

# **Status of LIGO**

Barry Barish PAC Meeting - LHO December 12, 2000

LIGO-G000193-00-M



# **LIGO Plans**

### schedule

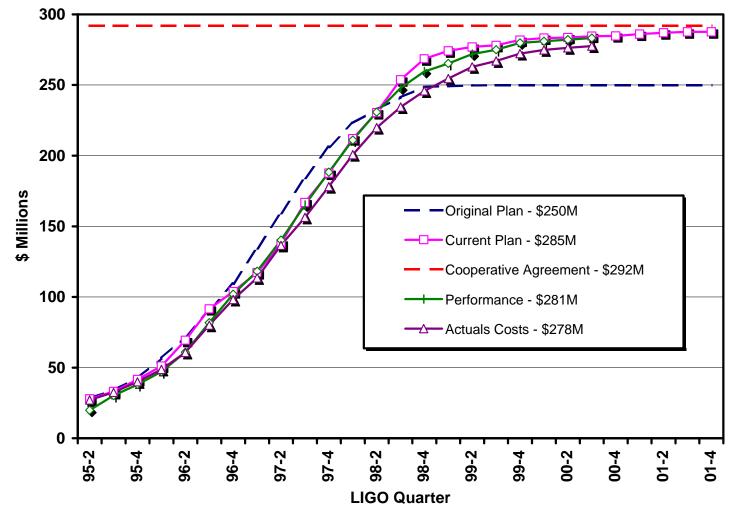
| 1996  | Construction Underway (mostly civil)                                 |
|-------|----------------------------------------------------------------------|
| 1997  | Facility Construction (vacuum system)                                |
| 1998  | Interferometer Construction (complete facilities)                    |
| 1999  | <b>Construction Complete (interferometers in vacuum)</b>             |
| 2000  | Detector Installation (commissioning subsystems)                     |
| 2001  | <b>Commission Interferometers (first coincidences)</b>               |
| 2002  | Sensitivity studies (initiate LIGOI Science Run)                     |
| 2003+ | LIGO I data run (one year integrated data at h ~ 10 <sup>-21</sup> ) |

2005+ Begin LIGO II installation



# Construction Project status

- 98% complete
- construction project will finish on the budget & schedule


#### Hanford buildings complete

- » last laboratory building
  - contract A&E design
- Livingston complete
  - » last laboratory building
    - contracting construction



# **LIGO Project**

### construction and related R&D costs



LIGO-G000193-00-M



# **Project Milestones**

### facilities construction

| Milestone Description                        | PMP Date   |           | Actual Completion Date |           |  |  |
|----------------------------------------------|------------|-----------|------------------------|-----------|--|--|
|                                              | Washington | Louisiana | Washington             | Louisiana |  |  |
| Initiate Site Development                    | 03/94      | 08/95     | 03/94                  | 06/95     |  |  |
| Beam Tube Final Design Review                | 04/94      |           | 04/94                  |           |  |  |
| Select A&E Contractor                        | 11/94      |           | 11/94                  |           |  |  |
| Complete Beam Tube Qualification Test        | 02/95      |           | 04/95                  |           |  |  |
| Select Vacuum Equipment Contractor           | 03/95      |           | 07/95                  |           |  |  |
| Complete Performance Measurement<br>Baseline | 04/95      |           | 04/95                  |           |  |  |
| Initiate Beam Tube Fabrication               | 10/95      |           | 12/95                  |           |  |  |
| Initiate Slab Construction                   | 10/95      | 01/97     | 02/96                  | 01/97     |  |  |
| Initiate Building Construction               | 06/96      | 01/97     | 07/96                  | 01/97     |  |  |
| Accept Beam Tubes and Covers                 | 03/98      | 03/99     | 03/98                  | 10/98     |  |  |
| Joint Occupancy                              | 09/97      | 03/98     | 10/97                  | 02/98     |  |  |
| Beneficial Occupancy                         | 03/98      | 09/98     | 03/98                  | 12/98     |  |  |
| Accept Vacuum Equipment                      | 03/98      | 09/98     | 11/98                  | 01/99     |  |  |
| Initiate Facility Shakedown                  | 03/98      | 03/99     | 11/98                  | 01/99     |  |  |



