

# LIGO and Detection of Gravitational Waves

Barry Barish 13 October 2000



#### Newton's Theory "instantaneous action at a distance"





**Einstein's Theory** *information carried by gravitational radiation at the speed of light* 



# **Einstein's**

#### warpage of spacetime

Imagine space as a stretched rubber sheet.

A mass on the surface will cause a deformation.

Another mass dropped onto the sheet will roll toward that mass.

Einstein theorized that smaller masses travel toward larger masses, not because they are "attracted" by a mysterious force, but because the smaller objects travel through space that is warped by the larger object.







Predict the bending of light passing in the vicinity of the massive objects

First observed during the solar eclipse of 1919 by Sir Arthur Eddington, when the Sun was silhouetted against the Hyades star cluster

Their measurements showed that the light from these stars was bent as it grazed the Sun, by the exact amount of Einstein's predictions.

The light never changes course, but merely follows the curvature of space. Astronomers now refer to this displacement of light as gravitational lensing.



experimental tests

#### "Einstein Cross" The bending of light rays gravitational lensing



Quasar image appears around the central glow formed by nearby galaxy. The Einstein Cross is only visible in southern hemisphere.

In modern astronomy, such gravitational lensing images are used to detect a 'dark matter' body as the central object



experimental tests

MERCURY'S ORBIT



Mercury's orbit perihelion shifts forward twice Newton's theory

Mercury's elliptical path around the Sun shifts slightly with each orbit such that its closest point to the Sun (or "perihelion") shifts forward with each pass.

Astronomers had been aware for two centuries of a small flaw in the orbit, as predicted by Newton's laws.

**Einstein's predictions exactly matched the observation.** 



gravitational waves

• a necessary consequence of Special Relativity with its finite speed for information transfer

• Einstein in 1916 and 1918 put forward the formulation of gravitational waves in General Relativity

• time dependent gravitational fields come from the acceleration of masses and propagate away from their sources as a spacetime warpage at the speed of light



gravitational radiation binary inspiral of compact objects



gravitational waves

• Using Minkowski metric, the information about space-time curvature is contained in the metric as an added term,  $h_{m}$ . In the weak field limit, the equation can be described with linear equations. If the choice of gauge is the *transverse traceless* gauge the formulation becomes a familiar wave equation

• The strain  $h_{m}$  takes the form of a plane wave propagating with the speed of light (c).

• Since gravity is spin 2, the waves have two components, but rotated by 45<sup>o</sup> instead of 90<sup>o</sup> from each other.  $(\nabla^2 - \frac{1}{c^2} \frac{\partial^2}{\partial t^2})h_{\mathbf{m}} = 0$ 



$$h_{mn} = h_{+}(t - z/c) + h_{x}(t - z/c)$$



### **Gravitational Waves**

the evidence



#### **Neutron Binary System**

**PSR 1913 + 16 -- Timing of pulsars** 





### Hulse and Taylor results

#### emission of gravitational waves

due to loss of orbital energy
period speeds up 25 sec from 1975-98
measured to ~50 msec accuracy
deviation grows quadratically with time





### **Radiation of Gravitational Waves**

Radiation of gravitational waves from binary inspiral system







- the center of the triangle formation will be in the ecliptic plane
- 1 AU from the Sun and 20 degrees behind the Earth.



### **Astrophysics Sources**

frequency range

- EM waves are studied over ~20 orders of magnitude
  - » (ULF radio -> HE γ rays)
- Gravitational Waves over ~10 orders of magnitude
  - » (terrestrial + space)





### Interferometers

terrestrial

Suspended mass Michelson-type interferometers on earth's surface detect distant astrophysical sources

International network (LIGO, Virgo, GEO, TAMA) enable locating sources and decomposing polarization of gravitational waves.







### **Detection of Gravitational Waves**

interferometry



#### Michelson Interferometer Fabry-Perot Arm Cavities



#### suspended test masses

LIGO (4 km), stretch (squash) =  $10^{-18}$  m will be detected at frequencies of 10 Hz to  $10^4$  Hz. It can detect waves from a distance of 600  $10^6$  light years



### **Detection of Gravitational Waves**

Interferometry – folded arms

Folded arms – long light paths

**Schemes - delay line is simple but requires large mirrors** 

- power recycling mirrors small, but harder controls problems





### **Detection of Gravitational Waves**

Interferometry – folded arms

**Power recycled Michelson Interferometer with Fabry-Perot arms** 





## **LIGO Interferometers**





# LIGO I

#### the noise floor

- Interferometry is limited by three fundamental noise sources
  - <u>seismic noise</u> at the lowest frequencies
  - <u>thermal noise</u> at intermediate frequencies
     <u>shot noise</u> at high
  - frequencies

 Many other noise sources lurk underneath and must be controlled as the instrument is improved





### **Noise Floor**

#### 40 m prototype



• displacement sensitivity in 40 m prototype.

