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1. Introduction

Fabry-Perot cavities with lengths of several kilome-
ters are utilized in laser gravitational wave detectors
such as the Laser Interferometer Gravitational-Wave
Observatory (LIGO).1 The mirrors in these Fabry-
Perot cavities are suspended from wires and there-
fore are free to move along the direction of beam
propagation. Ambient seismic motion excites the
mirrors, causing them to swing like pendulums with
frequencies of -LHz and amplitudes of -1 pm. To
maintain the cavity on resonance, the Pound-Drever
locking technique2 is used. During lock acquisition
the mirrors frequently pass through resonances of
the cavity. As one of the mirrors approaches a res-
onant position, the light in the cavity builds up. Im-
mediately after the mirror passes a resonance
position, a field transient in the form of damped os-
cillations occurs. This transient depends mostly on
the cavity's length and finesse and on the relative
velocity of the mirrors. Thus, careful examination of
the transient reveals useful information about the
cavity properties and the mirror motion.

When this research was performed, the author was with the
LIGO Project, California Institute of Technology, 1200 East Cali-
fornia Boulevard, Pasadena, California 91125. He is now with
the Department of Physics, University of Florida, P.O. Box 118440,
Gainesville, Florida 32611-0000. His e-mail address is
malik@phys.ufl.edu.

Received 1 March 2000; revised manuscript received 16 January
2001.

0003-6s35 / 0r / 12 1942_08$15.00/0
@ 2001 Optical Society of America

1942 APPLIED OPTlcs / vol. 40, No. 12 / 20 April 2001

LIGO-GO10212-00-D

The Doppler effect in Fabry-Perot cavities with suspended mirrors is analyzed. The Doppler shift,
which is intrinsically small, accumulates in the cavity and becomes comparable with or greater than the
linewidth of the cavity if the cavity's finesse is high or its length is large. As a result, damped oscillations
of the cavity field occur when one of the mirrors passes a resonance position. A formula for this transient
is derived. It is shown that the frequency ofthe oscillations is equal to the accumulated Doppler shilt
and that the relaxation time of the oscillations is equal to the storage time of the cavity. Comparison of
the predicted and the measured Doppler shifts is discussed, and application ofthe analytical solution for
measurement of the mirror velocity is described. @ 2001 optical Society of America
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The oscillatory transient was observed in the past
in several experiments with high-finesse Fabry-
Perot cavities. The oscillations were recorded in the
intensity of reflected light by Robertson et aLB In
that experiment the oscillations were used for mea-
surements of the storage time of a Fabry-Perot cavity
and its finesse. The oscillations were also observed
in the intensity of transmitted light by An et al.a In
that experiment the oscillations were used for mea-
surements of the cavity finesse and the mirror veloc-
W. The transient was also studied by Camp et al3
for applications to cavityJock acquisition. This time
the oscillations were observed in the Pound-Drever
locking signal. Recently the transient was revisited
by Lawrence et alS In that study both the cavity-
length scans and the frequency scans were analyzed
by use of all three signals: the intensities of the
reflected and transmitted fields as well as the Pound-
Drever signal.

Although the transient has frequently been ob-
served in experiments, its theory is far from being
complete. It is known that the oscillations in the
transient appear through the beatings of different
field components in the cavity. However, different
authors propose slightly different beat mecha-
nisms.4'6 Moreover, it is not understood why the
rate of the oscillations always increases in time and
what causes this chirplike behavior.

In this paper it is shown that the transient can be
explained by the Doppler effect that appears in a
Fabry-Perot cavity with moving mirrors. The
Doppler shift, which is intrinsically small, is ampli-
fied by the cavity and results in the modulation ofihe
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Fig. 1. Reflection of light off a moving mirror.

intracavity field. Based on this observation, we de-
rive a simple formula for the transient and explain its
chirplike behavior. In this approach the frequency
of the oscillations can easily be found from the cavity
parameters and the mirror velocity. The predictioni
based on the formula and on numerical simulations
are compared with the measurements taken with the
40-m^Fabry-Perot c-avity of the Caltech prototype
interferometer. In both cases good agreemeni is
found.