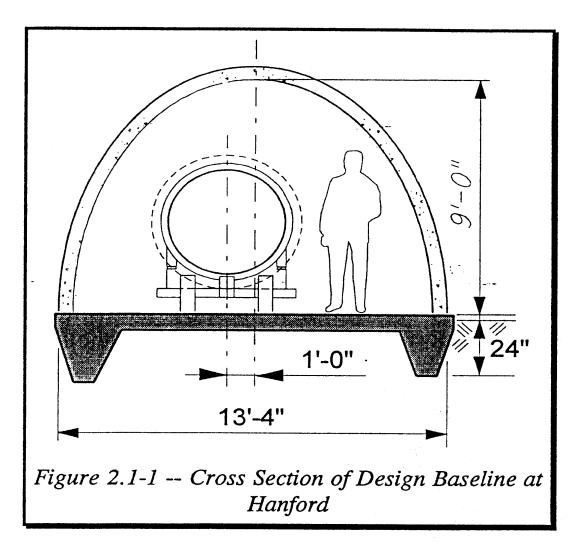
## Interferometers international network

#### LIGO (Washington)



#### LIGO (Louisiana)




LIGO-G000193-00-M



# LIGO Facilities beam tube enclosure



- reinforced concrete
- no services





# LIGO beam tube



- LIGO beam tube under construction in January 1998
- 65 ft spiral welded sections
- girth welded in portable clean room in the field

1.2 m diameter - 3mm stainlessNO LEAKS !!50 km of weld

LIGO-G000193-00-M



# **Beam Tube Bakeout**

|                                              | Outgassing Rates<br>Corrected to 23 °C (all except H <sub>2</sub> are upper limits) |            |      |      |      |      |      |      |      |                                                      |  |
|----------------------------------------------|-------------------------------------------------------------------------------------|------------|------|------|------|------|------|------|------|------------------------------------------------------|--|
| Molecule                                     | Goal[1]                                                                             | HY2<br>[2] | HY1  | HX1  | HX2  | LY2  | LY1  | LX1  | LX2  | Unit                                                 |  |
| H <sub>2</sub>                               | 4.7                                                                                 | 4.8        | 6.3  | 5.2  | 4.6  | 2.6  | 3.46 | 6.6  | 4.3  | 10 <sup>-14</sup> torr<br>liters/sec/cm <sup>2</sup> |  |
| CH4                                          | 4800                                                                                | <90        | <22  | <0.9 | <10  | <24  | <3.9 | <3   | <4.0 | 10 <sup>-19</sup> torr<br>liters/sec/cm <sup>2</sup> |  |
| H <sub>2</sub> O                             | 1500                                                                                | <4         | <20  | <1.8 | <0.8 | <3   | <0.9 | <0.6 | <10  | 10 <sup>-18</sup> torr<br>liters/sec/cm <sup>2</sup> |  |
| CO                                           | 650                                                                                 | <14        | <9   | <5.7 | <2   | <5   | <10  | <8   | <5   | 10 <sup>-18</sup> torr<br>liters/sec/cm <sup>2</sup> |  |
| CO2                                          | 2200                                                                                | <40        | <18  | <2.9 | <8.5 | <10  | <6   | 1.1  | <8   | 10 <sup>-19</sup> torr<br>liters/sec/cm <sup>2</sup> |  |
| O+C <sub>2</sub> H <sub>6</sub>              | 7000                                                                                | <2         | <14  | <6.6 | <1.0 | <1.9 | <3.6 | <1.1 | <1.1 | 10 <sup>-19</sup> torr<br>liters/sec/cm <sup>2</sup> |  |
| Η <sub>n</sub> C <sub>p</sub> P <sub>q</sub> | 50-2 <mark>[3]</mark>                                                               | <15        | <8.5 | <5.3 | <0.4 | <20  | <25  | <1.9 | <4.3 | 10 <sup>-19</sup> torr<br>liters/sec/cm <sup>2</sup> |  |
| Air leak                                     | 10                                                                                  | <2         | <1   | <0.4 | <1.6 | <10  | 23   | <3.5 | <0.7 | 10 <sup>-10</sup> torr<br>liter/sec/cm <sup>2</sup>  |  |

[1] Goal: maximum outgassing to achieve pressure equivalent to 10<sup>-9</sup> torr H<sub>2</sub> using only pumps at stations.
[2] Hanford "Y" are modules designated HY1, HY2; "X" arm, HX1, HX2; Livingston, LY1, LY2, LX1, and LX2
[3] Goal for hydrocarbons depends on weight of parent molecule; range given corresponds with 100-300 AMU.