• comparison to predicted contributions from various noise sources



### **Phase Noise**

splitting the fringe

expected signal  $\rightarrow$  10<sup>-10</sup> radians phase shift



• spectral sensitivity of MIT phase noise interferometer

• above 500 Hz shot noise limited near LIGO I goal

• additional features are from 60 Hz powerline harmonics, wire resonances (600 Hz), mount resonances, etc



# LIGO I

#### interferometer

**Initial LIGO Interferometer Configuration** 





### LIGO I the noise floor

- Interferometry is limited by three fundamental noise sources
  - <u>seismic noise</u> at the lowest frequencies
  - <u>thermal noise</u> at intermediate frequencies
     <u>shot noise</u> at high
  - frequencies

 Many other noise sources lurk underneath and must be controlled as the instrument is improved





### LIGO

#### astrophysical sources

Sensitivity of LIGO to coalescing binaries





# Interferometers

### international network

#### Simultaneously detect signal (within msec)





### **LIGO Sites**





### LIGO Livingston Observatory



LIGO-G000306



### LIGO Hanford Observatory





# **LIGO Plans**

schedule

| 1996  | Construction Underway (mostly civil)                                 |
|-------|----------------------------------------------------------------------|
| 1997  | Facility Construction (vacuum system)                                |
| 1998  | Interferometer Construction (complete facilities)                    |
| 1999  | <b>Construction Complete (interferometers in vacuum)</b>             |
| 2000  | <b>Detector Installation (commissioning subsystems)</b>              |
| 2001  | <b>Commission Interferometers (first coincidences)</b>               |
| 2002  | Sensitivity studies (initiate LIGOI Science Run)                     |
| 2003+ | LIGO I data run (one year integrated data at h ~ 10 <sup>-21</sup> ) |
|       |                                                                      |

2005 Begin LIGO II installation



# **LIGO Facilities**

#### **Beam Tube Enclosure**







## LIGO Beam Tube



- LIGO beam tube under construction in January 1998
- 65 ft spiral welded sections
- girth welded in portable clean room in the field

1.2 m diameter - 3mm stainlessNO LEAKS !!50 km of weld



# Beam Tube

#### **bakeout**









- I = 2000 amps for ~ 1 week
- no leaks !!
- final vacuum at level where not limiting noise, even for future detectors







### LIGO I the noise floor

- Interferometry is limited by three fundamental noise sources
  - <u>seismic noise</u> at the lowest frequencies
  - <u>thermal noise</u> at intermediate frequencies
     <u>shot noise</u> at high
  - frequencies

 Many other noise sources lurk underneath and must be controlled as the instrument is improved





# LIGO

#### vacuum equipment





### **Vacuum Chambers**

#### Vibration Isolation Systems

- » Reduce in-band seismic motion by 4 6 orders of magnitude
- » Compensate for microseism at 0.15 Hz by a factor of ten
- » Compensate (partially) for Earth tides





# **Seismic Isolation**

#### **Springs and Masses**









### **Seismic Isolation**

#### performance




## **Seismic Isolation**

### suspension system



- support structure is welded tubular stainless steel
- suspension wire is 0.31 mm diameter steel music wire
- fundamental violin mode frequency of 340 Hz

### suspension assembly for a core optic





## **LIGO Noise Curves**

### modeled





## **Core Optics**

### fused silica



#### Surface uniformity < 1 nm rms

- Scatter < 50 ppm</li>
- Absorption < 2 ppm</li>
- ROC matched < 3%</p>
- Internal mode Q's > 2 x 10<sup>6</sup>

