

Seismic Attenuation System (SAS) for Gravitational Wave Detectors I

Akiteru Takamori University of Tokyo

22 September, 2000 JPS Meeting Niigata

LIGO doc#: G000304-00-R

University of Tokyo

M. Ando K. Numata K. Somiya A. Takamori K. Tsubono T. Yoda

NAOJ

M. Fukushima S. Kawamura R. Takahashi

Caltech

R. DeSalvo Sz. Márka V. Sannibale H. Yamamoto C. Wang

Universita' di Pisa A. Bertolini

G. Cella

Florida Tech. H. Tariq

INSA de Lyon N. Viboud

1. Introduction

- Objectives
- TAMA SAS Mechanics
- TAMA SAS Control

2. IP Control

- System Diagonalization

3. Experiments

- Sensor Diagonalization
- Closed Loop Operation

4. Conclusion

1. Introduction

1. 1. Objective of the Project

Expansion of Detection Band to Low Frequencies

Reliable / Robust Operation of the Interferometers

- Ultra Low Frequency (10 mHz ~) Pre-Isolation Stage

Attenuation of Micro Seismic Peak Small Residual Velocity of Test Mass : Ease Locking Acquisition

Platform for Controls

Controls with Small Energy Consumption

- Low Frequency (100 mHz ~) Attenuation Chain

Passive Isolation in All Dof Specs Overkilling against Spurious Degeneration (Cross-Coupling, Internal Resonances)

- Active Controls

Digital Control : High Flexibility Out of GW Detection Band Inertial Damping to Suppress Residual r.m.s. Displacement Local / Global Position Control

1. 3. TAMA SAS Control

Local Control

- **Position Control** (< as low freq. as possible)

Positioning of SAS Subsystems Damping for Lock Acquisition Using LVDT Coil-Magnet Pairs, Stepping Motors

- Inertial Damping (low freq. ~ 10 Hz)

Suppresses r.m.s. Displacement of SAS Subsystems Using Accelerometer Signal Coil-Magnet Pairs

Global Control

- Position Control

Positioning of Mirrors Using IFO Signal

Hierarchical Scheme

- Distributing Adequate Range of Control Authority

Allows Minimum Noise Injection from Control

1.3. TAMA SAS Control

Hardware

1. Introduction

1.3. TAMA SAS Control

2.1. IP Control Components

Main Sensors / Actuators on IP Top

2. IP Local Control

2. 2. Signal Diagonalization

- Signal Mixing Due to System Geometry /Asymmetry

2. 2. Signal Diagonalization

Resolves Signal Mixture by:

- Linear Combination of *Real* Sensor Signals
 Virtual Sensor Signals
- Linear Combination of *Virtual* Actuator Signals = *Real* Actuator Signals

Simplifies Control Design

MIMO to SISO

Sensing / Driving Matrix

Sensing Matrix

At Resonance:

Single Mode is excited.

Imaginary part of the TRF carries information. *Amplitude and Sign*

Example

Control with LVDTs

Control with LVDTs

Inertial Damping

Inertial Damping

3.1. Scope

Confirmation/Improvement of Local Control Design

Main Issues

- Confirmation of Virgo's Achievement

- Study on Unsolved Problems

Merging of Pos/ID Control Diagonalization for Global Control Merging with Suspension Control

- Evaluation of System Performance with Independent Sensors

3. 2. Current Advancement

Diagonalized LVDTs (topic of this talk)

3. 3. Setup LIGO SAS Tower

- IP
- 3 GAS Filters
- Lead Block Payload
- 3 LVDTs
- 3 Virgo Accelerometers
- 3 DC Stepping Motor Actuators

3. 3. Setup

3.4. Results

LVDT Diagonalization

- Measurement of Transfer Function from *Real* Actuator to *Real* LVDTs

3 Separated Modes

at Resonant Freq. : Only single mode is excited.

3.4. Results

Transfer Function of Virtual LVDTs

Each Virtual LVDT is sensitive to just one mode.

4.1. Status

Designed SAS Control

Estimated SAS Performance

Confirmed Sensor Diagonalizing Procedure with LIGO SAS Prototype

working Effectively

4. 2. Works to be done

Experiment of Control with TAMA SAS Prototype

- Passive characteristics of each components has been studied.
- Active components are ready.
- Launch Experiment without Suspension.