**Project Milestones** 

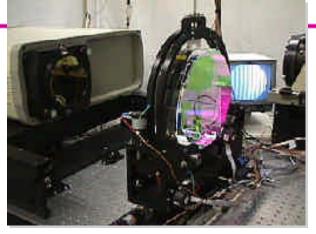
### detector construction

| Milestone Description                                                   | PMP Date   |           | Actual/Projected Completion Date |           |  |  |
|-------------------------------------------------------------------------|------------|-----------|----------------------------------|-----------|--|--|
|                                                                         | Washington | Louisiana | Washington                       | Louisiana |  |  |
| Beam Splitter Chamber (BSC) Final Design<br>Review                      | 04/98      | -<br>-    | 08/98                            | -<br>-    |  |  |
| Core Optics Support Final Design Review                                 | 02/98      |           | 11/98                            |           |  |  |
| Horizontal Access Module (HAM) Seismic<br>Isolation Final Design Review | 04/98      |           | 06/98                            |           |  |  |
| Core Optics Components Final Design<br>Review                           | 12/97      |           | 05/98                            |           |  |  |
| Detector System Preliminary Design Review                               | 12/97      |           | 10/98                            |           |  |  |
| Input/Output Optics Final Design Review                                 | 04/98      |           | 03/98                            |           |  |  |
| Pre-stabilized Laser (PSL) Final Design<br>Review                       | 08/98      |           | 03/99                            |           |  |  |
| Control and Data Systems Networking Ready<br>for Installation           | 04/98      |           | 03/98                            |           |  |  |
| Alignment (Wavefront) Sensing Final Design<br>Review                    | 04/98      |           | 07/98                            |           |  |  |
| Control and Data Systems Data Acquisition<br>Final Design Review        | 04/98      |           | 05/98                            |           |  |  |
| Length Sensing and Control System Final<br>Design Review                | 05/98      |           | 07/98                            |           |  |  |
| Physics Environment Monitoring Final Design<br>Review                   | 06/98      |           | 10/97                            |           |  |  |
| Initiate Interferometer Installation                                    | 07/98      | 01/99     | 07/98                            | 01/99     |  |  |
| Begin Coincidence Tests                                                 | 12/00      |           | 03/01 (Projected)                |           |  |  |



### Detector

### installation and commissioning

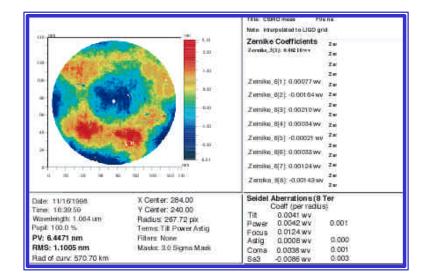

- Impressive progress! But, cumulative loss of schedule
  - » up to 7 months
  - » we have changed strategy
  - » hard to measure the final milestone against the original schedules

#### Basic Strategy:

- » simultaneous installation at both observatories (optimum staff utilization)
- » time phased installation of subsystems (leveling load on experts)
- » significant participation & support from observatory staff (training)
- » early install of in-vacuum components (fab/ assy/ install. risk reduction)
- » early as possible system integration & commissioning (early warning)
- » Hanford 2km Mission: problem finding/ solving ('pathfinder')
- » Livingston 4km Mission: robust implementation & characterization
- » Hanford 4km:defer: defer implementation to minimize rebuilding



