Report on E2 Lock Losses

David Chin, Dick Gustafson Keith Riles
(University of Michigan) Masahiro Ito
(University of Oregon)
Bill Butler
(Rochester University)

Background Information

- Coarse tidal actuation disabled during E2
" Expect periodic lock losses as dynamic range exceeded
" Rate of lock loss determined by linear combination of common-mode and differential-mode tidal slopes (steep slope -> short locked stretches)
- Pitch compensation reduces effective range (must push harder with upper coils)
- Residual mirror imbalances require DC offsets in coil currents
» Asymmetry leads to saturation sooner in one direction

Background Information

- Data taken in recombination configuration (no recycling) and with individual arms
- Actuation configuration:
" L+ -- Equal push on ETMX and ETMY
" L- -- Opposite push on ETMX and ETMY
" I- -- Opposite push on ITMX and ITMY (and ETMX/ETMY)

Observations

- Lock durations:
" Recombination locks lasted typically an hour
" Qualitative correlation of lock length with slope confirmed
" But lock lengths shorter when CM tidal slope falling, suggesting asymmetric sensitivity (see figure)
- Y arm behavior:
" Transmitted light thru Y arm drifted linearly with time, suggesting misalignment steadily worsening
" Optical levers for both pitch and yaw confirmed drift
" Interpreted as mistuning of pitch compensation and yaw balance
" ETMY output matrix retuned on 4th day, giving smaller drifts

Observations

- X arm behavior:
" Transmitted light thru X arm fairly flat during locks (well-tuned output matrix)
" But rapid, non-linear degradation seen just before lock loss
" Yaw of ETMX showed modest, linear drift
" Pitch flatter, but same rapid, pre-loss degradation
" Two coils on ETMX with large DC offsets
" Symptoms suggest "premature" saturation in one or more ETMX coils, causing mirror twist, light degradation and loss of servo gain

Observations

- Coil currents
» Examined trends of ETMX and ETMY and found anomalous behavior in upper left (UL) coil of ETMX:
- "Software rails" seen in data acquisition ADC at expected +/-2 Volts for all ETMX, ETMY coils
- But just before lock-loss, evidence of "hardware rail" seen in ETMX UL (Odd, symmetric, exponential decay of min/max envelope, suggesting internal electronic saturation in UL circuit (see figure)
- During one such "decay" checked monitor points on ETMX controller (mid station) with portable oscilloscope. Observed severe, asymmetric railing at +2 V on UL, moderate railing on UR, almost none on LL and LR.
- Railing much reduced once lock lost and reacquired
- Power spectrum of ETMX UL coil current anomalous

Conclusions on Saturation

- Necessity of tidal actuation confirmed!
- Premature saturation in UL coil very likely (some coil has to go first, but this behavior seems pathological - faulty circuit?)
- Some observations hampered by AC coupling of DAQ to coils (but not relevant to scope readings)
- New improved controller design installed on one mirror at LHO and in pipeline for others

Other Work

- Complete list of lock stretches (>1 minute) can be found on team web site
(from Dave Chin's DMT lock transition monitor)
- Masahiro Ito's glitch monitor identified four distant earthquakes (Montana, Tonga, Peru, Japan) correlated with lock losses during E2

