Measuring Thermoelastic Noise

Shanti Rao Caltech

Thanks to

Caltech

Ken Libbrecht, Eric Black, Luca Matone

LIGO

Rich Abbott, Jordan Camp, Jay Heefner, Paul Russell

TAMA

Seiji Kawamura

Funded by the NSF/LIGO R&D

Thermal Noise Interferometer Crew

Eric Black

Luca Matone

Seiji Kawamura

Shanti Rao

Thermal Noise Affects Event Rate

The TNI (Thermal Noise Interferometer) program measures thermal noise for LIGO I and II

Thermal Noise Sources

Brownian motion

Mirror recoils against internal phonons

 $\propto (\phi k_{\rm B} T / \omega r_0)^{1/2}$ $\phi \propto (1/Q)$ "Quality factor"

Thermoelastic damping

Thermodynamic noise from thermal expansion dissipation

 \propto ($\alpha^2\,k_{\rm B}^{\rm T}$ ^/ $\omega^2\,r_{\rm 0}^{\rm -3})^{1/2}$

Other

Thermorefractive

Photothermal

Non-Gaussian noise

Unknown?

Thermal Noise and LIGO

Brownian motion in sapphire

LIGO II with Sapphire Mirrors

LIGO II with Fused Silica Mirrors

LIGO II Material Selection

TNI Expected Spectrum - Sapphire

Thermal Noise Interferometer (TNI)

Characterize GW detectors

Measure Brownian noise in 2000 Measure thermoelastic noise in 2001 Measure non-Gaussian noise

Design choices

Short interferometers (~1 cm) are easier to build

Small spot size increases thermal noise for low loss mirrors

High finesse increases sensitivity

The TNI uses LIGO-like mirrors and suspensions

How an Interferometer (IFO) works

How an IFO works

TNI Equipment

Major Thermal Noise Sources

Brownian motion

Limits LIGO I sensitivity Test masses recoil against internal thermal phonons Largest thermal noise contribution for fused silica Quality factor determines noise

 $\mathbf{x}(\omega) \propto (\phi \mathbf{k}_{B} \mathbf{T} / \omega \mathbf{r}_{0})^{1/2}$

Thermoelastic damping

Fluctuations arise from thermal expansion dissipation Large thermal noise contribution in sapphire Material properties determine noise

 $\mathbf{X}(\omega) \propto (\alpha^2 \mathbf{k_B} \mathbf{T}^2 / \omega^2 \mathbf{r_0}^3)^{1/2}$

Thermorefractive noise

Mirror coatings' index of refraction depends on temperature

X(ω) ∝ **r** ⁻¹ω^{-1/4}

Photothermal noise

Light heats mirror, and thermal expansion changes IFO length

LIGO-G010062-00-R

 $x(\omega) \propto (h_V P / \omega^2 r_0^4)^{1/2}$

TNI Timeline

Deadline: June 4, 2002

Latest date to choose mirror materials for LIGO II