## Core Optics fused silica




#### fate - Def. a. 12-61, Trice Zemike Coefficients 20 Availar 310 0 00014 or 24 2 entitie\_ 5[1] -0 01000 WV I.W Zamite 852 0.01054wv ## 2 entrie #H 0 00004wv aw Ziemise; 8(8) 0:00162wv ## Zenne st -0.00130wy ze Zentes SPI DONORWY IF 1.kJ 44.18 Zemile, Hitl 0.00095wv 2+ Seidel Aberrations @ Ter Date: 13/04/19/08 X Certa: 26810 Codt (per radius) ime 08.5813. Y Cartis: 239.50 TH: D0209wv Warelength: 1 084 pm Radkis: 275 45 pk Power 0.0086.wv 13 002 Popil 100-0% Terms Till Power http: Footant C OSE7 WY PV: 10,1607 nm Filtans Nortal 0.0035.wv 0.005 Artig RMS: 1,2981 nmt Maile 0.032 Coma 0.0050 ww Rad of curv 292.37 im 0.002 diam'r. -0.0068 WV

#### Caltech data



- Scatter < 50 ppm</p>
- Absorption < 2 ppm</p>
- ROC matched < 3%</p>
- Internal mode Q's > 2 x 10<sup>6</sup>



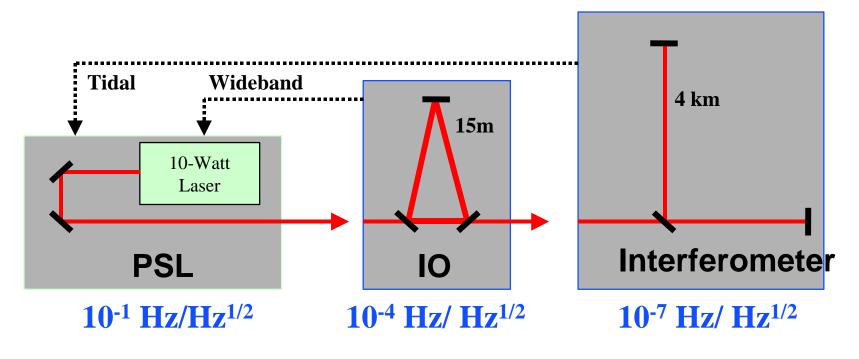
#### **CSIRO** data



# Commissioning configurations

- Mode cleaner and Pre-Stabilized Laser
- 2km one-arm cavity
- short Michelson interferometer studies
- Lock entire Michelson Fabry-Perot interferometer

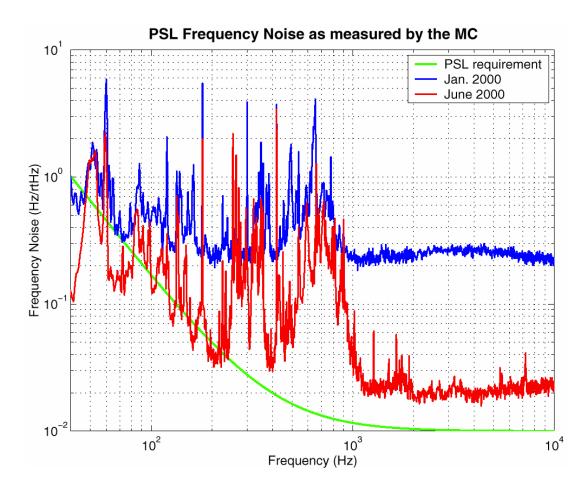
### "First Lock"




# Laser

### stabilization

- Deliver pre-stabilized laser light to the 15-m mode cleaner
  - Frequency fluctuations
  - In-band power fluctuations
  - Power fluctuations at 25 MHz


- Provide actuator inputs for further stabilization
  - Wideband
  - Tidal

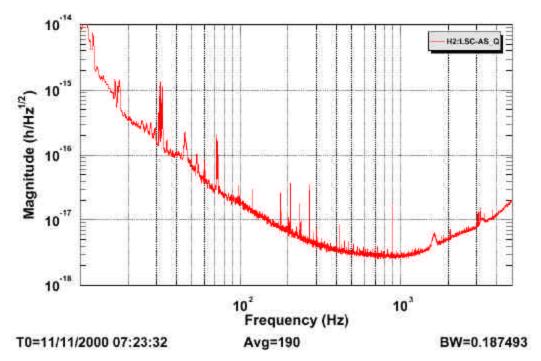




# **Prestabalized Laser**

### performance




- > 18,000 hours continuous operation
- Frequency and lock very robust
- TEM<sub>00</sub> power > 8 watts
- Non-TEM<sub>00</sub> power < 10%</p>

