

Advanced LIGO Systems Requirements Review

3 July 2001

Agenda

- Systems requirements & design, 1 hr (Peter F)
- Optical layout, 20 min (Dennis C)
- Generic requirements & standards, 10 min (Dennis C)
- LIGO Observatory environments, 20 min (David S)
- Summary

Outline for systems design

- Upgrade approach & philosophy
- System level requirements
- System level design
- Subsystem requirements

Upgrade approach & philosophy

• We don't know what the initial LIGO detectors will see

- » Design advanced interferometers for improved broadband performance
- Evaluate performance with specific source detection estimates
 - » Optimizing for neutron-star binary inspirals also gives good broadband performance
- Push the design to the technical break-points
 - » Improve sensitivity where feasible design not driven solely by known sources

Upgrade approach, cont'd

- Design approach based on a complete interferometer upgrade
 - » More modest improvements may be possible with upgrades of selected subsystem/s, but they would profit less from the large fixed costs of making any hardware improvement
- Two interferometers, the LLO and LHO 4k units, would be upgraded as broadband instruments
- Current proposal for third interferometer (LHO 2k):
 - » increase length to 4 km
 - » implement a narrowband instrument, tunable from ~500 Hz-1 kHz

Estimated strain sensitivity 40 kg sapphire test masses

LIGO Top level performance & parameters

Parameter	LIGO I	LIGO II	
Equivalent strain noise, minimum	3x10 ⁻²³ /rtHz	2x10 ⁻²⁴ /rtHz	
Neutron star binary inspiral range	19 Mpc	300 Mpc	
Stochastic backgnd sens.	3x10 ⁻⁶	1.5-5x10 ⁻⁹	
Interferometer configuration	Power-recycled MI w/ FP arm cavities	LIGO I, plus signal recycling	
Laser power at interferometer input	6 W	125 W	
Test masses	Fused silica, 11 kg	Sapphire, 40 kg	
Seismic wall frequency	40 Hz	10 Hz	
Beam size	3.6/4.4 cm	6.0 cm	
Test mass Q	Few million	200 million	
Suspension fiber Q	Few thousand	~30 million	

Comparison with 40 kg fused silica test masses, Pin = 80 W

System level requirements

- Non-gaussian noise
 - » Difficult to establish quantitative requirements
 - » Subsystems should be designed to avoid potential generation of nongaussian noise
- Availability as for initial LIGO:
 - » 90% for a single interferometer (40 hrs min continuous operation)
 - » 85% for two in coincidence
 - » 75% for three in coincidence
- Environmental sensing
 - » Initial PEM system basically adequate, some sensor upgrades possible
- Infrastructure constraints
 - » Designs must fit with existing LIGO facilities, with two possible changes:
 - Larger diameter mode cleaner tube
 - mid-station BSCs moved to the ends, for 4km length 3rd ifo
- Data acquisition
 - » Same sample rate and timing requirements as for initial LIGOb
 - » Each subsystem must be designed with appropriate data acquisition channels

What we've left out

Internal thermal noise

- » Flat-topped beams to reduce thermo-elastic noise
- » Cooling of the test masses
- » Independent readout of test mass thermal motion

• Quantum noise

- » Quantum non-demolition techniques
- » Very high power levels, coupled with all-reflective configurations

• Seismic noise

» Independent measurements of gravitational gradient noise

Systems level design: signal recycling

- Provides ability to do some shaping of the response, but principal advantage is in power handling:
 - » Signal recycled interferometer: 200 Mpc NBI range, 2.1 kW beamsplitter power
 - » Non-signal recycled, same input power: 180 Mpc range, 36 kW beamsplitter power
- Limit to signal vs power recycling comes from losses in the signal recycling cavity
 - » Arm cavity finesse of ~1000 probably OK
 - » Arm cavity finesse of ~10,000 probably too high
- Not requiring a tunable or selectable signal recycling mirror
 - » Not necessary for the 'broadband performance' goal