Currently the transient is studied in connection
with locking of the kilometer-sized Fabry-perot cav-
ities of LIGO interferometers.? The analysis pre-
sented in this paper serves as a basis for calculations
of the cavity parameters in these studies.

2. Reflection of Light Off a Moving Mirror
To t"l grounds for the analysis in this paper, we
consider a.simple process of reflection of figfrt (etec-
tromagnetic wave) offa moving mirror. Let the'mir_
ror be moving along the r axis with an arbitrarv
trajectory X(t). Assume that the light is p"op.gad_
ing along the positive r direction and is 

-rroirrrilll,

incident upon the mirror. The wave flont of the rJ_
flected wave observed at location r and time I is re-
flected by the mirror at some earlier time t,, which,
according to Fig. 1, satisfies the equation

c(t - t') : X(t') - x. (1)

This equation defines time /, as an implicit function of
x andt.

Let the electric field of the incident and reflected
waves be Eio(x, /) and E,a(x, /), respectively. Be-
cause of coltinuity of the waves at the mirror surface,
the two fields are related according to

8,udx, t) : ZbLX(t,), t,f. (2)

fo1^gimnlicity we assume that the mirror is perfect
(100Vo reflective) and that no phase change occurs in
the reflection.

Equations (1) and (2) allow us to calculate the wave
reflected by a minor moving along an arbitrary tra-jectory. Let the incident wave bJ plane and frorro-
chromatic:

11here co is the frequency and & is the waye number
(k : ,/c). Then the reflected wave is given by

E,.r(.x, f) : exp{lfort, - kx(t,)]]. @)

S_ubstituting for t' from Eq. (1), we obtain that the
electric field of the reflected wave is given by

E"ut(.x, t) : exp[j(ot + kx)]expL-2ihx(t,)1. (E)

_ 
The extra phase, -2kx(t,), appears as a result of

the continuity of the waves at the mirror surface and
leads to two closely related effects. On the one hand.
it gives rise to the phase shift of the reflected wave.
whichappears because_the mirror position is chang-ing: On the other hand, it gives ris-e to the frequenJy
shift of the reflected wave, which appears because thl
Ti*T is moving. Indeed, the frequency of the re_
flected wave can be found as

a,(t):a-2k##. (6)

{o.te th-at dx/dt is the instantaneous mirror velocity
u(/) and that

at' c

U: "*^r' 
(7)

which can be derived {rom Eq. (1). Combining Eqs.
(6) and (7), we obtain the formula for the frequeircy of
the reflected wave:

<'r'(f;:"4' (8)c+ult )

At any given location the electric field oscillates at
a-very high frequency [E o exp(jorl)]. It is conve_
nient to remove the high-frequency oscillating factor
e,xp(lof) and consider only the slowly varying-part of
the wave:

E(t1=8(x, t)exp(-iat). (9)

The two amplitudes, Er(e) and Er(t), which cor:re-
spond to the same wave but are defined at different
locations r and r', ate related:

Ez(t) : E r(t - L / c)exp(-ikL), (10)

E,"t(.r, t) : Ei^(x, t"), (11)

t" :2t' - t. (L2)

where Z is the distance between the two locations(L:x'-x).
We now obtain a formula for the reflection off the

moving mirror in terms of the slowly varying field
amplitudes. One can do this by tracing the in;ident
beam from the mirror surface back to tle point with
the coordinate r:

where time t" is further in the past and according to
Fig. 1is given by

E^(x, t): expfl(cof - hx)1, (B)
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Equations (11) and (L2) lead to the following relation
between the field amplitudes:

E,"t(t): Ei,.(f")exp{-2iklx(t') - xl];. (13)

This formula is used below for calculations of fields in
Fabry-Perot cavities with moving mir:rors. For non-
relativistic miror motion (lul << c) the frequency of
the reflected light can be approximated as

0 L X(t)
Fig.2. Schematic diagram of a Fabry-Perot cavity with a moving
mirror.

It becomes comparable with the linewidth of the cav-
ity if the relative velocity of the mirrors is comparable
with the critical velocity, defined as

,,tr) _ 
[ 
r _ 2w)1,,cl (14)

which differs from the exact formula, Eq. (8), only in
the second order in u/c.

