Coincidence gravitational wave burst experiments with wide-band detectors of differing sensitivity

Massimo Tinto
Jet Propulsion Laboratory
California Institute of Technology

References:
[1] R.W.P. Drever, Y. Gursel, and M.Tinto, In preparation.
[2] R.W.P. Drever, Y. Gursel, and M.Tinto, In: Proceedings of the sixth Marcel Grossmann Meeting, Editors: H. Sato and T. Nakamura, World Scientific, Vol. 2, 1471 (1991)
[3] B.F. Schutz, In: Detection of Gravitational Radiation, Editor D. Blair (CUP, 1989)
[4] Y. Gursel, and M.Tinto, Phys. Rev. D, 40, 3884, 1989

INTRODUCTION

- The possibility of coincidence experiments, involving three or more wide-band gravitational wave detectors, makes it important to identify the overall experiment sensitivity.
- LIGO will operate 3 interferometers in coincidence .
- 2 of them (with arm lengths differing by a factor of two) will be located at one site; the remaining interferometer at the other site will have an arm length equal to the arm length of the longer interferometer at the first site.
- The use of the half-length interferometer can give significant improvement in effective experiment sensitivity when the dominant noise sources do not depend on the arm length (spurious pulses from gas bursts).

INTRODUCTION (cont.)

- We will not consider such cases, where there are obvious advantages in use of an half-length interferometer.
- We will assume instead that the noise in each interferometer is Gaussian.
- We shall assume the following definition for the sensitivity of an experiment: The sensitivity of a gravitational wave experiment is the amplitude of the gravitational wave which, with optimum polarization and direction of propagation, has a given probability (e.g. 50%) of being detected by the experiment.
- We will consider a simple threshold-crossing experiment.

INTRODUCTION (cont.)

- The three thresholds are chosen in such a way to give the above defined sensitivity, subject to the following two constraints on the accidental rates:
- The maximum triple coincidental accidental rate for the whole experiment has been chosen to be 1 every 10 years
- The single accidental rate in any of the interferometers has been assumed to be less than 1%.

MATHEMATICAL DESCRIPTION

- In absence of the gravitational wave pulse, the output of detector i is assumed to be a Gaussian, band-limited noise of zero-mean and variance σ_{i}^{2} :

$$
\begin{gathered}
p\left(\sigma_{i} ; x_{i}\right)=\left(2 \pi \sigma_{i}^{2}\right)^{-1 / 2} \exp \left[-x_{i}^{2} / 2 \sigma_{i}^{2}\right] \\
\left(2 \pi \sigma_{i}^{2}\right)^{-1 / 2} \int_{-\infty}^{+\infty} \exp \left[-x_{i}^{2} / 2 \sigma_{i}^{2}\right] \mathrm{dx}_{\mathrm{i}}=1
\end{gathered}
$$

- The probability P that the output x_{i} of the detector exceeds a given (positive) threshold T_{i} is given by:

$$
\mathrm{P}\left(\left|\mathrm{x}_{\mathrm{i}}\right|>\mathrm{T}_{\mathrm{i}}\right)=2 \int_{T i}^{+\infty} \mathrm{p}\left(\sigma_{\mathrm{i}} ; \mathrm{z}\right) \mathrm{dz}
$$

which can be written as:

$$
\mathrm{P}\left(\left|\mathrm{x}_{\mathrm{i}}\right|>\mathrm{T}_{\mathrm{i}}\right)=1-\operatorname{erf}\left[\mathrm{T}_{\mathrm{i}} /\left(2 \sigma_{\mathrm{i}}^{2}\right)^{1 / 2}\right]
$$

MATHEMATICAL DESCRIPTION (cont.)

where:

$$
\operatorname{erf}[\mathrm{x}]=2 /(\pi)^{1 / 2} \int_{0}^{x} \exp \left[-\mathrm{t}^{2}\right] \mathrm{dt} \quad ; 0<=\mathrm{x}<\infty
$$

