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Nearby trajectories in chaotic systems diverge
exponentially

• The Poincare surface-of-section method for identifying chaos generally only works for sys-

tems with two degrees of freedom (4-dimensional phase space)

• For systems with many degrees of freedom, the most definitive method for identifying chaos

is by measuring Lyapunov exponents 2

• If the distance in phase-space d grows like:

d = do exp(γt)

then we can define the characteristic Lyapunov exponent γ as

γ ≡ lim
t→∞

ln(d/do)

t− to

• Chaotic systems diverge on a time-scale of the Lyapunov time ≡ 1
γ

• For regular (quasi-periodic) systems, γ → 0

2G. J. Sussman and J. Wisdom. Science 241, 433 (1988).



Test particles orbiting around two fixed point masses
exhibit quasi-periodic as well as chaotic behavior 3

3G. Contopoulos, Proc. R. Soc. Lond. A 435, 551 (1991).



We use Post-Newtonian equations of motion to
calculate trajectories with spin effects 4
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The spins also precess due to frame-dragging and the Lens-Thirring effect.
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4L. E. Kidder, C. M. Will, and A. G. Wiseman, Phys. Rev. D 47, R4183 (1993).



With both objects spinning maximally, the orbits
appear to be irregular and perhaps even “chaotic”...



...but NO CHAOS IS OBSERVED, even on a time
scale much longer than the typical in-spiral time



Conclusions and future work

• We can identify chaotic and quasi-periodic orbits for test-particle motion in a Hamiltonian

system by measuring Lyapunov exponents

• Using PN equations of motion, we have calculated compact binary trajectories including

spin effects

• NO CHAOTIC behavior has been observed in the in-spiral region of the LIGO frequency

band

• Future work includes modifying existing templates to account for spin effects

• Look for precessional resonance signals as system sweeps through orbital frequency band