3. Doppler Shift in Fabry-Perot Cavities

A. CriticalVelocity

Fabry-Perot cavities of laser gravitational-wave de-
tectors are long and have mimors that can move.
The Doppler shift in such cavities can be described as
follows: Let the cavity length be L and the transit
time of light be ?:

T: L/c. (15)

Assume that one of the mirrors is moving with con-
stant velocity u. Then the frequency of light re-
flected offthe moving mirror is Doppler shifted, and
the shift in one reflection is

6<o=<rl'-0):-2ku. (16)

Subsequent reflections make this frequency shift
add, forming the progression

Eco, 26o, 36o1, (77)

Therefore the Doppler shift of light in the cavity ac-
cumulates with time-

A suspended mirror in such cavities moves little.
Its largest velocity is typically of the order of a few
micrometers per second. The corresponding Dopp-
ler shift is of the order of a few hertz, which is very
small compared with the laser frequency 2.82 x I0r4
Hz for an infrared laser with wavelength }' : 1.06
p,m. However, the linewidth of the long Fabry-
Perot cavities ofthe laser gravitational wave detec-
tors is also very small, typically of the order of 100 Hz.
Therefore the small Doppler shift, as it accumulates
with time, can easily exceed the linewidth.

The characteristic time for light to remain in the
cavity is the storage time, which is defined as I/e
amplitude folding time:

l, trc)t
--v cr 2rgF 4Lg2'

where S is the finesse of the cavity:

, rF"hv:-
1 - ro16

(20)

(21)

2T
f:-' lln(r,16)l'

where ro and rb are the amplitude reflectivities of the
cavity mirrors. Then the Doppler shift accumulated
within the storage time is

ta,l # :,2. (1e)
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Note that the mirror moving with the critical velocity
passes the width of a resonance within the storage
time. These qualitative arguments show that the
Doppler effect becomes significant if the time for a
mirror to move across the width of a resonance is
comparable with or less than the storage time of the
cavity.

B. Equation for Fields in a Fabry-Perot Cavity

The response of Fabry-Perot cavities is usually ex-
pressed in terms of amplitudes of the electromagnetic
field circulating in the cavity. The equation for the
dynamics of this field can be derived as follows: As-
sume, for simplicity, that one of the mirrors (input
mirror) is at rest and the other (end mirror) is freely
swinging. Let the trajectory of this mirror be X(t).
It is convenient to separate the constant and the
variable parts of the mirror trajectory:

X(t1 = L + x(t). (22)

In Fabry-Perot cavities of gravitational-wave detec-
tors, L is of the order of a few kilometers and r is of
the order of a few micrometers. Without loss of gen-
erality we can assume that cavity length.L is equal to
an integer number of wavelengths and therefore
exp(-2ikL) : t.

Let the amplitude of the input laser field be ,o,,(r)
and the amplitudes of the fields inside the cavity be
E(t) and E'(t), both defined at the reflective surface of
the input mirror, as shown in Fig. 2. Then the equa-
tion for reflection offthe end mirror can be written as
follows:

E'(t1 : -ruE(t - 2T)expl-2ikx(t - T)1, (23)

(18)



where ru is the amplitude reflectivity of the end mir-
ror. A similar equation can be written for the reflec-
tion offthe front mirror:

E(t): -r"E'(t) + t"Ei^(t), (24)

where I, is the transmissivity of the front mirror.
Finally, the amplitudes of the transmitted and the

reflected fields are grven by

E"(t):tbU(t-T),

E,"r(t) : roE i^(t) + t 
"E' 

(t),

(25)

(26)

where f6 is the transmissivity of the end mirror.
Note that the reflected field is a superposition of the
infracavity field leaking through the front mirror and
the input laser field reflected by the front mirror, as
shown in Fig. 2.

