Data Analysis and Detector Characterization Leading to Gravitational Wave Astronomy L. S. Finn Penn State

LIGO-G000418-00-D

Outline

- Penn State Group
- LSC Activities
- Proposed research

Penn State Group

- Faculty
 - LSC:
 - Finn (Theory/analysis),
 - Gonzalez (Experiment/analysis)
 - Non-LSC:
 - Ashtekar (classical and quantum gravity)
 - Pullin (numerical relativity)
 - Laguna (numerical relativity)

- Theory/Analysis
 - Post-docs
 - Sutton (NSERC Fellow, new to field)
 - Graduate students
 - Van den Broeck, Huckans (both first year)
 - Undergrad. Students
 - Hepler, Hsu, Rotthoff, Shapiro, Winjum

LSC Activities

- Member, Collaboration Council
- Member, Software Coordination Committee
- Co-chair burst upper limit analysis group
 With P. Saulson
- Team Lead, Data Conditioning API Implementation
- Member, Executive Committee

Proposed activities

- Data conditioning: preparing data for analysis
 - Regression (including adaptive line removal)
 - Lead datacondAPI development
- Data characterization
 - Descriptive statistics
 - Higher-order distribution moments/cumulants
 - KDD istribution estimation
 - Parametric power spectrum estimation

Proposed activities, cont'd

- Data Analysis
 - Analysis in presence of non-Gaussian, stationary noise
 - Likelihood function estimation incorporating higherorder moments
 - Aperture Synthesis
 - Synthesizing a larger detector from several smaller ones
 - Upper limit physics
 - Searching for unmodeled bursts
 - Periodic signals from pulsars

Data conditioning

- Analyzed data should be free of instrumental artifacts
 - Eliminate noises that can be eliminated
- Analyzed data should be white
 - Technical advantages in numerical analysis speed, accuracy
- Analyzed data should focus on signal band

- Data conditioning: preparing data for analysis
 - Drop-out correction
 - Regression
 - Violin modes; powermain features; seismic, other disturbances
 - Whitening and power spectrum estimation
 - Basebanding; resampling

Data conditioning and analysis

- How important are data artifacts?
- Focus: LIGO 40 M data
 - 570-610 Hz band
 - Violin modes, 600 Hz power main feature
- Remove artifacts
 - Kalman filter for violin modes
 - Regress power main against magnetometer
 - Note mean square in-band noise significantly reduced

Data conditioning and analysis

- How important are data artifacts?
- Focus: LIGO 40 M data
- Remove artifacts
- Optimal filter for BH formation
 - "Raw" data, data with artifacts removed, simulated Gaussian noise

• Results

- ... dramatically through proper conditioning
- increasing sensitivity, detection efficiency & confidence

LIGO PAC Meeting

Data Conditioning API Development

- datacondAPI
 - LDAS Subsystem
 - Prepares data for all LIGO production analyses
 - Shared responsibility for statistical characterization
 - Touches all data in 7x24 operations
- Completed
 - Infrastructure
 - Linear filtering, FFT, decimation, basebanding,
 - Descriptive statistics
 - Mean, variance, power spectrum estimation

- Beginning
 - Regression, line removal
 - Drop-out/veto management
 - Signal id tools
- Development Team
 - ANU: Searle
 - LIGO/CIT: Blackburn,
 Charlton, Ehrens, Lazzarini,
 Maros, Salzman
 - PSU: *LSF* (team lead), Rotthoff, Shapiro, Hepler,
 - UT Brownsville: Romano

12 December 2000

LIGO PAC Meeting

Data Characterization

- Statistical characterization of stationary noise
 - Tests of stationarity
 - Distribution moments / cumulants
 - Parametric models of power spectra for filtering, instrument characterization
- Non-stationary artifact identification
 - "Burst" identification, classification using "AI" tools

Power Spectrum Estimation

- Principal statistical characterization
 - Also required for analysis
- Welch estimate
 - PSD ~ < $|DFT(s.*w)|^2$ >
- Welch estimate non-parametric
 - But principal spectral features described by simple transfer functions
- PSD as filter modulus
 - Welch vs. MA model
 - y(z) = B(z)e(z)
 - $PSD(y) \sim |B(e^{2\pi i f})|^2$