|                                                                                                                                            |                                                                                                                | THE ACTE FIRE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10.00 March 10                                                                                                                             |                                                                                                                | Note: - Cref, av_19-65,0 dec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| N 5 (0                                                                                                                                     | - 18<br>- 18                                                                                                   | Zemike Coefficients zer<br>Zenike 3(2):0.00421er zer                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                            |                                                                                                                | Zemike, 8 1 : -0.01393wv<br>Zemike, 8 3 : -0.01984wv<br>Zemike, 8 3 : 0.00431wv<br>Zemike, 8 3 : 0.00431wv<br>Zemike, 8 3 : 0.0044wv<br>Zemike, 8 3 : 0.00162wv<br>Zemike, 8 3 : 0.00162wv<br>Zemike, 8 3 : 0.00162wv<br>Zemike, 8 3 : 0.00168wv<br>Zemike, 8 3 : 0.00168wv |
| Date: 12/04/1998<br>Time: 08:58:13<br>Wavelength: 1.084 um<br>Pupil: 100.0%<br>PV: 10.1607 nm<br>RMMS: 1.2981 nm<br>Rad df curv: 292.37 km | X Center: 288.00<br>Y Center: 239.50<br>Radius: 275.45 pix<br>Terms Tilt Power Astig<br>Filters: None<br>Madks | Seidel Aberrations (8 Ter<br>Coeff (per radius)           Tit         D0209wv           Power         0.0086 wv         0.002           Fcous         0.0127 wv         Astig         0.0026 wv         0.001           Corra         0.0059 wv         0.002         0.002         3.3         -0.0059 wv         0.002                                                                                                                                                                                                       |

#### le: CERO meas Note: interpolated to LIGO grid Zernike Coefficients ze Zernike\_3[3]: 0.00210wv Zer Zer 630 Zer Zemike\_8[1]: 0.00077 wv zer 0.10 Zemike\_8[2]: -0.00164 wv Zer Zer Zemike\_8(3): 0.00210 wv 7-Zemike\_8[4]: 0.00034 wv zer Zemike\_8[5]: +0.00021 wv Zer Zer Zemike\_8(6): 0.00033 wv zer Zemike\_8[7]: 0.00124 wv Zer Zerniko\_8(8): -0.00143 w/ Zer Seidel Aberrations (8 Ter X Center: 284.00 Date: 11/16/1998 Coeff (per radius) Time: 16:39.59 Y Center: 240.00 TIE 0.0041 wv Wavelength: 1.064 um Radius: 267.72 pix Power 0.0042 wv 0.001 Pupil: 100.0 % Terms: Tilt Power Astig Focus 0.0124 wv PV: 6.4471 nm Filters: None 0.000 0.0008 wv Astig RMS: 1.1005 nm Masks: 3.0 Sigma Mask 0.001 Coma 0.0038 wv Rad of curv: 570.70 km 0.003 Sa3 -0.0086 wv

### Caltech data

**CSIRO** data



## **Core Optics**

### **Suspension**













## Core Optics Installation and Alignment





## LIGO

### Laser

- Nd:YAG
- **1.064** μm
- Output power > 8W in TEM00 mode









## Laser

### **stabilization**

Provide actuator inputs for **Deliver pre-stabilized laser** further stabilization light to the 15-m mode cleaner Wideband **Frequency fluctuations** Tidal In-band power fluctuations • Power fluctuations at 25 MHz • Tidal Wideband 4 km 15m 10-Watt Laser Interferometer **PSL** IO  $10^{-1}$  Hz/Hz<sup>1/2</sup> 10<sup>-4</sup> Hz/ Hz<sup>1/2</sup> 10-7 Hz/ Hz<sup>1/2</sup>



## **Prestabalized Laser**

### performance



- > 18,000 hours continuous operation
- Frequency and lock very robust
- TEM<sub>00</sub> power > 8 watts
- Non-TEM<sub>00</sub> power < 10%</p>



## Commissioning

### **Configurations**

- Mode cleaner and Pre-Stabilized Laser
- 2km one-arm cavity
- short Michelson interferometer studies
- Lock entire Michelson Fabry-Perot interferometer

## **"FIRST LOCK"**



## **Detector Commissioning:**

### 2-km Arm Test



- 12/99 3/00
- Alignment "dead reckoning" worked
- Digital controls, networks, and software all worked
  - Exercised fast analog laser frequency control
- Verified that core optics meet specs
- Long-term drifts consistent with earth tides



## **Confirmation of Initial Alignment**



beam spot

 Opening gate valves revealed alignment "dead reckoned" from corner station was within 100 micro radians



## **Locking the Long Arm**

- 12/1/99 Flashes of light
- 12/9/99 0.2 seconds lock
- 1/14/00 2 seconds lock
- 1/19/00 60 seconds lock
- 1/21/00 5 minutes lock (on other arm)
- 2/12/00 18 minutes lock
- 3/4/00 90 minutes lock (temperature stabilized laser reference cavity)
- 3/26/00 10 hours lock