It is convenient to reduce Eqs. (23) and (24) to one
equation with one field:

E(t1 : t"EnG) -r r"r6E(t - 2?)exp[-2ikx(t - T)1.

(27)

Further analysis of field dynamics in the Fabry-
Perot cavities is based on this equation.

4. Transient Caused by Mirror Motion

The mirrors in Fabry-Perot cavities of laser
gravitational-wave detectors are suspended from
wires and can swing like pendulums with frequencies
of -1 Hz. The amplitude of such motion is of the
order of a few micrometers. During the swinging
motion, the mirrors frequently pass through reso-
nzrnces of the cavity. Each passage through a reso-
nance gives rise to the field transient in the form of
damped oscillations. Such a transient can be de-
scribed in terms of the complex amplitude of the cav-
ity field as follows: For the entire time when the
mirror moves through the width of a resonance (a few
milliseconds), its velocity can be considered constant,
and its trajectory can be approximated as linear:
x : ut. Often the amplitude of the incident field is
constant: Ei^Q) : A. Then the amplitude of the
intracavity field satisfies the equation

E(t): toA * ror6E(t - 2T)expl-2iku(t - T)7, Q8)

which is a special case of Eq. (27).
Numerical solutions of Eq. (27) can easily be ob-

tained with a computer. Examples of the numerical
solution with the parameters of LIGO 4-km Fabry-
Perot cavities are shown in Fig. 3. Such numerical
solutions provide an accurate description for the field
transient but give little insight into the physics of the
process. Therefore it is worthwhile to obtain an ap-
proximate analytical solution for this equation.
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Fig. 3. Modeled response of the LIGO 4-km Fabry-Perot cavity
(fnesse 205). The two curves correspond to the slow (top) and the
fast (bottom) motions of the mirror (u". : 1.48 x 10-6 m/s).

A. Approximate Solution for the Transient

An approximate solution can be derived as follows:
A general solution ofEq. (28) can be represented as a
sum:

E(t): C(t) + D(t). (29)

Here C(f) is a particular solution of the nonhomoge-
neous equation and D(r) is a general solution of the
homogeneous equation:

C(t) - ror6C(t - 21)expl-2iku(t - T)l: t"A, (30)

D(t) - r"r6D(t - 2T)expL-2iku(t * 
")l 

: 0. (31)

Both amplitudes, C(t) and D(t), change little during
one round trip. For the C field the approximation
C(t - 2I) - C(t) yields the solution

C(t1- I - ro16 exp(-2ikut)'
(32)

which is generally known as the adiabatic field.
[Here we have also made the approximation that
u(t - n * ut.f The adiabatic component was intro-
duced empirically by Yamamoto.?

For theD field the approximationD(t - 21) * D(t)
yields only a trivial solution: D(t) : g. Fortu-
nately, the equation for the D field can be solved
exactlv. Atrial solutionfort > 0is

D(t) : Ds(ror6)'/2r exp[id(t)], (33)

where Ds is the value of the D field at time f : 0 and
S(t) is an arbitrary phase. Then Eq. (31) reduces to
the equation for the phase

0(r) : 6(t - 2T) - 2ku(t - T). (34)

'10

toA
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Its solution, up to an additive constant, is

o(,): _fr,,.

Thus we obtain the solution for the D field:

D(t) :D, 
""e( -t- - i #r) , (36)

where r is the cavity storage time defined in Eq. (18).
This expression is valid for I > 0 and describes the
phase modulation of the cavity field that is due to the
Doppler effect. The constant Do can be found from
the asymptotic behavior of the field8 and is given by

.l in\r/z lff\no: t"A\znrr) "v\zn;e). (37)

Equation (36) shows that the D field oscillates with
the frequency that increases linearly with time:

O(t) =
hlul= rt' (38)

Note that the frequency of the oscillations is equal to
the accumulated Doppler shift:

o(t): larl#,
where 6o is the frequency shift that occurs in one
reflection off the moving mirror [Eq. (16)].

