursts).

INTRODUCTION (cont.)

- We will not consider such cases, where there are obvious advantages in use of an half-length interferometer.
- We will assume instead that the noise in each interferometer is Gaussian.
- We shall assume the following definition for the sensitivity of an experiment: *The sensitivity of a gravitational wave experiment is the amplitude of the gravitational wave which, with optimum polarization and direction of propagation, has a given probability (e.g. 50 %) of being detected by the experiment.*
- We will consider a simple threshold-crossing experiment.

INTRODUCTION (cont.)

- The three thresholds are chosen in such a way to give the above defined sensitivity, subject to the following two constraints on the accidental rates:
 - The maximum triple coincidental accidental rate for the whole experiment has been chosen to be 1 every 10 years
 - The single accidental rate in any of the interferometers has been assumed to be less than 1 %.

MATHEMATICAL DESCRIPTION

• In absence of the gravitational wave pulse, the output of detector *i* is assumed to be a Gaussian, band-limited noise of zero-mean and variance σ_{i}^{2} :

p (
$$\sigma_i$$
; x_i) = (2 $\pi \sigma_i^2$)^{-1/2} exp [- x_i²/2 σ_i^2]

$$(2 \pi \sigma_i^2)^{-1/2} \int_{-\infty}^{+\infty} \exp\left[-x_i^2/2\sigma_i^2\right] dx_i = 1$$

• The probability P that the output x_i of the detector exceeds a given (positive) threshold T_i is given by:

$$P(|x_i| > T_i) = 2 \int_{T_i}^{+\infty} p(\sigma_i; z) dz$$

which can be written as:

$$P(|x_i| > T_i) = 1 - erf [T_i/(2\sigma_i^2)^{1/2}]$$

MATHEMATICAL DESCRIPTION (cont.)

where:

erf [x] = 2/(
$$\pi$$
)^{1/2} $\int_{0}^{x} \exp[-t^{2}] dt$; 0 <= x < ∞

erf [x] = 1 - [
$$a_1 t + a_2 t^2 + a_3 t^3 + a_4 t^4 + a_5 t^5$$
] exp [- x²] + ε

with : t = 1/(1 + q x); q, $a_k k = 1$, ...5 are known coefficients, and $\epsilon <= 1.5 x 10^{-7}$ for $0 <= x < \infty$

THE CONSTRAINT EQUATIONS

• Under the assumption that the output of an interferometer will be a band-limited, white, Gaussian noise with bandwidth f_c , we can write the following expression for the rate R_i at which the detector output x_i exceeds a given threshold T_i :

$$R_i = 2 f_c P(|x_i| > T_i)$$
 (i = 1, 2, 3)

 The resolving time τ₁ for coincidence experiments between two detectors located at the same site is equal to the time between the digitized samples:

$$\tau_1 = 1/(2 f_c)$$

while the resolving time τ_2 for coincidence experiments between detectors located at different sites is given by:

 $\tau_2 = D + \tau_1$ (D = maximum time-delay between the two sites)

THE CONSTRAINT EQUATIONS (cont.)

• For tree interferometers (2 + 1) the accidental coincidence rate R_{acc} due entirely to Gaussian noise in the detectors is given by the following expression:

$$R_{acc} = 4 \tau_1 \tau_2 R_1 R_2 R_3 =>$$

 $P(|x_1| > T_1) \ P(|x_2| > T_2) \ P(|x_3| > T_3) = R_{acc} / (32 \ f_c^{3} \ \tau_1 \ \tau_2)$

COMPUTATION OF THE OPTIMUM SENSITIVITY

- We assume that all the detectors are oriented parallel to each other.
- Consider the case of a gravitational wave of pulse amplitude h is impinging on the three detectors in the observatory:

$$\mathbf{x}_{i} = \mathbf{h} + \mathbf{\Lambda}_{i}$$

• In a series of experiments in which h is held constant, the random variable x_i has a Gaussian distribution of mean h and variance σ_i^2

$$p_h(\sigma_i; x_i) = (2 \pi \sigma_i^2)^{-1/2} \exp[-(x_i - h)^2/2\sigma_i^2]$$

<u>COMPUTATION OF THE OPTIMUM</u> <u>SENSITIVITY (cont.)</u>

• With a gravitational wave present, the probability that the detector output x_i exceeds the threshold T_i is given by:

$$\begin{split} P_h \; (|x_i| > T_i) &= 1 - 0.5 \; \{ erf \; [\; (h + T_i) / \; (2\sigma_i^2)^{1/2} \;] \; + \\ &erf \; [\; (-h + T_i) / \; (2\sigma_i^2)^{1/2} \;] \} \end{split}$$

where: h > 0, $T_i >= h$

$$\begin{split} P_h \left(|x_i| > T_i \right) &= 1 - 0.5 \ \{ erf \left[\ (h + T_i) / \ (2\sigma_i^2)^{1/2} \ \right] - \\ &erf \left[\ (-h + T_i) / \ (2\sigma_i^2)^{1/2} \ \right] \} \end{split}$$

where: h > 0, $0 \le T_i \le h$

<u>COMPUTATION OF THE OPTIMUM</u> <u>SENSITIVITY (cont.)</u>

• The gravitational wave amplitude $h(T_1, T_2, T_3)$, which has a 50% probability of being detected in coincidence by the three detectors, satisfies the following equation:

 $P_h (|x_1| > T_1) P_h (|x_2| > T_2) P_h (|x_3| > T_3) = 0.50$

ANALYSIS

- We have considered three different configurations for triple coincidences:
 - (I) All the detectors have the same sensitivities
 - (II) (2+1) configuration, with the r.m.s. of the shorter detector equal to $\sqrt{2}$ of the r.m.s. of the longer (equal sensitivity) detectors
 - (III) (2+1) configuration, with the r.m.s. of the shorter detector equal to twice that of the longer (equal sensitivity) detectors

ANALYSIS (cont.)

• We have also considered three different configurations for coincidences with two separated detectors:

(I) The detectors have the same sensitivities

(II) The r.m.s. of the shorter detector is equal to $\sqrt{2}$ of the r.m.s. of the other detector

(III) The r.m.s. of the shorter detector is equal to twice that of the longer (equal sensitivity) detectors

RESULTS

Number of Detectors	$\sigma_{half}/\sigma_{full}$	$f_{c}(Hz)$	Min.Sens. /	Ratio
3	$\sqrt{2}$	1000	5.51	1.09
3	$\sqrt{2}$	200	5.25	1.09
3	$\sqrt{2}$	30	4.96	1.09
3	2	1000	5.75	1.21
3	2	200	5.48	1.24
3	2	30	5.18	1.28
2	$\sqrt{2}$	1000	6.65	1.15
2	$\sqrt{2}$	200	6.31	1.16
2	$\sqrt{2}$	30	5.94	1.16
2	2	1000	7.22	1.34
2	2	200	6.85	1.31
2	2	30	6.44	1.29