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Classical Linear Detection              
Theory

 

• For a given data vector, consider the standard hypothesis:

• The likelihood ratio test is:

H0:   x n n N 0 1,( )∼,=

H1:   x n s+ s W RN⊆∈,=

max
s W∈

px H x H1( )

px H x H0( )
---------------------------------------

H1
><

H0

λ
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Classical Linear Detection              
Theory

 

• Simple algebra gives

where

x s,〈 〉
H1
><

H0

s 2

2
--------- λ+

s min
ϕ W∈

x ϕ– 2arg=
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Classical Linear Detection              
Theory

 

• Example 1: Filter Bank

For W  such that s W s 2,∈∀ 1,=

min
ϕ W∈

x ϕ– 2arg max
ϕ W∈

x ϕ,〈 〉arg=

max
ϕ W∈

x ϕ,〈 〉
H1
><

H0

1
2
--- λ+
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Classical Linear Detection              
Theory

 

• Example 2: Bandlimited Signal

where   is the bandpass filtered data.

s x// x//
2

H1
><

H0

2λ⇒=

x//
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Classical Linear Detection              
Theory

 

• Example 3: Vector Subspace

For the union of a set of subspaces, just need to consider 
the largest norm square over all the subspaces.

• In some sense, “efficiency scales as the inverse square root 
of generality” (sic)

For a basis e1 … eM,{ , } s x//=, x ei,〈 〉 ei x//
2

H1
><

H0

2λ⇒
i 1=

M

∑=

x//
2 χM

2 SNR
P

M
---------≅⇒∼



7 of 40 web.mit.edu/julien/talkUWM.pdf

Nonlinear Signal Estimation

• Consider again the model

but from an estimation point of view.

• Consider transforming the data to some basis where the 
signal is concentrated on a small number of basis functions

• The signal is efficiently recovered by thresholding

 x n s+ s W RN⊆∈,=

y i[ ] x ψ
i

,〈 〉=

ŝψ i[ ] ωiy i[ ]=
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Nonlinear Signal Estimation

• The goal is to minimize the mean-square error

• With an Oracle that knows which basis functions are        
relevant,

MSE E s ŝ– 2[ ]=

MSE i[ ]
1  if  ωi = 0

ŝψ i[ ]   if  ωi = 1






=

MSE min 1 ŝψ i[ ],( )
i 1=

M

∑=
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Nonlinear Signal Estimation

• Without the luxury of an Oracle, applying the threshold

gives a MSE 

More importantly: 
no essentially better inequality can hold   

universally for all signals in RN                    

(Donoho & Johnstone, 1993)

ŝψ i[ ] 1 y i[ ] η> y i[ ]   with  η, 2 Nlog= =

MSE 2 N  MSEOracle⋅log≤
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The Missing Link

• The best signal in W for correlation is

• For the nonlinear approach, the best signal is taken to be 

• The nonlinear approach doesn’t explicitely refer to W, so it is 
very general

• Optimality statements are hard to make (what is the metric 
for an unmodeled burst?), but looks optimal at least asymp-
totically

ŝ min
ϕ W∈

x ϕ– 2arg=

ŝ min
ϕ R

N∈
arg E s ϕ– 2[ ]=
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The Missing Link

1.  Impose a restriction on the signal character by picking an 
orthonormal basis.

2.  Transform the data to that basis. Apply a threshold on the 
transformed data.

3.   Inverse transform back to the time domain. This gives the 
signal estimation.

4.   Correlate the signal estimation with the data. Threshold 
on the correlation to decide between H0 and H1.
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Choosing the Basis

• The crux of the problem is to chose the orthonormal basis: 
the best MSE

is obtained in the basis where the number of coefficients 
above 1 is the smallest.