Combining Eqs. (32) and (36) we obtain the for-
mula for the transient:

E(t): toA

(35)

(3e)

c
'6

-i
I

(L

- 
numer. $m.

(40)

Thus the transiertt, which occurs during a passage of
the mirror through a resonance, is caused by the
Doppler effect amplified by the cavity. The fre-
quency of oscillations increases linearly in time with
the rate proportional to the mirror velocity (Fig. a).

Comparison of the approximate analytical solution
given by Eq. (40) with the numerical simulations
based on Eq. (28) shows that the two solutions agree
well in the region past the resonance (t >> T). How-
ever, the two solutions differ substantially in the re-
gion near the center ofthe resonance (l * 0). This is
so because the center ofthe resonance is the bound-
ary of the validity of the approximate analytical so-
lution.

The above analysis leads to the following explana-
tion of the oscillatory transient: As the mir:ror ap-
proaches the resonance position (r : 0), the light
builds rapidly in the cavity. At the time when the
mirror passes the center ofthe resonance, a substan-
tial amount oflight accumulates in the cavity. From
this moment on, the light stored in the cavity (D
component) decays according to the exponential law,
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Fig. 4. Transient response of the Fabry-Perot cavity of the
Caltech 40-m prototype interferometer (u f u., = 1.93).

and its frequency shifts continuously as a result of
the Doppler effect. At the same time there is a con-
stant influx of the new light from the laser (C com-
ponent). The new light is not affected by the
Doppler shift and therefore evolves according to the
usual adiabatic law.

B. Observation of the Transient through Beats

The small frequency shi{ts of the light circulating in
the cavity are usually observed through beats.
There are several beat mechanisms that take place in
Fabry-Perot cavities with moving mirrors. Here we
describe the three most frequently encountered beat
mechanisms in detail.

The Doppler-induced oscillations of the intracavity
field can be observed in the intensity of the transmit-
ted field. The above analysis shows that the Dopp-
ler effect gives rise to phase modulation of the D field.
As a result, cavity field E, which is the sum of the D
and C fields, becomes amplitude modulated. This
amplitude modulation can be observed as the inten-
sity modulation of the field transmitted through the
cavity. According to Eqs. (25) and (29) the intensity
of the transmitted field is proportional to

lE(t)l' : lc(t)l' + lD(t)|,+2 Re[C(r)*D(r)], (41)

where an asterisk stands for complex conjugation.
Note that neither lC(t)12 nor lD(t)l'is an oscillating
function. Therefore the oscillations come from the
last term, which represents a beating between D and
C components of the intracavity field.

Similarly, the oscillations of the intracavity field
can be observed in the intensity of the reflected field.
According to Eqs. (23) and (26), the amplitude of the
reflected field can be found as

dol
al

| - ro16 exp(-2ikut)

+ a,exn( -L - i#r)

E,.r(t) : l(r"' + il\En?) - t"E(t)l/r". (42)



For high-finesse cavities (ro o 1) with low losses
(ro' * l,' - l) the complex ainplitude of the reflected
field can be approximated as

-1

6
6
o
0

- 
formula

- - expenment

02 0.25
trme (ms)

slope = 86.8 MHr's

E ".lt) 
: E r"(t) - t "E(t).

(43)

Then the intensity of the reflected light is given by

I 
E,"r{t)|, : 

I 
n,"G)|, + t 

"21 
n 6112 - 2t 

" 
RelE r^(t) 

*E (r) l.
(44)

The second term on the right-hand side of Eq. (44)
represents the amplitude modulation of the intracav-
ity field as described in Eq. (41). The last term rep-
resents a beating of the intracavity field transmitted
through the front mirror and the input laser field
promptly reflected by the front mirror. Both terms
give rise to the oscillations in the intensity of the
reflected field. Therefore the decay ofthe reflected
intensity is described by the double exponential func-
tion with two decay times, r andrf 2, as was noted by
Robertson et al.3

