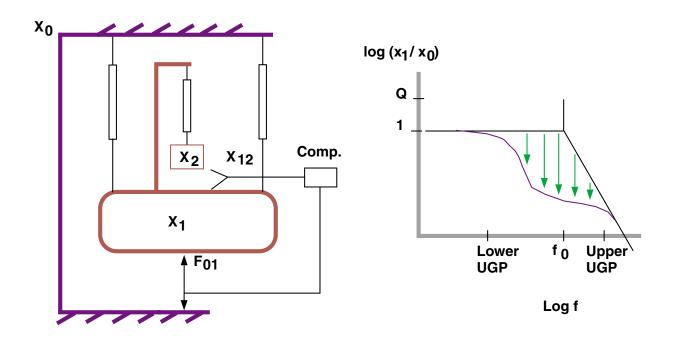
Advanced LIGO Seismic Isolation System Development Test Plan

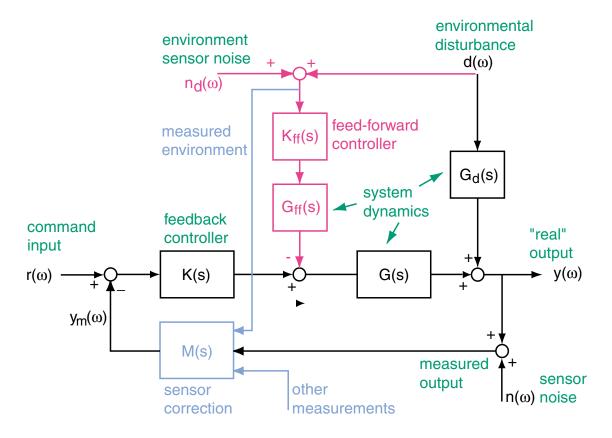
LIGO-G010136-00-R

By the Advanced LIGO Seismic Isolation Team members* at JILA, LLO, LSU, MIT, and Stanford

March 15, 2001


*J. Giaime, B. Lantz, C. Hardham, W. Hua, R. Adhikari, G. Allen, S. Cowley, D. Debra, G. Hammond, J. Hammond, J. How, J. Nichol, S. Richman, J. Rollins, G. Stapfer, R. Stebbins, . . .

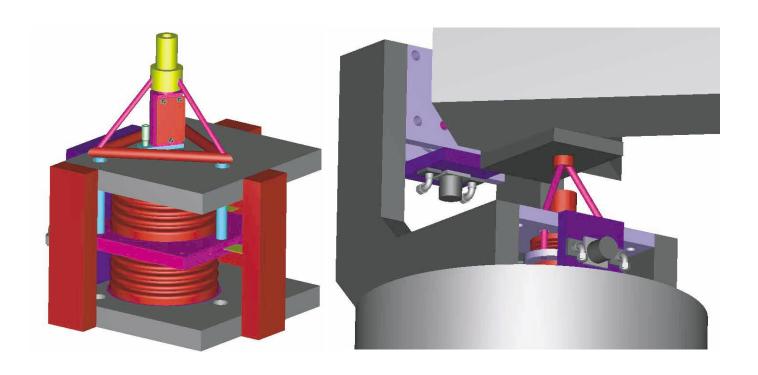
Functional Breakdown


Seismic isolation functions in LIGO-I and Advanced LIGO. (The pendulum suspension, though not part of SEI, is shown because it contributes significant seismic isolation.)

Active Seismic Isolation

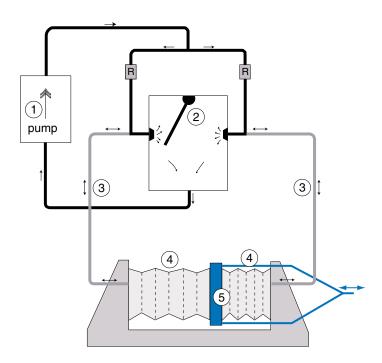
Active seismic isolation.

Feedback, feed-forward, sensor correction

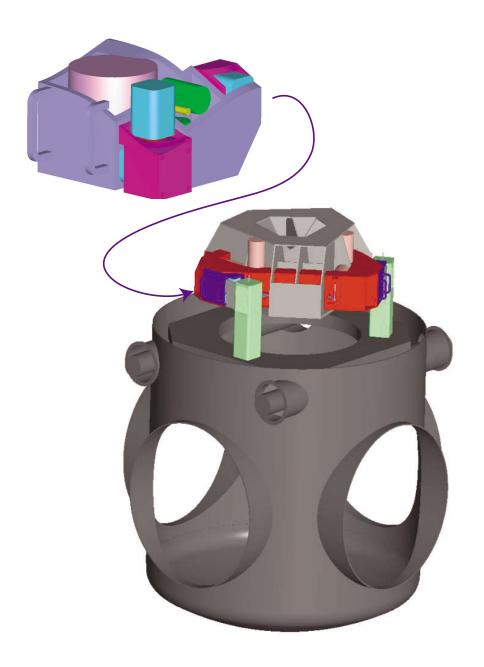


Feedback:

$$y = (I + GK)^{-1}GKr$$
 command tracking
$$+ (I + GK)^{-1}G_d d$$
 disturbance suppression
$$-(I + GK)^{-1}GKn.$$
 noise


Feedforward: If $K_{ff}G_{ff}G=G_d$, environmental noise cancelled.