• One thing to do is to minimize the effect of a suboptimal 
basis by using a lower threshold on |y[i]| but doing cluster-
ing analysis

• Another thing to do is to try to pick the best basis for the 
data by minimizing the number of large coefficients

MSE min 1 ŝψ i[ ],( )
i 1=

M

∑=
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Clustering Analysis
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• Spectrogram forms an 
orthonormal basis of RN

• For wide sense stationary, 
power is independent in fre-
quency (modulo 2π)

• For colored noise, some 
dependence in time, small if

E P i[ ] P j[ ][ ] P2 i[ ] sinc
2
T i j–( )∝

1
min f line
--------------------- T«
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Clustering Analysis
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• For Gaussian noise, power 
follows the Rice distribution

• Setting a threshold on power 
or amplitude of real and 
imaginary parts gives the 
signal estimation

• Get a white noise picture 
(like TV ‘snow’)

p Pij( ) 1
Si
----

Pij Qi+

Si
-------------------– 

  I0

2 PiQi

Si
-------------------

 
 
 

exp=
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Clustering Analysis
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• 2D white noise doesn’t like 
to form large clusters

• Physically, most signals are 
expected to form clusters

• Clean the image by thresh-
olding on the cluster sizes

• Gives a list of significant 
events

• Power over each cluster is a 
χ2, and is the statistic used 
for the last cut
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Clustering Analysis

• Clusters on the square lattice are well known in Statistical 
Mechanics; they are called ‘lattice animals’

• Given a (uniform) black pixel probability p, the mean num-
ber of clusters of size s per pixel is

• The perimeter polynomial basically counts the number of 
clusters of different shapes:

ns〈 〉 p
s
Ds 1 p–( )=

Ds q( ) gstq
t

t
∑=
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Clustering Analysis
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• Number of clusters of size 
larger than s scales almost 
exponentially with s.

• This is the quantitative ver-
sion of ‘2D white noise 
doesn’t like to form large 
clusters’
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Clustering Analysis

• To get the first order description of the cluster size popula-
tion (i.e. the small p limit), only need to count the number of 
clusters of a certain size and a certain perimeter 

››e.g. there are 1 cluster of size 1, 2 of size 2, 19 of size 4 (Tetris), and  
400795844 of size 17.

• Can also do higher order, although it’s hard computationally. 
At this time, I know the ‘two-point correlation function’ for a 
pair of clusters up to size 4 at any distance from each other.

››e.g. there are 40 ways to place two clusters of size 2 at a distance of 6, and 
6004  ways to place two clusters of size 4 at a distance of 6.



19 of 40 web.mit.edu/julien/talkUWM.pdf

Evaluating the non-gaussianity of the 
background noise
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Best Basis Selection

• Consider a library of bases. Consider the entropy of the 
data in all bases. Pick the minimum of the entropy. In that 
basis, apply the usual threshold 

Then,  with probability exceeding 1- e / N log2N,

Cf. the result for a fixed basis,

ŝψ i[ ] 1 y i[ ] η> y i[ ]   with  η, λ 1 N log2N+( )= =

MSE
λ 1 N log2N+( )

1 8 λ⁄–
-----------------------------------------MSEBasis Oracle≤

MSE 2.4 2 Nlog+( ) 1 MSEOracle+( )≤
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Best Basis Selection

• The best basis case gives a MSE at most a constant factor 
worse than the fixed basis MSE. However, the signal is 
compressed by a much larger factor.

• One interesting approach is to use wavelet packets
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Wavelet Packets

• The standard wavelet transform applies iteratively a low and 
a high-pass filter to generate different levels of ‘details’ and 
‘approximations’
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Wavelet Packets

• The wavelet basis is just one of many bases from the more 
general wavelet packet:
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Wavelet Packets

• Any subset of the binary tree is a valid basis

wavelet basis some other unnamed bases
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Wavelet Packets

• For a given data segment, the best basis is picked by mini-
mizing the entropy over the binary tree: 

S0

S1 S2

S0 < S1 + S2

S0 > S1 + S2
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Wavelet Packets

1. Take a segment of data. Compute its wavelet packet 
decomposition.

2. Compute the entropy over each node of the wavelet 
packet. Go over the tree to minimize the entropy.

3. In the best basis, retain all the coefficients above some 
threshold.

4. Back in the time domain, this is the signal estimator. Corre-

late with data, apply threshold on χ2.
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Simulations

• Working in the frequentist picture, the detectors are com-
pared in the following way:
1.A segment of length N of white gaussian noise is generated
2.The detector is applied on the data segment
3.The lower and upper limits on the confidence interval on the probability of 
false alarm (using a Bernouilli distribution) are computed at the 95% confi-
dence level
4.If  (UL-LL) < 0.025, continue. Otherwise, back to 1.
5.Repeat 1. to 4. with signals drawn from some population distribution super-
imposed to the noise.

