Thermal Noise Sources Relevant to Interferometric Gravitational Wave Detection

> Shanti Rao Caltech

Thanks to

Caltech

Ken Libbrecht, Eric Black, Luca Matone

LIGO

Jordan Camp, Jay Heefner, Rich Abbott, Paul Russell

TAMA

Seiji Kawamura

Funded by the NSF/LIGO R&D

GWDs are large interferometers...

Photo from LHO web site

LIGO Hanford Observatory

with large mirrors...

LIGO-G000103-00-M

...held by small wires

Thermal Noise Sources Relevant to Interferometric Gravitational Wave Detection

Noise sources

Thermoelastic damping

Brownian motion

Photothermal noise

Other thermal noise?

Motivation

Limits event rate in GWDs

Hard to measure in the LIGO spectrum

Models not adequately verified at LIGO levels

Stragety

Isolate and measure noise sources

Brownian motion

Currently believed to be the dominant thermal noise source for LIGO I

Fluctuation – dissipation theorem

∝ (♦ k_BT/ ω r₀)^{1/2}

Limits LIGO I over a narrow bandwidth

Largest thermal noise contribution for fused silica Limits LIGO I sensitivity Broadband measurement needed to characterize noise

Model validation

Maybe $\phi(\omega)$ isn't constant

Non-Gaussian tails in distribution?

Model not adequately verified at LIGO levels

LIGO Brownian Motion

(Neglects Thermoelastic Damping)

Thermoelastic Damping

The "Sapphire Killer"

Newly predicted type of thermal noise Fluctuations arise from thermal expansion dissipation $\propto (\alpha^2 k_B T^2 / \omega^2 r_0^3)^{1/2}$ (Braginsky et al, 1999)

Bigger in sapphire than in fused silica

Large thermal noise contribution in sapphire Depends strongly on thermal properties of the material

Model validation

Non-Gaussian tails in distribution? Model not adequately verified at LIGO levels

Photothermal Noise

Newly predicted noise source

Laser heats mirror surface, causing thermal expansion

 \propto (hvP/ $\omega^2 r_0^4$)^{1/2}

(Braginsky et al, 1999)

Bad for delay line IFOs

Dependent on spot size and coating losses

Photothermal noise is high in materials that have high conductivity, like Si and GaAs.

Bad for cryogenic IFOs

Chilling a mirror lowers thermal noise, but not photothermal noise.

Thermal Noise Interferometer (TNI)

Current: Characterize advanced detectors

Measure noise sources Measure non-thermal noise Verify design specifications

Future: Physics of fundamental noise sources

Reach (and exceed) the SQL QND experiments Squeezed light

The TNI uses LIGO-like mirrors and suspensions

Sensitivity to Thermal Noise

Bandwidth and sensitivity

Short length (~1 cm) High finesse cavities No power recycling No optical recombination Two independent cavities Relax laser stability requirements

Common support

Common mode noise rejection Reduce seismic noise Reduce suspension recoil thermal noise

Small spot size increases thermal noise

Easier to characterize noise But not with LIGO's sensitivity

TNI Equipment

TNI Expected Spectrum - Fused Silica

TNI Expected Spectrum - Sapphire

Low Frequency Limts

Magnet Sensor/Actuator (OSEM)

Photodiode noise limits low frequency sensitivity

TNI Progress

Facility

Cleanroom and workspaces Vacuum chamber and pumps: pressure $\leq 10^{-6}$ torr Suspended optics

Photo by Ken Libbrecht

Photo by Ken Libbrecht

TNI Progress

Magnets and guide rods are the same as for LIGO

TNI Progress

Laser & Modecleaner

Pre-Stabilized Laser (PSL): $f_{RMS} \cong 100 \text{ mHz}/\sqrt{\text{Hz}}$

Modecleaner locked: $f_{RMS} \le 30 \text{ mHz}/\sqrt{Hz}$

Suspension hardware and electronics: $x_{RMS} \le 10^{-8} \text{ m}/\sqrt{Hz}$ at DC

Arm cavities

Fused silica optics

Suspension hardware and electronics: $x_{RMS} \le 10^{-9} \text{ m/}\sqrt{Hz}$ at DC