The oscillations can also be observed in the Pound-
Drever signal, which requires that optical sidebands
be imposed on the light that is incident upon the
cavity. In this case the signal is obtained from beat-
ing of the carrier reflected field with the sideband
reflected fields. Inasmuch as the carrier field prop-
agates in the cavity, it becomes Doppler shifted as a
result of the motion of the cavity mirrors. The side-
band fields are promptly reflected by the front mirror
of the cavity. Therefore their amplitudes are pro-
portional to the amplitude of the incident carrier
field. Then the signal can be approximated by the
formula

V(t) : -Im[exp('1)8,"(t)*E(t)f, (45)

where 1is the phase of a local oscillator in the optical
heterodyne detection.

If the amplitude of the input laser field is constant
[8 "(t) 

: A], then the Pound-Drever signal becomes a
linear function of the cavitv field:

V(t) : -A Imfexp(il) E(t)], (46)

: -A Im{exp(,r)[C(t) + D(t)]]. (47)

Because the C component is a monotonic function,
the oscillations come from the D component only.
Unlike the signals derived from the intensity of the
transmitted or reflected fields, the Pound-Drever sig-
nal is linearly proportional to the amplitude of the
intracavity field and therefore presents a direct way
to observe the oscillations.

5. Experimental Analysis of the Transient

The measurements of the oscillatory transient ana-
lyzed in this paper were taken with the 40-m Fabry-
Perot cavity of the LlGO-prototype interferometer at
Caltech. The experimental setup was previously de-
scribed by Camp et al.s Figure 4 shows the Pound-
Drever signal of the 40-m Fabry-Perot cavity
recorded with a digital oscilloscope (dashed curve).

0 0 05 0 1 0 15 0.2 025 0.3 0.35 0.4 0.45 0.5
lrme (ms)

Fig. 5. Top, theoretical prediction (solid curve) and measurement
(dashed curve) of the adjusted Pound-Drever (P.-D.) signal. Bot-
tom, measured Doppler shilt v" and linear fit rr(/).

The theoretical prediction shown in the same figure
(solid curve) is obtained by numerical simulations of
the intracavity field by use of Eq. (28). After adjust-
ment of the demodulation phase (ry : -0.28 rad),
good agreement between the theoretical and the ex-
perimental curves was achieved. It is important to
note that the mirror velocity (u * 5.5 x 10-" m/s)
used for the numerical simulations was not a fit pa-
rameter. It was obtained from the interpolation of
the mirror trajectory by the optical vernier tech-
nique.e

The formula for the transient, Eq. (40), can be used
for extracting the cavity parameters from the Pound-
Drever signal. In such an analysis it is convenient
to remove the adiabatic component from the Pound-
Drever signal. The result is a function similar to
D(e), which is given by

v,(t): -AlD6lexp( -'+)

Here we have introduced /0, the time when the mirror
passes a center of the resonance, and D : arg Do.
The measured Pound-Drever signal (with the adia-
batic component removed) and the theoretical predic-
tion based on this formula are shown in Fig. 5 (top).

A. Measurement of the Cavity Finesse

The oscillatory transient can be used for measure-
ments of the cavity finesse. The present approach is
based on the exponential decay ofthe Pound-Drever
signal. One can find the finesse by studying the
absolute value of the adjusted Pound-Drever signal:

lv"(t)l cc exp(-tlr). @9)

Indeed, by fitting the exponential function to the en-
velope of the oscillations lVo(t)|, one can find the stor-
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age time of the cavity, r, and therefore the cavitr/s
finesse:

oi- Tt

'/ - z sinry"/r)
Applied to the data shown in Fig. 4, this method
yields the following value for tlie finesse of the
Caltech 40-m Fabry-Perot cavity:

the zero cros_sings of the signal, the predicted average
frequencies become

U-in: ,-i (t, - to) + 6t,,
AI

(50)

(51)

(52)

(53)

(54)

(55)

(57)