• In all cases, the simulations are run a number of times, with 
the thresholds of the detector being varied. 
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I. Long signal

• Data are 16 s long at 2048 Hz

• Noise is gaussian white of unit variance

• Signal is 8 s long, from 4 s to 12 s. It is a white noise of unit 
variance that has been passed through a bandpass filter 
with corner frequencies at 100 Hz and 105 Hz.

• SNR is therefore -23 dB
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I. Long signal
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Isn’t the excess power statistic    
optimal?

• Searching over a fixed shape time-frequency rectangle: 
excess power optimal 

min
ϕ W∈

x ϕ– 2arg max
t f,

x// t f,( ) 2arg=

x s,〈 〉
H1
><

H0

s 2

2
--------- λ+ max

t f,
x// t f,( ) 2

H1
><

H0

2λ⇔



31 of 40 web.mit.edu/julien/talkUWM.pdf

Isn’t the excess power statistic    
optimal?

• Searching over a set of time-frequency rectangles:         
NOT optimal in Frequentist sense

min
ϕ W∈

x ϕ– 2arg max
t f ∆ B, , ,

x//
∆ B,

t f,( ) 2
arg=

min
ϕ W∈

x ϕ– 2arg max
t f,

x//
max ∆ max B,

t f,( ) 2
arg=

x s,〈 〉
H1
><

H0

s 2

2
--------- λ+ max

t f,
x//

max ∆ max B,
t f,( ) 2

H1
><

H0

2λ⇔
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Isn’t the excess power statistic    
optimal?

• Frequentist optimal decision rule (high confidence of no 
false events):

• Bayesian optimal decision rule (high confidence that events 
are signal):

max
s W∈

px H x H1( )

px H x H0( )
---------------------------------------

H1
><

H0

λ

px H x H1( ) ps s( )
W∫ ds

px H x H0( )
-------------------------------------------------------

H1
><

H0

λ
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II. Short signal

• Data are 1s long at 16384 Hz

• Noise is gaussian white of unit variance

• Signal is 0.7 s long, from 0.125 s to 0.825 s. It is an inspiral 
waveform (starting when f = 40 Hz) of two 100 MSun black 
holes, followed by a fake merger, followed by a ringdown (cf. 
Anderson & Balasubramanian, gr-qc/9905023)

• Energy repartition is 82% inspiral (chirp), 15% merger 
(broadband), 3% ringdown (narrowband)

• SNR is 19 dB
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II. Short signal
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Two Channels

• Consider the following hypothesis (Fourier domain):

where by assumption hi > ki

H0:  x n1=

        y n2=

H1:  x n1 s1+=

                           y n2 s2,  s1, s2 S∈+=

H2:  x n1 h s;+=

                     y n2 k s; ,  s W∈+=
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Two Channels

• The standard (optimal) way to run the test involves two like-
lihood ratios:

L1
max
s W∈

px y, H x y, H1( )

px y, H x y, H0( )
--------------------------------------------------=

L2
max
s W∈

px y, H x y, H2( )

px y, H x y, H0( )
--------------------------------------------------=
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Two Channels

• The decision regions have 5 degrees of freedom

L1

L2

H0

H1

H2
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Two Channels

• Using the ‘MSE’ approach as before gives the following test:
1.Construct the quantity 

2.Use the signal estimator

3.Compute L2 using the signal estimator. Compute L1 by taking the product of 
the ‘nonlinear’ likelihood ratios computed individually for the two channels as 
before
4.Decide between the three hypothesis

σi

xi
2

4 hi
2

-------------
yi

2

4 ki
2

-------------+=

ŝi

xi

2hi
-------1 σi λ1>{ }

yi

2ki
-------1 σi λ2>{ }   ,   λ2 λ1>+=



39 of 40 web.mit.edu/julien/talkUWM.pdf

Two Channels
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Conclusion

• The main difficulty in studying the detection of unmodeled 
transients is to come out with an unbiased measure of the 
performance of the detectors

• Nonlinear methods offer great performances and generality

• For the very limited study presented here, the Fourier basis 
works fine

• With some optimization work, the wavelet basis will proba-
bly do even better

• The excess power statistic is optimal to build ‘Credible Inter-
vals’ (Bayesian confidence intervals)

• Nonlinear methods are not necessarily optimal, but work 
better for ‘Classical confidence intervals’ (Frequentist)


