

Update on Wavelet Compression

Presented by S.Klimenko University of Florida

- Outline
 - **➤** Wavelet compression
 - **✓** concept
 - ✓ E2 data
 - ✓ artifacts
 - ✓ software
 - **Conclusion**

Data Compression with Wavelets

- Data de-correlation & reduction
 - > apply transforms that allow *more compact* data representation
 - > wavelet are used to de-correlate data
 - wavelets allow data reduction
- Pack data using lossless encoder (gzip, 0 suppression,)
 - > many LIGO signals are mainly random Gaussian noise with admixture of non-Gaussian components
 - > wavelet transform makes data even "more random"
 - use data encoder optimized for compression of Gaussian noise

Lifting Wavelet Transform

decomposition (a)

reconstruction (b)

Haar:

P = Xe

U=1/2

Wavelets de-correlate data

Compression With Losses

- Goal
 - considerably reduce the data bps average # of bits per sample
- Applications
 - compress environmental and control channels, where very detail information may not be important
 - > produce archived data sets using *quasi-lossless* compression
 - generate reduced data sets for the data analysis & investig. task
- Main problems
 - possibly loss of "useful information" (how to control it?)
 - artifacts can be added to compressed signal
 - different channels may require different compression options
- Possible solution
 - reduction of the data dynamic range in wavelet domain.

Data Dynamic Range Reduction

- compression: $X \rightarrow W_i \rightarrow int(W_i/K_i) \rightarrow encode (rdc, gzip,...)$
- reconstruction: $decode \rightarrow W_i' \rightarrow W_i' K_i \rightarrow X'$
 - \triangleright *i* wavelet layer number, K_i scaling factors
 - \triangleright x initial data set, x' reconstructed data set
- noise for compression in time domain (K_i =constant) limits compression at 6-7bps
- compression noise δ
 - \triangleright noise generated by random process int: $x' = x + \delta$
 - > small correlation between δ and x if $\delta^2 << x^2$, no artifacts

Short Channels (ε =1%)

black – original data, red – δ & reconstructed data (E2 run)

S.Klimenko, LSC March, 2001

Float Channels (ε =1%)

black – original data, red – δ & reconstructed data (E2 run)

S.Klimenko, LSC March, 2001

compression vs losses (E1)

Wavelet compression allows to work in terms of "losses": $\varepsilon = \delta^2/x^2$

Wavelet Data Reduction

- Varity of options: lossless, quasi-lossless, aggressive or severe compression for different channels and frequency bands.
 - \succ currently losses specified separately for high and low frequencies ϵ_1 & ϵ_2 losses for frequency bands <1kHz & >1kHz

Compression Noise

- x' auto-correlation function:
- $R(\tau) = R_{xx}(t) + 2R_{x\delta}(\tau) + R_{\delta\delta}(\tau)$
- cross-correlation term:
- $r_{x\delta}(\tau) = R_{x\delta}(\tau)/R_{xx}(0)$
- > noise auto-correlation term:
- $r_{\delta\delta}(\tau) = R_{\delta\delta}(\tau)/R_{xx}(0)$

Induced correlations for white Gaussian noise

- Is perturbation local? $r_{ss}(\tau) = 0$ if $\tau > 2^{n+1}/f_s$
- Is there a correlation between $x \& \delta$?
 - $r_{x\delta}(0) = max(r_{x\delta}) < 5.e-5$ for $\varepsilon < 15\%$

Artifacts from Narrow Lines

- If compress signals is dominated by lines artifacts can be added
 - limitation for blind use of wavelet compression (need some thinking)
 - real need to improve strategy for selection of scale factors (current strategy $K_i = a \, rms$) to make wavelet compression robust (doesn't need thinking)
- Several options available: strong narrow lines (power) should be removed to minimize signal rms and δ , the residual signal can be safely compressed
 - line removal is lossless and requires to store 2 float numbers per line.

Wavelet Compression Software

- Standalone utilities (S.Klimenko, B.Mours, A.Sazonov)
 - ➤ WatFrComp input output [parameters] --- copy the entire structure of input file, replacing original time series with compressed time series. Headers and low rate channels (<2kHz) are not wavelet compressed.
 - ➤ WatFrUnComp input output [frame compression option] --- recover time series from compressed data. The output file is as big as original data file and can be read by standard means.
 - ➤ WatFrTest input --- view compression summary statistics
 - Makefile --- make script for automated processing of large number of files
- Reading of compressed data
 - Wavelet compressed file is an ordinary frame file that is readable with FrLib, but data is stored in wavelet (time-scale) domain.
 - currently readable from ROOT using DMT means.
 - adding uncompress function in FrLib removes all limitations for use
- Documentation (installation, usage, examples)
 - http://www.phys.ufl.edu/LIGO/wavelet/compress.html

E2 run statistics

- frame data (total 1.52MB)
 - > 2kHz & 16kHz channels : 92.0% --- lossy WAT
- Lossless compression

gzip – 1.03MB, frame gzip – 1.06MB, frame gzip+zero –1.01MB

• WAT compression performance

frame file compression default

Losses, %	0.1	1 🗡	10	0.1(<1kHz) ,10(>1kHz)
WAT, kB	430	341	250	317
headers/lossles s, %	16 / 20	20 / 25	27 / 34	21 / 27
+gzip, kB	348	258	165	234

- ✓ for losses >10%, fraction of service data can be as large as 30%.
- ✓ Add ~40kb if dark port signal is not wat compressed.
- > computation efficiency
 - ✓ SUN ultra 300 0.7-2 MB/s
 - ✓ one 1GHz PC (~2-3 times faster) will compress all LIGO data

Summary

- Wavelets is a powerful and flexible compression tool.
- UNIX (Solaris) utilities are available for practical use.
- Wavelets can be used to de-correlate and reduce data
 - ➤ for lossy compression the data dynamic range reduction in wavelet domain is used next step compare to dynamic range reduction in time domain
- Combination of wavelets and rdc encoder offers a universal tool both for lossless and lossy compression.
- range of options between lossless, quasi-lossless, lossy and aggressive compression (like decimation), 2 parameters to specify.
- Data reduction down to the level of 1bps is achievable.
- Computational efficiency is good and can be improved.
- Plan: develop robust strategy for selection of scale coefficients to allow blind use of wavelet compression at rates ~ 3-4bps