One arm and laser locked to each other (without MC)

Finesse \cong 60,000

Arm Cavity Model

Mirror position

Thesis

1. Finish construction

Verify laser noise and calibrate instrument

2. Brownian motion measurement

Measure thermal noise in fused silica from 200 Hz to 10 kHz Look for non-Gaussian noise

3. Thermoelastic noise measurement

Upgrade TNI to sapphire mirrors Requires minimal changes to TNI equipment and procedures

Photothermal measurement

Runs in parallel with the TNI

TNI Timeline

Fused Silica Measurement

Noise similar to LIGO I

- 1. Lock the modecleaner and laser
- 2. Lock one arm

Use a broadband Pockel's Cell (BBPC) at high frequency

Actuate directly on one mirror at low frequency

- 3. Lock two arms to the laser
- 4. Measure noise, expect $x(\omega) \propto f^{-1/2}$
- 5. Look for non-Gaussian noise

Sapphire Measurement

Noise similar to LIGO II

- **1.** Replace arm cavity test masses with Sapphire
- 2. Lock IFOs
- 3. Measure noise, expect $x(\omega) \propto f^{-1}$

Minimal equipment changes, and no new procedures

Thicker suspension wires

Boost OSEM gain by 2

 $\mathbf{Q}_{\min} = \mathbf{10}^{6}$

Glue magnets and guide rods to Sapphire mirrors

Single point failure modes

Equipment failure – a few weeks

Laser dies Pump breaks Seismic noise increases Shadow sensor LEDs burn out

Major problems – a few months

Beam jitter

The Hanford PSL group has promised to help us reduce

Arm cavity servo

Garry Sanders has promised support from CDS

Use models to design servos

Scattered light

TNI has less of a problem than LIGO

New LIGO sensor-actuators are already in the schedule

Photothermal Effect

Laser power fluctuations drive thermal expansion

For shot noise \propto (h v P)^{1/2}

For direct modulation \propto P

Advanced GWDs

Coating losses Laser power Laser intensity noise

Depends on material properties

Lowest in Fused Silica Low in Sapphire Highest in Aluminum

Photothermal Effect

Photothermal Effect

Thermal Noise Affects Event Rate

We need to understand thermal noise!

Thermal Noise Sources Relevant to Interferometric Gravitational Wave Detection

Measure noise sources

Sapphire (thermoelastic noise) – LIGO II Fused Silica (Brownian motion) – LIGO I Photothermal noise – Advanced GWD proposals

Progress report

Prestabilized laser – frequency noise \cong 100 mHz/ \sqrt{Hz} Triangular mode cleaner – finesse \cong 5,000, $v \cong$ 30 mHz/ \sqrt{Hz} Test cavity – finesse \cong 60,000

Completion in Spring 2002

LIGO-G000306-00-M

Lab Facility

...before clean-room cover around vacuum chamber

Photo by Ken Libbrecht

Inside the Vacuum Chamber

Photo by Ken Libbrecht

Thermal Noise Sources

Brownian motion

 $\mathbf{S}_{\mathbf{B}}(\boldsymbol{\omega}) = \frac{4 \text{ kB T } (1 - \sigma^2) \phi \text{mass}}{\omega \text{ Sqrt} [2 \pi] \text{ YoungM SpotSize}}$

Fused Silica $x(\omega) = 2.4 \ 10^{-18} \ (f/100 \ Hz)^{-1/2} \ m/\sqrt{Hz}$ Sapphire $x(\omega) = 3.2 \ 10^{-19} \ (f/100 \ Hz)^{-1/2} \ m/\sqrt{Hz}$

Thermoelastic damping

$$\begin{split} \mathbf{S}_{\text{TE}}(\omega) &= \frac{8 \, \alpha^2 \, (1 + \sigma)^2}{\text{Sqrt} [2 \, \pi]} \, \frac{\text{kB T}^2}{\rho \, \text{HeatCap}} \, \frac{\text{a2}}{\text{SpotSize}^3} \, \frac{1}{\omega^2} \\ \text{Fused Silica} & \mathbf{X}(\omega) = 9.0 \, \mathbf{10}^{-19} \, (\text{f}/100 \, \text{Hz})^{-1} \, \text{m}/\sqrt{\text{Hz}} \\ \text{Sapphire} & \mathbf{X}(\omega) = 2.4 \, \mathbf{10}^{-17} \, (\text{f}/100 \, \text{Hz})^{-1} \, \text{m}/\sqrt{\text{Hz}} \end{split}$$