LIGO-G000193-00-M



# Strain Sensitivity Nov 2000

**2-km Hanford Interferometer** 



•operating as a Michelson with Fabry-Perot arms

•reduced input laser power (about 100 mW)

•without recycling

•noise level is a factor of 10<sup>4</sup>-10<sup>5</sup> above the final specification

•sources of excess noise are under investigation



### NSF Panel response ...

exit debriefing (May 11, 2000)

"Installation and commissioning of the detector systems at both the Hanford Observatory and the Livingston Observatory are going well. Although there appears to be an up to seven month schedule slip in some of the early milestones, this is not expected to delay the completion of commissioning by the end of 2001. An early science run with all interferometers in coincidence is planned to begin in January 2002."

"The committee urges LIGO to prioritize running time on the interferometers during the commissioning phase in order to increase their sensitivity and the reliability of their systems, to provide early data samples to the LSC during engineering runs, and to take advantage of lessons learned as soon as possible."



Sanders March 2000 LSC Mtg

# Strategy Evolving: Look Over the Original Planning Horizon

- Slow the installation into 3rd interferometer (LHO 4km) to permit use of reworked components
- Move to coincidence running as soon as 2 interferometers are at useful sensitivity
  - » makes coincidence data stream available earlier than waiting for triple coincidence
- Path to Science Run should be smoother with this approach
  - » 3 interferometer Science Run begins mid-2002
  - » First search papers by mid-2002 based upon engineering running?!
    - Engineering run guided by engineering needs, but...
    - We are scientists, not just instrument builders.



### **Revised Schedule**

#### As proposed to the NSF – May 2000

|    |                                       | 19 | 998 | 1.4       |    | 19 | 99 |    |    | 20 | 00                  |    |      | 200    | 01  |                   |      | 200   | 02          | 6        |
|----|---------------------------------------|----|-----|-----------|----|----|----|----|----|----|---------------------|----|------|--------|-----|-------------------|------|-------|-------------|----------|
| ID | Task Name                             | Q2 | Q3  | : Q4      | Q1 | Q2 | Q3 | Q4 | Q1 | Q2 | Q3                  | Q4 | Q1   | Q2     | ß   | Q4                | Q1   | Q2    | Q3          | Q4       |
| 1  | LHO 2km IFO                           |    | U   | 1.<br>(2) |    |    |    |    |    |    | $\checkmark$        |    |      |        |     |                   |      |       |             |          |
| 14 | LLO 4km IFO                           |    |     |           | -  |    | 1  |    |    |    | $\overline{\nabla}$ |    |      |        | ,   |                   |      |       |             |          |
| 30 | LHO 4km IFO                           |    | -   |           | 1  |    | 2  |    |    | 0  | 1                   |    |      | 0      |     |                   | Ţ    | 1     |             | Deserves |
| 44 | Coincidence Engineering Run starts    |    |     |           |    |    |    |    |    |    |                     | C  | > 12 | 2/22 ( | €_7 | /18               |      |       |             |          |
| 45 | Observatory Operations & improvements | -  |     |           |    |    |    |    |    |    |                     |    |      |        |     |                   |      |       | <b>1</b> -1 | 2        |
| 46 | Science Run starts                    |    |     |           |    |    |    |    |    |    |                     |    |      |        |     | $\langle \rangle$ | > 12 | /20 ( | 5 7         | /17      |