Power Spectrum Estimation

- PSD as filter modulus
 - Welch vs. MA model
 - y(z) = b(z)e(z)
 - $PSD(y) \sim |b(e^{2\pi i f})|^2$
- Alternative models
 - ARMA Model
 - a(z)y(z) = b(z)e(z)
 - PSD(y)~ $|b/a|^2$
 - AR Model: B(z) = 1

- Advantages
 - Fewer model parameters, more accurate estimates
 - Model params: poles, zeros, gain
 - Model accuracy readily assessed
 - Test e = ay/b for whiteness
 - Model parameters have physical interpretation
 - Characterize instr. State

Burst artifact identification

- What distinguishes noise "bursts" from stationary background?
 - Burst: short duration change in noise character
 - Noise before, after, has identical character
- Search for bursts is search for change
- Segment input signal
 - E.g., 1/8th second subintervals

- Develop statistics on sub-intervals
 - E.g., power, max amplitude in sub-bands
- Fit distribution to segment statistics
 - E.g., mixture Gaussian
- Find outliers
 - Segments that are "unusual" in context of overall distribution

Example

- April engineering run
- 6 statistics / segment
 - 5-level wavelet decomp.
 - Essentially a fullyreconstructable octave analysis
 - Max(abs(d)), Max(abs(a))
 - d = wavelet detail
 - a = wavelet approxim.
- Multivariate mixture Gaussian model
 - Every segment drawn from one of N m.-v. Gaussians
- Shown: iso-prob. contours for two statistics

LIGO PAC Meeting

15

Data Analysis

- Multiple detectors and aperture synthesis
- Data analysis in presence of stationary, non-Gaussian noise
- Analyses
 - Phenomenology
 - Unmodeled burst analysis
 - Using KDD techniques described above
 - Periodic signal analysis
 - Focus on neutron star structure (crust strength)
 - Supernovae: target of opportunity

Aperture synthesis for gravitational wave detectors

- GWave detectors are phase sensitive
 - IFO and bars
- Multi-detector response is phase coherent
 - Phase difference depends on source RA, dec.
- Synthesize larger aperture by interfering response
 - Narrower antenna beam, higher sensitivity

- Network Analysis Development Team
 - Blackburn, Dhurandhar, Finn, Lazzarini, Marka, Mendell, Mours, Searle
 - Just getting underway

12 December 2000

LIGO PAC Meeting

Data analysis and stationary, non-Gaussian noise

- Likelihood is foundation of statistical analysis
 - Prob of observation under fixed hypothesis
 - Aka sampling function
- Likelihood is estimated
 - E.g., noise mean, variance determines L for Gaussian noise
- Construct likelihood from estimates of higher-order moments
 - Use information-theoretic criterion to make minimum information assumptions on unknowns

Core-collapse supernovae

- Assume:
 - Supernova in galactic neighborhood
 - Neutrinos fix collapse to within 1s
 - Waveform unknown
 - Focus on detector-detector x-correlation
 - 1 KHz signal bandwidth
- Reach:
 - Mass fraction ε converted to gravitational waves
- LIGO I:
 - $\epsilon_{95\%} < 2 x 10^{-4}$ for SN at 55 Kpc
 - Expected rate 1/30y
- Target of opportunity

Periodic Signals

- Focus on pulsars
 - $f_{gw} = 2 f_{pulsar}$ $-h \propto \varepsilon = (\Delta I / I)$
- Reach: upper limit on *ε*
 - 1 yr observation
 - 10 Kpc distance
 - Declination average
 - Significance: 95%
- Theoretical prejudice
 - $\varepsilon < \sim 10^{-6}$
 - From pure Coulumb lattice⁻crust strength

- Observational constraints
 - $\varepsilon < \sim 10^{-8}$ for old (recycled) pulsars

12 December 2000

LIGO PAC Meeting

Summary

- Data Conditioning
 - Removing instrumental, environmental artifacts
 - Regression, line removal,
 - datacondAPI
- Data Characterization
 - Stationary noise
 - Distribution estimation
 - Parametric models for PSD estimation
 - Non-stationary noise
 - Burst identification

- Data Analysis
 - Upper limit physics
 - Unanticipated burst sources
 - Pulsars
 - Supernovae
 - Multiple detectors and aperture synthesis
 - Data analysis in presence of stationary, non-Gaussian noise