Photothermal noise

$$S_{PT}(\omega) = 2 \alpha^{2} (1 + \sigma)^{2} \frac{\text{hbar } 2 \pi \text{ c Absorption Finesse LaserP}}{\lambda (\rho \text{ HeatCap } \pi \text{ SpotSize}^{2})^{2}}$$

Fused Silica
Sapphire
$$X(\omega) = 4.6 \ 10^{-19} \ (f/100 \ \text{Hz})^{-1} \ \text{m}/\sqrt{\text{Hz}}$$

Fundamental Noise Sources

Pendulum thermal noise

 $\phi_{wire} > 10^3$

Violin modes

Wires at 20% of breaking strength $v_0 \cong$ 3 kHz

Radiation pressure

Shot noise

Much lower than necessary

Seismic noise

Estimated at 1 nm at DC

Technical Noise Sources

Johnson Noise

Most of the TNI electronics has 50 Ω impedance

SQL

Shot noise – 3 10^{-22} m/ \sqrt{Hz} for 1kHz bandwidth Radiation pressure – equal to shot noise at 100 Hz

Laser Frequency

Specified to be less than 30 mHz/ \sqrt{Hz}

OSEM

Shadow sensor dark current length noise is 10⁻⁹ m/rHz at DC Aggressively filtered above 20 Hz

Alignment

OSEM electronics cross-couple 10% of photodiode length noise to alignment length noise

Cutting corners: magnet assembly jig

Arm cavity mirrors

Modecleaner mirrors

Modecleaner model

For time-domain analysis, maximum timesteps are 1e-4 seconds. Noise generator bandwidth is 10 kHz.

SOS Model

January 2001

Write a LIGO document describing the north arm cavity lock

February 2001

Fully characterize north arm lock, and write a LIGO document

Test the BBPC

Take laser from photothermal experiment and align optics

March 2001

Lock mode cleaner using mode cleaner servo electronics Upgrade vacuum optics Model the final servo electronics for the arm cavities and the BBPC New laser arrives! PCG meeting in Santa Barbara.

April 2001 Design arm cavity servo electronics Analyze and repair arm cavity suspension controllers Test BBPC servo LSC meeting in LLO Get quotes for grinding, polishing, and coating Sapphire

New Pockel's cells delivered — can now rebuild photothermal experiment

May 2001

Design arm cavity servo electronics Analyze laser frequency noise with reference cavity Repair arm cavity suspension controllers Run photothermal experiment on Aluminum

June 2001

Test arm suspension controllers Build and test arm cavity servo electronics Sapphire blanks delivered — ship for grinding and polishing

July 2001

Test arm cavity servo (should result in fringe dragging) Fix arm cavity servo electronics Lock mode cleaner, and align transmitted beam to one arm Design data acquisition software

August 2001

Photothermal experiment on sapphire Sapphire optics ground — ship for coating Design data acquisition software Lock one arm cavity, modecleaner, and laser Vacation

September 2001 Commission South arm cavity Lock South arm cavity If necessary, upgrade arm cavity sensor/actuators to new LEDs and photodiodes Write data acquisition software

October - December 2001 Reduce noise and take data Write a LIGO document before Christmas

January 2002

Repeat December's miracle, write a paper Look for non-gaussian noise (continuous operation and data acquisition)

Order wire, standoffs, and guide rods for sapphire Repeat photothermal measurement with Al, SiO2, Al2O3

February 2002 Rebuild arm cavities Glue magnets and standoffs to sapphire mirrors Inspect test cavity OSEMs Install one sapphire arm cavity Write a paper for the photothermal experiment

March - April 2002 Thermoelastic measurement with Sapphire

May 2002 Start writing thesis Look for a job

September 2002 Defend thesis