

Multi-Band Template Analysis for inspiraling binaries

Benoit Mours
Caltech & LAPP-Annecy

April 2001, NSF Review

Inspiral search

- Binary search requires large computing resources, especially:
 - » for low mass
 - » if we start at low frequency
- The chirp spend most of its time at low frequency.

- » The number of templates depends of the chirp length and the maximum chirp frequency
- How to reduce the computing cost?

LIGO The Multi Band Template Analysis

- Principle: Split the analysis in a few frequency bands
 - » Equivalent to transform a single detector to a network of detectors.

$$LLR(t,M) = \int_{f \min}^{f \max} h(f)T(M,f)df = \int_{f \min}^{f 1} h(f)T(M,f)df + \int_{f 1}^{f \max} h(f)T(M,f)df$$

- » Analyze independently each band
- » Combine coherently the analysis result like for a network of detectors
- Each analysis is cheaper because
 - » The number of templates is reduce
 - » The FFT are shorter
- Remarks:
 - » The SNR should be unchanged.

LIGO The Multi Band Template Analysis

Remarks:

- All sub analysis cover the same parameter space **BUT** may have different grids.
- » Need interpolation to combine the results and search for the maximum.
- » All FFT are small FFT.

LIGO-G010207-00-E

LIGO Estimation of CPU resources

 $CPU = K f_{min}^{-8/3} f_{s} log_{2}(f_{min} f_{max})$ (simplify model: $N_{template}$.FFT cost)

T = Template length (seconds). = $T_0 f_{min}^{-8/3}$

N_{template} = T/template spacing

 $N_{\text{sample}} = 2T f_{\text{max}}$

 $CPU = N_{template} 6N_{sample}log_2(N_{sample})/T = K f_{min}^{-8/3} f_{max} log_2(f_{min} f_{max})$

5

LIGO Estimation Template Storage

Storage = $K f_{min}^{-16/3} f_{s} log_{2}(f_{min} f_{max})$ (simplify model: $N_{template}$.tempSize)

T = Template length (seconds). = $T_0 f_{min}^{-8/3}$

N_{template} = T/template spacing

 $N_{\text{sample}} = 2T f_{\text{max}}$

Storage = $2 N_{\text{template}} N_{\text{sample}} = K f_{\text{min}}^{-16/3} f_{\text{max}} \log_2(f_{\text{min}} f_{\text{max}})$ LIGO-G010207-00-E

LIGO Estimation of computing resources

• If $f_{min} = 40 \text{ Hz}$, $f_{max} = 2 \text{kHz}$, $M_{min} = 0.5 \text{M}$

	1 Band	2 Bands	3 Bands
CPU(Gflops)	30	1.3	0.6
Storage (Gbytes)	300	5	2.4
T. size (Mbytes)	2	0.13	0.04

• If $f_{min} = 20 \text{ Hz}$, $f_{max} = 2kHz$, $M_{min} = 0.5M$

	1 Band	2 Bands	3 Bands
CPU(Gflops)	200	4.3	1.3
Storage (Gbytes)	10000	100	43
T. size (Mbytes)	11	0.6	0.2

LIGO Does it works? Test with 2 bands

LIGO-G010207-00-E

Zoom on each templates

Comparison of the outputs

Comparison of the noises

Ligo Signal and Template mismatched

The parameter space is 8 time larger,

The templates are 5 times smaller

Summary

- The Multi Band Template Analysis has many advantages
 - » No SNR change
 - » Reduce the computing requirements
 - » Work on small FFT (fit in the CPU cache, use single precision)
 - » Build-in hierarchical approach without compromise on SNR
 - » Build-in consistency tests
- More study in progress
 - » Implementation problems? Is the gain as good as expected?
 - ⇒ Building a prototype code

13