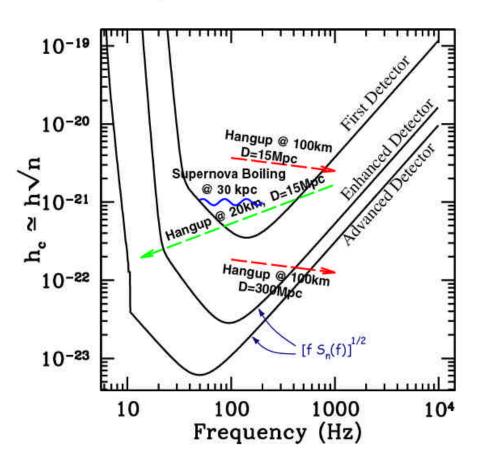


# **Significant Events**

| Hanford                        | Single arm test complete                    | 6/00  |
|--------------------------------|---------------------------------------------|-------|
| 2km                            | installation complete                       | 8/00  |
| interferometer                 | interferometer locked                       | 12/00 |
| Livingston                     | Input Optics completed                      | 7/00  |
| 4km                            | interferometer installed                    | 10/00 |
| interferometer                 | interferometer locked                       | 2/01  |
| Coincidence Engineering Run    | Initiate                                    | 7/01  |
| (Hanford 2km & Livingston 4km) | Complete                                    | 7/02  |
| Hanford                        | All in-vacuum components installed          | 10/00 |
| 4km                            | Ĩ                                           | 6/01  |
| interferometer                 | interferometer locked                       | 8/01  |
| LIGO I Science Run             | Initiate                                    | 7/02  |
|                                | Complete (obtain 1 yr @ $h \sim 10^{-21}$ ) | 1/05  |
|                                |                                             |       |



# LIGO I Science Run


(~2002-2005)

#### LSC LIGO I Collaboration

| Institution                               |
|-------------------------------------------|
| Caltech - CACR                            |
| Caltech - CaRT                            |
| Cal. State Dominguez Hills                |
| Carleton University                       |
| Cornell                                   |
| GEO 600                                   |
| Harvard-Smithsonian                       |
| Inter-University Centre for Astronomy and |
| LSU                                       |
| Oregon University                         |
| Penn State                                |
| Svracuse Universitv                       |
| University of Florida                     |
| University of Michigan                    |
| University of Texas - Brownsville         |
| University of Wisconsin-Milwaukee         |
|                                           |
| LIGO Hanford                              |
| LIGO Livingston                           |
| LIGO MIT                                  |
| LIGO Caltech                              |

#### **GOAL:** one integrated year of data @ $h \sim 10^{-21}$

#### Sensitivity of LIGO to burst sources





# **Progress & Plans**

### **Advanced LIGO**

GRAVITY GRADIENTS: the band of gravity gradient noise during quiescent times and during noisier times. Improvements below these limits are possible by taking suitable measures to change the local surface topography to reduce the effects of Rayleigh surface waves and road noise. Hughes and Thorne (Phys.Rev. D58 (1998) 122002).

**BEAM TUBE BAFFLES:** the upper limit of the spectrum band corresponds to limits deduced from as-built baffles, BT vibration, and initial LIGO mirror properties.. The lower part of the band corresponds to mirrors having surface smoothness 10X better than initial LIGO.

**RESIDUAL GASES:** the upper limit of the band corresponds to  $10^{-9}$  torr residual partial pressure of H<sub>2</sub> using all BT pump ports. The lower portion of the band corresponds to the partial pressure of higher mass hydrocarbons (AMU~100). Further pressure improvements are possible by taking suitable measures to continuously cool the BT walls thermoelectrically.

#### 10-20 10-2 Strain Amplitude Density, 10-22 h[f] (1//Hz) 10-23 BT Battles 10-24 10-25 Residual Gases - H2 HnCa 10-26 10 100 1000 10000 Frequency, f (Hz)

The initial LIGO sensitivity limits are everywhere at least 70x above the facilities limits. The curves labeled Adv. LIGO NB and BB correspond to the narrow-band and broad-band sensitivities of candidate next generation LIGO interferometers.

#### Limiting noise sources for LIGO facilities



### LSC *Aug 2000*

### **LSC** Collaboration

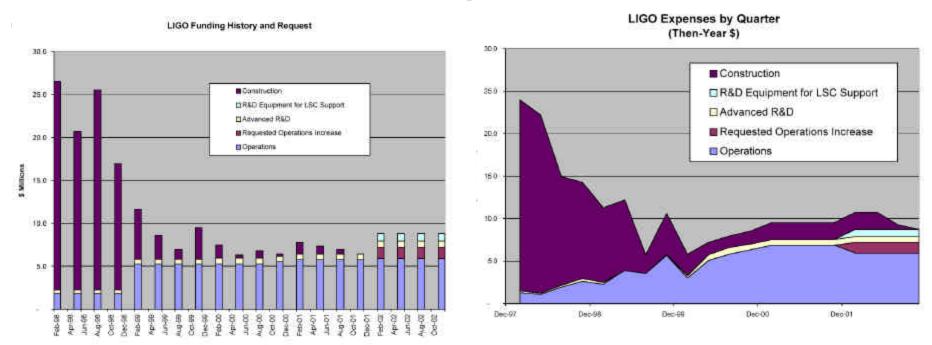
- LIGO I and LIGO II
- Council Members
- access to data
- authorship of paper