$\operatorname{erf}[x]=1-\left[a_{1} t+a_{2} t^{2}+a_{3} t^{3}+a_{4} t^{4}+a_{5} t^{5}\right] \exp \left[-x^{2}\right]+\varepsilon$
with : $\mathrm{t}=1 /(1+\mathrm{qx}) ; \mathrm{q}, \mathrm{a}_{\mathrm{k}} \mathrm{k}=1, . .5$ are known coefficients, and

$$
\varepsilon<=1.5 \times 10^{-7} \text { for } 0<=\mathrm{x}<\infty
$$

THE CONSTRAINT EQUATIONS

- Under the assumption that the output of an interferometer will be a band-limited, white, Gaussian noise with bandwidth f_{c}, we can write the following expression for the rate R_{i} at which the detector output x_{i} exceeds a given threshold T_{i} :

$$
\mathrm{R}_{\mathrm{i}}=2 \mathrm{f}_{\mathrm{c}} \mathrm{P}\left(\left|\mathrm{x}_{\mathrm{i}}\right|>\mathrm{T}_{\mathrm{i}}\right) \quad(\mathrm{i}=1,2,3)
$$

- The resolving time τ_{1} for coincidence experiments between two detectors located at the same site is equal to the time between the digitized samples:

$$
\tau_{1}=1 /\left(2 \mathrm{f}_{\mathrm{c}}\right)
$$

while the resolving time τ_{2} for coincidence experiments between detectors located at different sites is given by:

$$
\tau_{2}=\mathrm{D}+\tau_{1}(\mathrm{D}=\text { maximum time-delay between the two sites })
$$

THE CONSTRAINT EQUATIONS (cont.)

- For tree interferometers $(2+1)$ the accidental coincidence rate $\mathrm{R}_{\mathrm{acc}}$ due entirely to Gaussian noise in the detectors is given by the following expression:

$$
\begin{gathered}
\mathrm{R}_{\mathrm{acc}}=4 \tau_{1} \tau_{2} \mathrm{R}_{1} \mathrm{R}_{2} \mathrm{R}_{3}=> \\
\mathrm{P}\left(\left|\mathrm{x}_{1}\right|>\mathrm{T}_{1}\right) \mathrm{P}\left(\left|\mathrm{x}_{2}\right|>\mathrm{T}_{2}\right) \mathrm{P}\left(\left|\mathrm{x}_{3}\right|>\mathrm{T}_{3}\right)=\mathrm{R}_{\mathrm{acc}} /\left(32 \mathrm{f}_{\mathrm{c}}^{3} \tau_{1} \tau_{2}\right)
\end{gathered}
$$

COMPUTATION OF THE OPTIMUM SENSITIVITY

- We assume that all the detectors are oriented parallel to each other.
- Consider the case of a gravitational wave of pulse amplitude h is impinging on the three detectors in the observatory:

$$
\mathrm{x}_{\mathrm{i}}=\mathrm{h}+\Lambda_{\mathrm{i}}
$$

- In a series of experiments in which h is held constant, the random variable x_{i} has a Gaussian distribution of mean h and variance σ_{i}^{2}

$$
\mathrm{p}_{\mathrm{h}}\left(\sigma_{\mathrm{i}} ; \mathrm{x}_{\mathrm{i}}\right)=\left(2 \pi \sigma_{\mathrm{i}}^{2}\right)^{-1 / 2} \exp \left[-\left(\mathrm{x}_{\mathrm{i}}-\mathrm{h}\right)^{2} / 2 \sigma_{\mathrm{i}}^{2}\right]
$$

COMPUTATION OF THE OPTIMUM SENSITIVITY (cont.)

