LISA: Status and Recent Work

Robin T. Stebbins JILA - University of Colorado

Aspen Winter Conference on Gravitational Waves and their Detection Aspen, CO 8 February 2001 LIGO-G010083-00-M

Outline

- Overview
- Programmatic advances
- R&D
 - European
 - U.S.
- Demonstration flights
- Conclusions

Introduction

- The LISA concept
 - 3 spacecraft forming two interferometers with 5x10⁶ km long arms, benign environment
 - Measure between free-falling test masses with drag-free spacecraft control to limit unwanted disturbances
 - Measurement band of 10⁻⁴ to 1 Hz, 10⁻²³/√Hz best strain sensitivity in a 1 yr integration
- Sources
 - Galactic binaries: WDs, NSs, stellar mass BHs (1-10²)
 - Coalescence if intermediate mass black holes (10²- 10⁴)
 - Coalescence of supermassive black holes (10⁵- 10⁷)
 - Stellar mass black holes into SMBHs
 - Cosmological background(s)

LISA Researchers

The LISA Mission Definition Team (US)

The LISA Science Study Team (Europe)

E. S. Phinney	California Institute of Technology (Chair)	T. Edwards	Rutherford Appleton Laboratory (Study Manager)
B. Allen	University of Wisconsin	R. Reinhard	ESTEC (Study Scientist, Acting)
J. W. Armstrong	Jet Propulsion Laboratory	A. Brillet	University de Paris Sud
P. L. Bender	University of Colorado	I. Ciufolini	University of Rome
E. A. Boldt	NASA Goddard Space Flight Center	A. M. Cruise	University of Birmingham
O. Blaes	University of California Santa Barbara	C. Cutler	Albert Einstein Institute
S. Buchman	Stanford University	K. Danzmann	University of Hannover
R. L. Byer	Stanford University	F. Fidecaro	INFN-Sezione de Pisa
T. E. Chupp	University of Michigan	J. Hough	Glasgow University
C. Cutler	Albert Einstein Institute	Y. Jafry	ESTEC
D. B. DeBra	Stanford University	P. McNamara	Glasgow University
L. S. Finn	Pennsylvania State University	M. Peterseim	Max-Planck-Institut fuer Quantenoptik
W. M. Folkner	Jet Propulsion Laboratory	D. Robertson	Glasgow University
J. L. Hall	University Colorado	M. Rodrigues	ONERA
R. W. Hellings	Jet Propulsion Laboratory	A. Rüdiger	Max-Planck-Institut fur Quantenoptik
D. Hils	University of Colorado	M. C. W. Sandford	Rutherford Appleton Laboratory
C. Hogan	University Washington	G. Schäfer	MPG-AG "Gravitationstheorie" FSU
G. M. Keiser	Stanford University	R. Schilling	Max-Planck-Institut fur Quantenoptik
R. D. Newman	University of California Irvine	B. Schutz	Albert Einstein Institute
T. A. Prince	California Institute of Technology	C. Speake	University of Birmingham
J. C. Ray	Johns Hopkins APL	T. Sumner	Imperial College
D. O. Richstone	University of Michigan	P. Touboul	ONERA
S. Shapiro	University of Illinois	JY. Vinet	University de Paris Sud
D. H. Shoemaker	Massachusetts Institute of Technology	S. Vitale	University of Trento
M. Shao	Jet Propulsion Laboratory	H. Ward	Glasgow University
R. T. Stebbins	University of Colorado	W. Winkler	Max-Planck-Institut fur Quantenoptik
B. Teegarden	NASA Goddard Space Flight Center		
K. Thorne	California Institute of Technology		
E. L. Turner	Princeton University		
R. Weiss	Massachusetts Institute of Technology		
Supported by		Supported by	
A. Abramovici	Jet Propulsion Laboratory	M. Caldwell	Rutherford Appleton Laboratory
J. Blandino	Jet Propulsion Laboratory	M. Fehringer	Austrian Research Center Seibersdorf
E. Gustafson	Stanford University	J. Gonzalez	ESTEC
M. Madden	NASA Goddard Space Flight Center	B. Kent	Rutherford Appleton Laboratory
K. Nock	Jet Propulsion Laboratory	S. Marcuccio	Centrospazio
R. E. Spero	Jet Propulsion Laboratory	S. Peskett	Rutherford Appleton Laboratory
G. Walushka	NASA Goddard Space Flight Center	P. C. E. Roberts	Cranfield University
		R. Turner	Rutherford Appleton Laboratory