First interference fringes from the 2-km arm



## locked long arm

### alignment - wavefront sensors

Alignment fluctuations before engaging wavefront sensors





After engaging wavefront sensors



## **2km Fabry-Perot cavity**

15 minute locked stretch





## Locked long arm

### long term effects

### 10 hour locked section

# Stretching consistent with earth tides







## **Near-Michelson interferometer**

- power recycled (short) Michelson Interferometer
- employs full mixed digital/analog servos





# Interference fringes from the power recycled near Michelson interferometer



## Complete Interferometer locking





## **Brief Locked Stretch**







## **Significant Events**

| Hanford                        | Single arm test complete                    | 6/00  |
|--------------------------------|---------------------------------------------|-------|
| 2km                            | installation complete                       | 8/00  |
| interferometer                 | interferometer locked                       | 12/00 |
| Livingston                     | Input Optics completed                      | 7/00  |
| 4km                            | interferometer installed                    | 10/00 |
| interferometer                 | interferometer locked                       | 2/01  |
| Coincidence Engineering Run    | Initiate                                    | 7/01  |
| (Hanford 2km & Livingston 4km) | Complete                                    | 7/02  |
|                                | 1                                           |       |
| Hanford                        | All in-vacuum components installed          | 10/00 |
| 4km                            | interferometer installed                    | 6/01  |
| interferometer                 | interferometer locked                       | 8/01  |
|                                |                                             |       |
| LIGO I Science Run             | Initiate                                    | 7/02  |
| (3 interferometers)            | Complete (obtain 1 yr @ $h \sim 10^{-21}$ ) | 1/05  |
|                                |                                             |       |



## **Chirp Signal**

binary inspiral



### **determine**

distance from the earth r
masses of the two bodies
orbital eccentricity e and orbital inclination *i*



## LIGO

### astrophysical sources

### LIGO sensitivity to coalescing binaries





## **LIGO Sites**





## **Detection Strategy**

Coincidences

- **Two Sites Three Interferometers** 
  - Single Interferometer non-gaussian level ~50/hr **》**
  - Hanford (Doubles) **》**
  - Hanford + Livingston **》**

| correlated rate | ~1/day  |         |
|-----------------|---------|---------|
| uncorrelated    | (x5000) | <0.1/yr |

- **Data Recording (time series)** 
  - gravitational wave signal (0.2 MB/sec) **》**
  - total data (16 MB/s) **》**
  - on-line filters, diagnostics, data compression »
  - off line data analysis, archive etc **》**
- **Signal Extraction** 
  - signal from noise (vetoes, noise analysis) **》**
  - templates, wavelets, etc **》**



## **Interferometer Data**

### **4**0 m

### Real interferometer data is UGLY!!! (Gliches - known and unknown)





### **The Problem**

## How much does real data degrade complicate the data analysis and degrade the sensitivity ??



Test with real data by setting an upper limit on galactic neutron star inspiral rate using 40 m data



## "Clean up" data stream





## **Inspiral 'Chirp' Signal**





## **Detection Efficiency**

• Simulated inspiral events provide end to end test of analysis and simulation code for reconstruction efficiency

• Errors in distance measurements from presence of noise are consistent with SNR fluctuations





## **Setting a limit**



Upper limit on event rate can be determined from SNR of 'loudest' event

Limit on rate: R < 0.5/hour with 90% CL ε = 0.33 = detection efficiency An ideal detector would set a limit:

R < 0.16/hour



## Supernova





## Supernovae

**Gravitational Waves** 

## Non axisymmetric collapse



h<sub>+</sub> @ 25kpc [10<sup>-21</sup>] Rate 1/50 yr - our galaxy 3/yr - Virgo cluster





time [ms]

30

40



## **Model of Core Collapse**

### A. Burrows et al

Fig. 3.--Kick Sequence: Initial and Final States



### gravitational core collapse





## **Asymmetric Collapse?**

pulsar proper motions

**Velocities -**

- young SNR(pulsars?)
- > 500 km/sec

Burrows et al

 recoil velocity of matter and neutrinos





## LIGO

### astrophysical sources



Sensitivity of LIGO to burst sources



## LIGO

### astrophysical sources



#### Pulsars in our galaxy

»non axisymmetric:  $10-4 < \varepsilon < 10-6$ »science: neutron star precession; interiors »narrow band searches best





## **Sources of Gravitational Waves**

### 'Murmurs' from the Big Bang

### signals from the early universe




## Conclusions

- LIGO I construction complete
- LIGO I commissioning and testing 'on track'
- "First Lock" will be officially established 20 Oct 00
- Data analysis schemes are being developed, including tests with 40 m data
- First Science Run will begin during 2002
- Significant improvements in sensitivity anticipated to begin about 2006