- With a gravitational wave present, the probability that the detector output x_{i} exceeds the threshold T_{i} is given by:

$$
\begin{aligned}
\mathrm{P}_{\mathrm{h}}\left(\left|\mathrm{x}_{\mathrm{i}}\right|>\mathrm{T}_{\mathrm{i}}\right)=1-0.5\{ & \operatorname{erf}\left[\left(\mathrm{h}+\mathrm{T}_{\mathrm{i}}\right) /\left(2 \sigma_{\mathrm{i}}^{2}\right)^{1 / 2}\right]+ \\
& \left.\operatorname{erf}\left[\left(-\mathrm{h}+\mathrm{T}_{\mathrm{i}}\right) /\left(2 \sigma_{\mathrm{i}}^{2}\right)^{1 / 2}\right]\right\}
\end{aligned}
$$

where:

$$
\mathrm{h}>0, \quad \mathrm{~T}_{\mathrm{i}}>=\mathrm{h}
$$

$$
\begin{aligned}
\mathrm{P}_{\mathrm{h}}\left(\left|\mathrm{x}_{\mathrm{i}}\right|>\mathrm{T}_{\mathrm{i}}\right)=1-0.5\{ & \operatorname{erf}\left[\left(\mathrm{h}+\mathrm{T}_{\mathrm{i}}\right) /\left(2 \sigma_{\mathrm{i}}^{2}\right)^{1 / 2}\right]- \\
& \left.\operatorname{erf}\left[\left(-\mathrm{h}+\mathrm{T}_{\mathrm{i}}\right) /\left(2 \sigma_{\mathrm{i}}^{2}\right)^{1 / 2}\right]\right\}
\end{aligned}
$$

where:
$\mathrm{h}>0$,
$0<=\mathrm{T}_{\mathrm{i}}<\mathrm{h}$

COMPUTATION OF THE OPTIMUM SENSITIVITY (cont.)

- The gravitational wave amplitude $\mathrm{h}\left(\mathrm{T}_{1}, \mathrm{~T}_{2}, \mathrm{~T}_{3}\right)$, which has a 50% probability of being detected in coincidence by the three detectors, satisfies the following equation:

$$
P_{h}\left(\left|x_{1}\right|>T_{1}\right) P_{h}\left(\left|x_{2}\right|>T_{2}\right) P_{h}\left(\left|x_{3}\right|>T_{3}\right)=0.50
$$

ANALYSIS

- We have considered three different configurations for triple coincidences:
(I) All the detectors have the same sensitivities
(II) $(2+1)$ configuration, with the r.m.s. of the shorter detector equal to $\sqrt{2}$ of the r.m.s. of the longer (equal sensitivity) detectors
(III) $(2+1)$ configuration, with the r.m.s. of the shorter detector equal to twice that of the longer (equal sensitivity) detectors

ANALYSIS (cont.)

- We have also considered three different configurations for coincidences with two separated detectors:
(I) The detectors have the same sensitivities
(II) The r.m.s. of the shorter detector is equal to $\sqrt{2}$ of the r.m.s. of the other detector
(III) The r.m.s. of the shorter detector is equal to twice that of the longer (equal sensitivity) detectors

RESULTS

Number of Detecors	$\sigma_{\text {haff }} / \sigma_{\text {full }}$	$\left.\mathbf{f}_{\mathrm{c}} \mathrm{Hz}\right)$	Min.Sens./ $\sigma_{\text {fiul }}$	Ratio
3	$\sqrt{2}$	1000	5.51	1.09
3	$\sqrt{2}$	200	5.25	1.09
3	$\sqrt{2}$	30	4.96	1.09
3	2	1000	5.75	1.21
3	2	200	5.48	1.24
3	2	30	5.18	1.28
2	$\sqrt{2}$	1000	6.65	1.15
2	$\sqrt{2}$	200	6.31	1.16
2	$\sqrt{2}$	30	5.94	1.16
2	2	1000	7.22	1.34
2	2	200	6.85	1.31
2	2	30	6.44	1.29