#### Non-LSC

- visitors
- collaborations with data exchange
  - -astronomers
  - -interferometers

| Institution                  | Heads | FTE I | GO I Head.IGO | I FTE |   |
|------------------------------|-------|-------|---------------|-------|---|
| ACIGA                        | 22    | 13.5  | 0             | 0     |   |
| Caltech - CACR               | 3     | 0.7   | 3             | 0.7   |   |
| Caltech - CaRT               | 6     | 2.4   | 1             | 0.4   |   |
| Caltech - CEGG               | 2     | 1.6   | 1             | 0.4   |   |
| Cal. State Dominguez Hills   | 4     | 1.9   | 4             | 1.9   |   |
| Carleton University          | 1     | 0.8   | 1             | 0.8   |   |
| Cornell                      | 3     | 2.6   | 3             | 2.6   |   |
| GEO 600                      | 57    | 47.7  | 57            | 30.5  |   |
| Harvard-Smithsonian          | 2     | 1.3   | 2             | 1.3   |   |
| Inst. of Applied Physics - R | 9     | 6.5   | 0             | 0     |   |
| Inter-University Centre for  |       | 2.2   | 5             | 2.2   |   |
| Iowa State University        | 1     | 0.5   | 0             | 0     |   |
| JILA (Univ. of Colorado)     | 5     | 1.5   | 0             | 0     |   |
| Louisiana Tech               | 4     | 1     | 4             | 1     |   |
| LSU                          | 10    | 5.8   | 9             | 4     |   |
| Moscow State University      | 9     | 9     | 0             | 0     |   |
| NAOJ - TAMA                  | 5     | 2     | 0             | 0     |   |
| Oregon University            | 8     | 5.1   | 8             | 5.1   |   |
| Penn State                   | 6     | 5.3   | 5             | 3.6   |   |
| Stanford University          | 18    | 11.7  | 0             | 0     |   |
| Syracuse University          | 5     | 5     | 2             | 1     |   |
| University of Florida        | 13    | 10.3  | 13            | 8.8   |   |
| University of Michigan       | 4     | 2.8   | 4             | 2.8   |   |
| University of Texas - Brow   | 4     | 2.5   | 4             | 2.5   |   |
| University of Wisconsin-Mi   | 8     | 5     | 8             | 5     |   |
| Total: Non-LIGO Laborato     | 214   | 148.7 | 134           | 74.6  |   |
|                              |       |       |               |       |   |
| LIGO Hanford                 | 20    | 20    | 20            | 20    |   |
| LIGO Livingston              | 13    | 13    | 13            | 13    |   |
|                              | 15    | 15    | 15            | 15    |   |
| LIGO Caltech                 | 63    | 63    | 63            | 63    |   |
| Total: LIGO Laboratory       | 111   | 111   | 111           | 111   |   |
|                              |       |       |               |       |   |
| Total: LSC                   | 325   | 259.7 | 245           | 185.6 |   |
|                              |       |       |               |       | , |




# Highlights

### since last PAC mtg

- A "24-hour" engineering data run [E1] was carried out using the single 2 km arm
- The 2K in-chamber installation complete at LHO (May 2000)
- The Laboratory decided to support the "stiff" technical approach for further LIGO II development. (June 2000)
  - » Technical Review Report to Lab Directorate + Decision Memo
  - First fringes were seen from a recycled Michelson in LHO corner station (June 2000)
  - LHO 2K power recycled Michelson locked and y-arm end test mass illuminated (July 2000)
  - Mock Data Challenge LSC (August 2000)
    - First Lock October 2000
      - [E2] Engineering Run November 2000