Output mode cleaner

- Reduce the output power to a manageable level
 - » 20x higher input power (compared to initial LIGO) leads to 2-3x higher output power
 - 1-3 watts total power w/out a mode cleaner
 - » Output mode cleaner leaves only the TEM00 component of the contrast defect, plus local oscillator
 - ~100 mW total power w/ mode cleaner
- Necessary for dc readout scheme
 - » Technical laser intensity noise must be controlled
 - » Even with rf readout, detecting and getting shot noise in several Watts is tough
- Two possible designs:
 - » Dc readout: short (~0.5 m) rigid cavity, modest isolation needs
 - » RF readout: essentially a copy of the input mode cleaner (isolation requirements probably much more lax)

Active thermal compensation

- Thermal loading comparison, total absorbed power:
 - » Initial LIGO: 20 mW
 - » AdLIGO, sapphire: 350–1600 mW, silica: 60-340 mW
 - » Sapphire has lower thermal lensing by a factor of 25, lower thermoelastic distortion by a factor of 2
 - » AdLIGO must also operate at low power
- Required compensation: roughly a factor of 10 in opd
- Two compensation methods
 - » Radiative ring heater, close to optic
 - » External heating laser beam, scanned over the optic
- Compensation plate
 - » Several advantages for active compensation actuation: limit temperature rise in TM; avoid noise of laser actuator; easier to interface

Input power

Low & High power modes

Test mass material: sapphire vs fused silica

• Sapphire is baseline design:

- » 20% larger NBI range
- » Potential for thermal loading advantage
- » Still under development:
 - Size
 - Absorption
 - Homogeneity
 - Scattering

Silica

- » Better understood materials properties
- » Size available, but expensive

Test mass size and mass

Bigger is better!

40 kg a practical maximum for sapphire (for AdL timescale)

Fused silica: choice not so clear

Beam size

- Win quickly with sapphire, w^{-3/2}, more slowly with fused silica, w^{-1/2}
- Limits imposed by:
 - » Aperture loss in arm cavities
 - » Polishing very long radii of curvature
 - » Attaining polishing uniformity over a larger area
 - » Stability of arm cavities in the presence of mirror distortions and misalignments

• Sapphire

- » With an upper limit of 15 ppm aperture loss, beam radius of 6.0 cm minimizes thermo-elastic noise, for a 40 kg piece
- Silica
 - » Probably limited more by thermal distortions; using 5.5 cm for now

40 kg sapphire optimization

Aperture loss kept constant at 15 ppm

Seismic wall frequency: 10 Hz

Specific source detection

- » Sensitivity to NBIs or stochastic background doesn't significantly change for cutoff frequencies less than 15 Hz
- » Somewhat more sensitive for intermediate mass BH-BH mergers; still probably no significant loss for any cutoff less than 12-13 Hz

Technology threshold

- » Horizontal ground motion (isolated by seismic + suspension) crosses quantum radiation pressure & suspension thermal noise below 10 Hz
- » Vertical isolation not so large, since last stage of suspension is relatively stiff; couples to beam path at a level of ~0.001
- » Fiber cross section also driven by minimizing thermal noise: smallest diameter fiber is not the best
- » By using a dense penultimate mass material, it appears feasible to keep the vertical mode under 10 Hz

GW channel readout: 2 candidates

• RF readout, as in initial LIGO

- » Phase modulate at interferometer input
- » Arrange parameters for high transmission of RF sidebands (one anyway) to output port

DC readout

- » Small offset from carrier dark fringe
- » GW signal produces linear baseband intensity changes
- » Advantages compared to rf readout:
 - Output mode cleaner simpler
 - Photodetector easier, works at DC
 - Lower sensitivity to laser AM & FM
 - Laser/modulator noise at RF frequencies not critical

Comparison of quantum-limited sensitivity still in progress

System level noise sources: control of fundamental noise sources

Quantum noise

- » Photodetector quantum efficiency: > 90%
- » Readout scheme: must not significantly compromise ideal sensitivity

Internal thermal noise

- Make beam as big as possible (optimized given sapphire size constraint)
- » Don't spoil Q of substrate material, BUT ...
 - Mirror coatings and possibly polishing have a significant effect, that we
 may not be able to mitigate

