High Energy Gamma Astronomy from space and from ground in the past and the forthcoming decades

Patrick Fleury Ecole Polytechnique (France)

Caltech Jan 12 - 2001

LIGO-G010063-00-R

Caltech Jan 12 -2001

High Energy Gamma Astronomy

1

Space, the method and EGRET (third) catalogue: the "serependitous" blazars

ACT's : Whipple-10m, HEGRA, CAT, Cangaroo The Crab nebula The main two blazars : Markarian 501 and Markarian 421

R&D towards lower energy ACT: CELESTE, STACEE, SOLAR-II MAGIC.

The large collaboration projects: From the ground: VERITAS and HESS From space: GLAST

Caltech Jan 12 -2001

Caltech Jan 12 -2001

High Energy Gamma Astronomy

Realistic Monte-Carlo simulation of the materialisation of a GeV γ ray in a structure like that of GLAST (or EGRET)

The tracker is a sandwich of
trays of position measuring devices
layers of converter thin enough,

 $\approx 0.03 \text{ RL}$, to limit e-scattering

(radiation length $\equiv RL$)

The calorimeter depth does not exceed ≈ 10 RL, which corresponds to ≈ 1 ton per m². This is a major limitation for the detection from space..

Imaging

Whipple-10m since 1969 ≈100 PMT's by 1990

HEGRA since 1994 5 telescopes / stereoscopy

La-Palma Canaries

CANGAROO since 1994 Australia

CAT Thémis (French Pyrénées) • first light summer 1996, • fine camera : 600 pixels

Caltech Jan 12 -2001

High Energy Gamma Astronomy

One γ event (at rather high energy)

Mrk 501 one night flare (April 16 1997)

With a high resolution camera (such as CAT), the angular origin of each individual event is computed from its image profile

Caltech Jan 12 -2001

High Energy Gamma Astronomy

Mrk 501 flares of April 1997 showing variability on a day scale

> Even faster (<hr) variations have been evidenced by the Whipple on Mrk 421

Flux sensitivity on the scale of the hour is needed

Unified spectral sequence of blazars

Ref. G. Ghisellini et al., MNRAS 301, 451 (1998)

"complete" sample of 126 blazars, distributed in 5 sub-sets according to their intrinsic luminosity at 5 Ghz.

- Observed : anti correlation L / V (related to damping by photon target ...)
- In support of a leptonic model : Synchrotron + (Self)-inverse-Compton.

(SSC - model)

$$e^{\pm} + \gamma_{_{soft}} \rightarrow \ e^{\pm} + \gamma_{_{GeV-TeV}}$$

Caltech Jan 12 -2001

Solar plants

SOLAR-I \rightarrow -II1992, 1999@ Barstow, Cal. (Tumay Tümer)STACEEtaking data@ Sandia, Cal. (René Ong)CELESTEoperational@ Thémis, Fr.(Eric Paré \rightarrow David Smith)

Use of existing large mirror collection areas

- Solar plants have adequate optical & pointing precisions
- BUT, they do not fit with the "imaging" requirements

Distributed sampling of times & amplitudes by adding a secondary optics to single out each helisotat (Ref. Tumay Tümer 1992)

Strong signals are obtained on the Crab nebula and on Mrk-421 (partly with synchronous data from CAT & Celeste)

Site of Thémis (France)

Pyrénées Orientales In the far distance : Pyrénées mountains in Spain; in between : the Cerdagne valley.

The site was built as a test for solar plant It was turned to astrophysics since 1986 :

- 1986-1993 Themistocle & Asgat
- 1993-1996(first light) CAT
- 1994-1999(first light) CELESTE

MAGIC

The $17m\Phi$ light collector will be of diamond milled aluminium mirrors;

Simple active optics will be developed to maintain the shape of the dish whilst tracking an object across the sky.

First camera will use PMT's with GaAsP photocathode which has a peak QE of >45% between 450 and 620 nm.

Ultimatly, "all silicon" camera based on the low noise Avalanche Photodiodes (APDs)

MAGIC is exploring the utmost capability of a single imaging device with the goal of a very low threshold (10 GeV)

It could also be deployed in arrays Its technical achievements could radiate to the whole field

large angular acceptance in space → « completeness »
large sensitive area of Cherenkov → fast variability

Caltech Jan 12 -2001

High Energy Gamma Astronomy

The main multi-imaging telescopes

name	Nb of dishes	Diameter (/ Focal)	Nb	Pixels Size	FoV	Rate stereo mode	Location Altitude	Energy (GeV) Trigg / Spectr	Calendar
HESS	4 → 10-16	12m (/ 15m)	1000	0.16°	5.0°	≈ 1 kHz	23° S 16° E 1800 m	<50 / <100	2001 → 2003
VERITAS	7	10m (/ 12m)	500	0.16°	3.5°	≈ 1 kHz	32°N 111°W 1800 m	50 / 100	2002 → 2004
CANGAROO- III	4	<10m (/ 8m)	500	0.16°	3.0°	?	31° S 136°E 150 m	100 / 150	2000 → 2004

Photo-montage of the first four telescopes on site in Namibia.

First light of the first telescope this year (2001)

High Energy Gamma Astronomy

Energy Area max. Field of View Sensitivity Localisation

EGRET 50 MeV -30 GeV 1500 cm² 0,6 sr >10⁻⁷ g cm⁻²s⁻¹ 0,5 °

GLAST (1 ye	ar)
10 MeV- 1 TeV	
12900 cm²	x 8,6
2,4 sr	x4
>1,6 10 ⁻⁹ g cm ⁻² s ⁻¹	x50
20 '' - 7 '	x100 - 4

Virgo (E > 100 MeV)

Caltech Jan 12 -2001

High Energy Gamma Astronomy

Space ⊕ Ground Science Capabilities : sensitivity

200 γ buests per year prompt emission sampled to ≈ 20 μs AGN flares > 2 MN mostly from Ground time profile +ΔE/E ⇒ physics of jets and acceleration Space ⊕ Ground should conclude on - Optical depth due to cosmic diffuse light - SNR's / CR - origin All JEG sources should be identified ⇒ periodicity searches (pulsars & X-ray binaries) ⇒ pulsar beam & emission vs. luminosity, age, B 10⁴ sources in 1-yr survey ⇒ AGN: logN-logS, duty cycle,

emission vs. type, redshift, aspect angle

 \Rightarrow extragalactic background light (γ + IR-opt)

 \Rightarrow new γ sources (μ QSO, external galaxies, clusters)

To conclude