# LIGO Operations Renewal Budget Requests



|                                             | FY<br>2002<br>\$M | FY<br>2003<br>\$M | FY<br>2004<br>SM | FY<br>2005<br>\$M | FY<br>2006<br>SM | Total<br>SM |
|---------------------------------------------|-------------------|-------------------|------------------|-------------------|------------------|-------------|
| Currently Funded Operations                 | 23.63             | 24.32             | 25.05            | 25.87             | 26.65            | 125.52      |
| Increase for Full Operations                | 5.21              | 5.20              | 4.79             | 4.86              | 4.95             | 25.01       |
| Advanced R&D                                | 2.77              | 2.86              | 2.95             | 3.04              | 3.13             | 14.76       |
| R&D Equipment in Support of<br>LSC Research | 3.30              | 3.84              | 3.14             |                   |                  | 10.28       |
| Total Budgets                               | 34.91             | 36.21             | 35.93            | 33.77             | 34.74            | 175.57      |



### **Incremental Support for LSC R & D**

- the magnitude of the planned research for the LIGO upgrade requires more extra funds for equipment from LIGO Laboratory
- NSF panel recommended these large R&D be centrally managed
- costs are non-recurring.
- •TOTAL request: \$10.3M spread over FY02-04
  - Equipment costs for the development of advanced seismic isolation prototypes.
  - Equipment costs for the development of multiple pendulum, fused silica fiber suspension prototypes.
  - Materials and manufacturing subcontracts to support the development of sapphire test masses and high Q test mass materials and coatings research.
  - Investment and non-recurring engineering costs for a large coating chamber and its commissioning.
  - Equipment costs for the development of a test mass, photon actuator prototype.

# LIGO

# **Requested Increment - Operations**

| •   | Additional LIGO Scientific Collaboration (LSC) support at the sites. Visitor activity at the sites has increased dramatically during the Engineering runs.                                                                                                                                                                                                                                                                                                                                    | \$254,678   |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
| ٠   | Fast network connections (WAN OC3) as recommended by an NSF review panel.                                                                                                                                                                                                                                                                                                                                                                                                                     | \$540,500   |
|     | Annual equipment maintenance and replacement. LIGO is installing nearly<br>\$4 million of computing equipment for LIGO Data Analysis and Comput-<br>ing. The estimate assumes a 25 percent replacement rate per year plus over-<br>head. The missing budget was recommended by an NSF review panel.                                                                                                                                                                                           | \$1,378,728 |
|     | Annual replacement and maintenance of the control room data acquisition<br>and control hardware plus overhead. The estimated value of the computer<br>and network infrastructure at both sites is \$3 million (10 percent mainte-<br>nance and replacement costs). The estimated value of the custom electron-<br>ics and embedded computers is also \$3 million (5 percent maintenance and<br>replacement costs).                                                                            | \$513,800   |
|     | Additional staffing and stipends to support Outreach Programs at the sites.                                                                                                                                                                                                                                                                                                                                                                                                                   | \$249,848   |
| •   | Increased staff in the Technical and Engineering Support and Detector Sup-<br>port Groups. The Caltech campus-based support to the observatories<br>declines significantly after the Detector is commissioned. However, the<br>increase for the R&D for an advanced LIGO (planned for installation in<br>2005-2006) is significant and results in a net increase.                                                                                                                             | \$920,868   |
| ••• | Increased support staff for Modeling and Simulation Group. The increase was suggested by an NSF Review panel.                                                                                                                                                                                                                                                                                                                                                                                 | \$282,485   |
|     | Additional staff for site Operations. This includes two FTEs at each of the sites to support seven day-per-week, twenty-four hour per day Operation of the interferometers with adequate coverage consistent with experience to date and the recommendations of our safety review panels. In addition three site FTEs are for LDAS and CDS maintenance, and two partial Post Doctoral positions are proposed in partnership with the University of Florida and Southern Louisiana University. | \$558,485   |
| ٠   | Increment for engineering and technician labor (4 FTEs) at Livingston to support the LSC science team responsible for Seismic Isolation development. This effort is for two years only and is non-recurring.                                                                                                                                                                                                                                                                                  | \$506,300   |



# Conclusions

#### Good progress over past six months

- » construction project nearly complete
- » technical decision on seismic/suspension system for advanced LIGO detector
- » first mock data challenge was performed
- » full interferometer has been locked
- » successful one week engineering run with recombined interferometer with large LSC support

#### Next months

- » review of LIGO renewal proposal
- » lock LLO interferometer
- » first coincidence engineering run