Suspension thermal noise

- » Under control: stress and shape of fiber
- » Ribbons (10:1 aspect) give about 2x lower noise
 - ~10% improvement in stochastic sensitivity in low-power mode
- » Ribbons not required too risky for the payoff though R&D should continue, and they're not ruled out if development goes well

Technical noise

- Each technical noise source must be held below 10% of the target strain sensitivity
 - » Applies to each noise source over the entire GW band
 - » A single noise source degrades the strain sensitivity by a factor of 1.005
 - » ~10 such noise sources in a given frequency region, 5% strain degradation
- Composite technical noise curve formed
 - » Minimum of the sapphire low-power & high-power strain curves
 - » Applies to noise sources independent of the input power
 - » Don't need major revision if we switch to fused silica test masses
 - Sapphire low-power curve covers the silica case

Ground noise

- Displacement noise for each seismic platform:
 - » 2×10^{-13} m/rtHz at 10 Hz
- Test masses: 10⁻¹⁹ m/rtHz at 10 Hz
 - » Strain noise: 5 x 10⁻²³ /rtHz, 30% & 60% of the target for highpower and low-power operation, respectively
 - » Suspensions to provide the required isolation
 - » Applies with local damping not active (longitudinal, pitch & yaw)
 - Control comes from global feedback
 - » Must be satisfied with vertical-horizontal coupling of (no smaller than) 0.001
- Beamsplitter: < 2 x10⁻¹⁷ m/rtHz at 10 Hz
 - » 10x below test mass effect
 - » Vert-horiz coupling: 1.4%

Laser frequency noise

Same three-level stabilization hierarchy as in initial LIGO

PSL & MC specified with more strict RF readout req. in mind

ITM T's matched to 1%; round trip arm loss difference, 20 ppm

Laser intensity noise

Arm cavity power levels matched to 1% (feasible?) Dominated by technical radiation pressure below 100Hz RIN: 2×10^{-9} /rtHz at 10 Hz - requiresabout 100 ma of

stabilization photocurrent

Subsystem requirements

- Primary requirements set as a result of, or to support, the systems requirements & design
- For example, PSL requirements are set for:
 - » Output power (TEM₀₀ mode; higher order modes; stability)
 - » Intensity stability (gw band; control band; rf modulation freq)
 - » Frequency stability (gw band; control band)
 - » Modulation inputs (power; frequency)
- Subsystem requirements will be refined and reviewed at each subsystem's design requirements review

Optical Layout Cavity Lengths

- Input Mode Cleaner (IMC)
 - » IMC FSR = ~9 MHz
 - » Length = \sim 16.6 m = \sim HAM1 to HAM3 separation
- Power Recycling Cavity (PRC)
 - » PRC FSR = 2 x IMC FSR = ~18 MHz
 - » Length = ~8.3 m = ~HAM3 to BSC2 separation
 - » Asymmetry = 0.2 m
- Signal Recycling Cavity (SRC)
 - » f = 180 MHz
 - » Length = \sim 8.4 m = \sim HAM4 to BSC2 separation
- Fabry-Perot (FP) Arm Cavities
 - » Length = $\sim 4 \text{ km}$
- Precise frequencies and lengths in the optical layout document
 - » T010076-01
 - » Folded interferometer layout pending

Optical Layout Recycling Cavities

Headroom in HAM Chamber constrains MC, RM placement

Optical Layout Wedge Options

#	Case	Refracted Path Schematic, elevation view (BS rotated into the plane and angles exaggerated for clarity)
1	Vertical Wedges: ITM & BS with thick sides up (like LIGO-1)	RM BS ITM
2	Vertical Wedges: ITM with thick side up, BS with thick side down	RM BS BS ghost/pick-off beams below ITM
3	Vertical Wedges: ITM and BS with thick sides down	BM BS ITM
4	Vertical Wedges: ITM with thick side down, BS with thick side up (current baseline for advanced LIGO)	BS ghost/pick-off beams above ITM BS ITM
5	Horizontal Wedges (left/right orientation will mat- ter due to handiness associated with the folded and non-folded interferometers)	RM BS ITM

