Transients Identification in Engineering Data

Julien Sylvestre MIT

LSC Meeting, August 16, 2000.

Power Detector: high-contrast t-f representation

- Built using spectrogram with adaptative threshold
- Robust to non-gaussian noise (steady part), colored noise, strong transients
- Fast
- Bias statistics in a known way depending on choice of resolutions
- Real time code available under the DMT

Power Detector: an example from E1 data

3 of 13

Power Detector: clusters identification

- Test output: binary map, black pixel probability p for gaussian noise
- Connected clusters: results from Percolation Theory
- Disconnected clusters: new results for 2-points correlations
- Complete knowledge of false alarm rates and probability of detection

Non-gaussian noise: an example from E1

General model for two detectors

The basic coincidence gate

- GW channel: N events, N_b are background, N_f are foregnd.
- PEM channel: N^{*} events, N_b^{*}=N_b are backgnd, N_f^{*} foregnd.
- Coincidence gate moves the partitions

Coincidence gate: operational characteristics

- p(C|f) : probability of accidental coincidence
 >> function of N_f^{*} and of "width" of coincidence window in simplest case
- p(C|b) : probability of detection of a coincidence
 >> can compute probability of detection of any signal analytically
 >> doing "ensemble averages" require additional knowledge
- Measurements of N_b, N_f and N^{*} enough if coincidence is on time only; more complex cases require other information from the three sets.

Coincidence gate: metric

- "mass" moments computed for each cluster
 - X_0 = number of pixels

 X_1 = mean time, X_2 = mean frequency

 $X_3 = t,t$ component of "inertia" tensor, $X_4 = t,f$ component, $X_5 = f,f$

>>etc.

• A coincidence is detected when two clusters are close enough:

 $g_{ij} dX_i dX_j < 1$

Coincidence gate: confidence regions

- Three parameters estimated: background, foreground and total rate in PEM channel.
- Tri-dimensional confidence regions
- "Unified" classical approach (Feldman & Cousins, PRD 57, 7)
 - >>Classical construction
 - >>Ordering Principle
 -)) Give $p(N \in V) = \alpha$
- Projections give the confidence interval on GW foreground.

Coincidence gate: an exercise with E1

Single anti-coincidence with MX Seismometer

Measured rates: GW foreground: 2.16 10^{-2} s⁻¹ GW background: 2.12 10^{-2} s⁻¹ Seis foreground: 5.73 10^{-3} s⁻¹

90% level confidence interval on GW foreground:

 $1.87 \ 10^{-2} \ s^{-1} < F < 2.48 \ 10^{-2} \ s^{-1}$

11 of 13

Non-gaussian noise: identified classes

• Airplanes:

>>found in cavity signals, seismometers, accelerometers, etc.

))delays between MX and LVEA are -15 s < ΔT < 15 s

>>excellent fit to Doppler shifted monochromatic source

>>events in E1 coincident with airplanes within 5.5km from LVEA, from FAA radar data

>>filter bank running at LHO

12 of 13

Non-gaussian noise: identified classes

- Narrow-band periodic bursts
 - >>duration ~100s
 - >>period ~15 minutes
- Resonance driven by impulse in seismic noise
 - >>decay time >100s
 - >> frequency ~17Hz (roll mode of pendulum?)
- string of bursts

>>multiple, "symmetric" bursts