6u, =

where 6u, is a small correction that accounts for the
exponential decay of the signal that is present in Eq.
(48). The correction can be found froin Eq. (49) by
use of a perturbation expansion in powers off ir. ln
the lowest order, it is given by

(58)

(59)

(61)

G2)

(63)

(64)

(65)

(66)

This result is close to the one previously obtained
from the measurement of the mirror refleitivities (g
= 1050). The present approach to measuring cavily
storage time is similar to the one described 6v Rob-
ertson et al.$

B. Measurement of the Mirror Velocity
The oscillatory transient can also be used for mea-
surements of the mirror velocity. The present ap-
proach is based on the linear shift of the frequencybf
the Pound-Drever signal. One can find the velolity
by studying either the peaks or the zero crossings of
the adjusted Pound-Drever signal, VD(t).

Let the times for the zero crossings be t,, where n
is an inte-ger. The values for tn aie defined by the
functional form of the adjusted Pound-Drever signal
[Eq. ( B)], and are given by

I : 1066 -f 58.

Atr: to*t - tn,

in: (to+ t,+)12.

4xuT(7"- t)2w
Such a correction becomes significant only if the os-
cillations are close to being critically damped.

In general, the zero crossings can be affeited by the
subtraction of the adiabatic component. Therefore
we prefer to use the peaks of the signal. The peak
positions tn are found from the measured pound*
Drever signal,-which is shown in Fig. b (top). Be-
cause the oscillations are far from being critically
damped, the correction 6v, can be neglected. In this
experiment, the first-order correction is much less
than the error in determination of the average fre-
quencies. As a result the measured values of tt e
average frequencies uz appear close to the linear
function lEq. (57)1, as can be seen in Fig. b (bottom).
Therefore we can apply a linear fit to tie data:

fia,- ta)':nz * ^y * b.

This-relation depends on the demodulation phase "y,
which is not always known in the experiment. How-
ever, the difference

fil{r".r- t)z - (t,- toyzl: n

where o and b are the slope and the intercept of the
linear function. The least-squares adjustment of
the fit givas the following values for these parame-
ters:

,(t): at * b, (60)

4 : (86.8 -r 0.6) x 106 Hzls,

6 : (-0.b -f 1.0) X 103 Hz.

The slope is related to the mirror velocity, and the
intercept is related to the time when tlie mirror
passes through the center ofthe resonance:

does not depend on the demodulation phase and
therefore is more suitable for this analysis. Define
the spacings between the zero crossings, Af,, and the
positions of their midpoints, fo, as follows:

Then the average frequencies of the oscillations of
Vp(t) can be defined as

_1
'": z$to' (56)

Using the identity given byEq. (53), we can show that
the average frequencies satisfu the equation

U.," : 
)\T 

(t" - t).

Thi,s equation is a discrete analog of the continuous
evolution tEq. (88)1.

If the times f, correspond to the peaks and not to
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u : ItTa,

ts: -b f a.

From these relations we obtain

u : (5.7 -i 0.4) x L0-6 m/s,

ro : (0.6 -+ 7.2) x 10-5 s"

The errors are due to uncertainty in the peak posi-
tions, which are limited in this measurement bv the
resolution of the oscilloscope.

6. Gonclusions
The Doppler effect in Fabry-Perot cavities with sus-
pended mir:rors can be significant and manifests itself
in the oscillations of the field transient, which ean be
directly observed in the Pound-Drever signal. The



transient can be used for accurate measurements of
the cavity finesse and the mirror velocities. The for-
mula for the transient, implemented in real-time com-
puter simulations, can be used in lock-acquisition
algorithms.

The analysis presented in this paper explains the
chirplike behavior of the transient and leads to a
simple formula for the frequency of the chirp. How-
ever, the approximate analytical solution given in
this paper describes only the ringdown part of the
transient. The buildup part has yet to be explained.
Also, it is not clear at the present time why oscilla-
tions appear always after the mir:ror passes the cen-
ter ofthe resonance and not before.
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