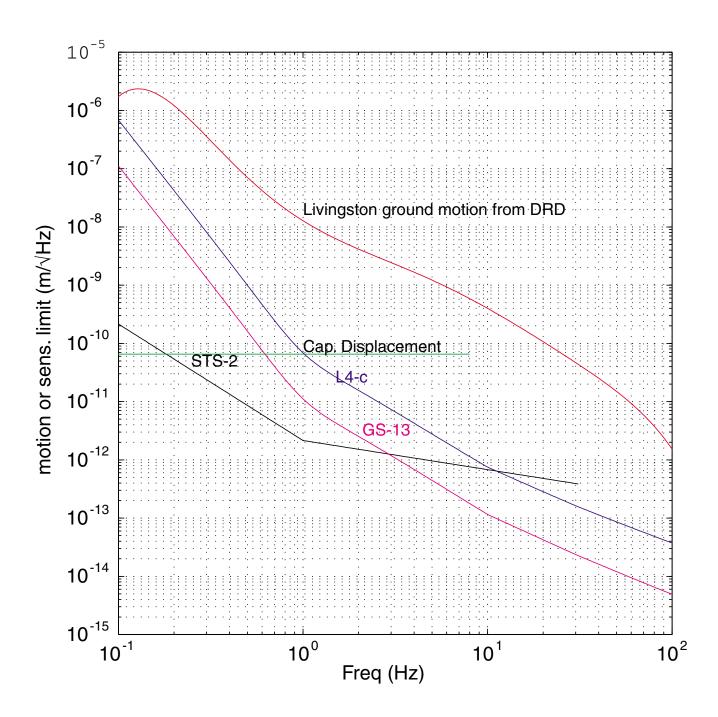
The Quiet Hydraulic Actuator.


Hydraulic actuator will provide ± 1 mm, 2 Hz BW continuous actuation in 6 DOF. Each bellows assembly acts in 1 DOF; two DOF at each corner. Viscous fluid and remote pump assure quiet operation.

Differential bellows:

The control valve creates a pressure differential on the bellows. The middle plate is attached with flexures to both the base and the payload, only constraining motion in 1 DOF.

BSC Design


Rendering of BSC design of the two-stage active platform.

HAM Design

Rendering of the HAM design.

Sensor noise

Development plan

- Electronics/DSP dSpace → LIGO-brand?
- Prototype HAM two-stage active isolation platform to be tested in ETF at Stanford, with preliminary results in 4Q01.
- UHV prep research: Pod seals, wiring, structure fab methods.
- Pathfinder HAM and BSC to be installed/tested in MIT LASTI, 3/4Q02.
- Hydraulic stage to provide extra attenuation for noisy MIT site. Full prototype to be built at MIT, then replicated.
- Final design. . .

ETF test plan

- verify design viability:
 - structural stability/ modal structure/ stiffness.
 - plant ID versus model.
 - Controller workability and robustness.
 - Sensor & actuator pod design; fit and adjustability with structure.
 - Spring and flexure design.
- verify basic performance:
 - seismic transmission T(f)
 - some noise studies.

ETF test plan, continued

- Design OK'd for LASTI, then Continued development:
 - Optimal controller design step response versus noise perf.
 - Supervisory control system design use LIGO-brand electonics or not?
 - Dynamic range / noise compromises.
- Facility requirements:
 - basic test equipment
 - witness seismometers and accelerometers
 - dSpace system
 - optical levers use 2-stage system as base?
 - michelson interferometer? ditto?

LASTI test plan: HAM

Initial Goals:

- fit and assembly test with UHV provisions.
- plant ID versus dynamic model.
- UHV wiring install and test.
- verify basic performance as in ETF.

• Detailed tests:

- joint SEI/SUS assembly test with UHV provisions
- transmission and noise performance
- controller tweaking
- implementation of supervisory control in LIGO data environment

LASTI test plan: HAM, BSC

- facility requirements: same as ETF, plus:
 - hydraulic stage with noise reduction in 1 10 Hz region, if noise studies are to be meaningful.
 - RGA and vacuum measurements
 - "cartridge installation" facility
- BSC testing:
 - compare plant against model
 - test performance

Reliability estimates for SEI

The design has been configured in a way that reduces sensitivity to component failures:

- Most in-vacuum components in pods, which can be tested before installation, catching infant mortality.
- Entire SEI can be tested when installed, in air, and defects corrected.
- Two or three sensors per DOF allows some fail-operate options. Alternate controller designs for systems with missing sensors or actuators can be devised, with reduced performance.
- Pod replacement should require of order 1 day interruption of operation.

Reliability estimates for SEI, cont'd

Most in-vacuum components known to be high reliability:

- Streckeisen STS-2 manufacturer lists 300,000 hour MTBF, in field use. 90 in-vacuum units implies 1 failure per 140 days. Our sensors should last longer than those in field use, however.
- GS-13 Geophone is a variant of S-13, which has 3000 units in field. Vender says "a few" return for repair per year.
- Capacitive bridge has only passive electrode heads and wires in vacuum.
- Non-contacting voicecoil/permanent magnet actuator, if operated within power capacity, is expected to be robust. (MTBF unknown, since it is a custom design.)