Programmatic Advances in Past Year

- NASA OSS Strategic Plan
 - Recommended new start in SEU, start around 2006
 - Launch 2010, data 2012-2013
- NRC Decadal Survey
 - Highest priority new start in intermediate class
- ESA selection
 - Joint cornerstone
 - Smart 2 demo flight
- Project startup
 - Draft U.S. management plan involving GSFC and JPL
 - Key positions being filled
 - ESA/NASA discussions
 - Science Team formation

Looming Programmatic Events

- ESA/NASA agreements
- Joint management plan
- Science team startup
- Cosmic Journeys

Technology Development

- Disturbance reduction system
 - Gravitational sensor: $3x10^{-15} \text{ m/s}^2/\sqrt{\text{Hz}}$, 10^{-4} 10^{-2} Hz
 - − μ N thrusters: 50 μ N max, 20 μ N constant, 0.1 μ N/ \sqrt{Hz} , 10 yr lifetime
 - Drag-free control:10 nm/ \sqrt{Hz} , 3 nrad/ \sqrt{Hz}
- Interferometry
 - Space-qualified components
 - Fringe timing: $2x10^{-5}$ cycles/ \sqrt{Hz} , 10^{-3} 1 Hz
 - Stabilized laser: frequency stability of 30 Hz/ \sqrt{Hz} at 1 mHz, power stability of 2x10⁻⁴/ \sqrt{Hz}

European R&D Activities

- To be described in more detail by David Robertson, Thursday morning
- Phase A Industrial Study, and satellite studies
- Interferometry at Glasgow
- Laser stabilization at Hannover
- Gravitational sensor design, prototyping and testing at Trento
- Control system analysis at Trento
- In-FEEP noise measurements at Siebersdorf
- In-FEEP thrust measurements at ONERA
- Photodiode investigation at Birmingham
- FEEP testing at ESTEC

ESA Phase A Study

- Reviewed system design and trades
- Refined spacecraft and payload designs
 - Structural analysis
 - Thermal analysis
 - Gravitational analysis
 - Accommodation study
- Reviewed operational modes
- Modeled various drag-free control strategies
- Mass increase

U.S. R&D Activities

- Fringe timing at JILA (Scott Pollack, Friday afternoon)
- Control system and error analysis at JILA
- Noise correction at JPL (M. Tinto, Tuesday morning)
- Noise correction at Washington/JILA (P. Bender, Tuesday morning)
- Micronewton thruster testing at GSFC (S. Merkowitz, Friday afternoon)
- Colloidal thrusters at JPL
- Gravitational sensor design at Stanford

Demonstration Flights

- Gravitational sensor can't be tested on ground
- Two gravitational sensors, thrusters and servo control
- An interferometer to measure between sensors
- Drift-away orbit
- Test of residual acceleration within order of magnitude required by LISA and precision stationkeeping
- Lock spacecraft to one test mass, compare residual acceleration between two test masses
- Monitor stationkeeping
- Test noise models

ESA Smart 2

- LISA Test Package
- IRSI-Darwin test of formation-flying
- Two satellites
- Selected mission
- Phase A ITT in April '01
- Scheduled for launch in late '06
- ~120 Meuro allocated

U.S. Space Technology 7

- The New Millennium Program tests technology that benefits multiple missions. US technology only.
- ST7 is a competition between 4 concepts testing a technology suite
- LV not included, piggyback on either Smart 2 or Starlight
- Starlight (nee DS-3, ST-3) is a TPF precursor testing formation-flying and star light interferometry, now in Phase B, two satellites, mid '06 launch.
- Phase A Study ends Nov. '01, technology selection in Dec.
- \$52 M cost cap
- Launch in '05.

LISA Test Package on Starlight Spacecraft

Summary

- The LISA concept has made great strides toward becoming an established project. Still requires approval by Congress.
- Modest R&D efforts are progressing in both Europe and U.S. Awaiting significant funding for technology development.
- There are promising opportunities for a LISA technology demonstration flight.