Optical Layout Elevation View

Optical Layout Ghost Beams

LIGO Optical Layout Criteria

 Requires BS wedge angle > currently defined manufacturing limit

Criteria#	Parameter	IFO#1	IFO #2	Requirement
1	Lateral separation between IFO beams	TB	D	>400 mm
2a	Maximum BS wedge angle	1.3 ^a	TBD	1 max
2b	Maximum ITM wedge angle	1.1	TBD	3 max
2c	Maximum PRM wedge angle	0.23	TBD	3 max
2d	Maximum SRM wedge angle	0.23	TBD	3 max
3	Wedge angle tolerance	TBD	TBD	1
4	Beam height in HAM chambers ^b	-157 mm	TBD	-157 mm
5a	BS Pickoff Beam Separation from ITM_x (margin after - $2R_{100ppm}$)	16 mm ^a	TBD	> 30 mm
5b	ITM_x Pickoff Beam Separation from BS (margin after - $2R_{100ppm}$)	65 mm	TBD	> 30 mm
5c	$\frac{ITM_yPickoff Beam Separation from BS}{(margin after - 2R_{100ppm})}$	31 mm	TBD	> 30 mm
6a	BS 1st ghost separation at the ITMs (margin after - 2R _{100ppm})	<0, ITMy ^å	TBD	> 30 mm
6b	ITM_x 1 st ghost separation at the BS (margin after - $2R_{100ppm}$)	75 mm	TBD	> 30 mm
6c	ITM_y 1 st ghost separation at the BS (margin after - $2R_{100ppm}$)	41 mm	TBD	> 30 mm
6d	RM 1st ghost separation at the BS (margin after - $2R_{100ppm}$)	<0 ^c	TBD	> 30 mm
7	Beam line to baffle edge separation in the beam tube (backscatter limit)	281	TBD	> 200 mm
8	Length sensing noise due to optic wedge & pitch angle coupling (as a fraction of a FP surface contribution)	0.50, seismic 0.17, thermal	TBD	<1, seismic <0.28, thermal
9 to 13	constraints	all are met	TBD	see section 4

 Need to revisit the BS maximum wedge angle criteria. BS pick-off separation would be increased with a larger BS wedge angle.

b. in the LIGO global coordinate system

c. Requires beam dumps on the BS suspension structure and a beam dump to catch the RM ghost beam reflection off of the BS, as in LIGO-1.

Optical Layout Issues, Limitations

- Folded interferometer layout pending
- Active thermal compensation system?
 - » May require the addition of 1 or 2 phase plates in the PRC
 - » May benefit from putting the AR side of the PRM into the PRC for common mode corrector
- Single recycling cavity pick-off beam?
 - » 3 in initial LIGO: ITMx, ITMy, BS
 - » May require only one in advanced LIGO
- Non-wedged ITMs?
- Horizontal Wedges?
 - » May be possible if a single RC pick-off is sufficient
 - » May require (somewhat) larger SEI BSC tables
 - In fact, recommend going to maximum size square BSC SEI tables (limited by support tubes)
- Suspension planform dimensions?
 - » Layout is tight, need an estimate of SUS quad & triple base size to resolve

Active Thermal Compensation Potential Implementation

Suspension Table Area?

Suspension

- » Quadruple prototype (shown at left)
- » Apparent planform dimensions: 700 X 1020 (lateral) mm
- » >> than assumed 330 X 420 (lateral) mm in layout

- Collection of (or pointers to) the general requirements and standards which apply to all (or most) subsystems
 - » Design standards
 - » Review requirements
 - » Documentation requirements
 - » Configuration controls
 - » Test requirements
 - » EMC requirements
 - » Vacuum compatible materials, processing
 - » Etc.

Table of Contents

- I Introduction
- 1.1 Purpose
- **1.2 Scope**
- **1.3 Definitions**
- 1.4 Acronyms
- **1.5** Applicable Documents
- 1.5.1 LIGO Documents
- 1.5.2 Non-LIGO Documents
- 2 **Review Requirements**
- 2.1 Design Reviews
- 2.2 Approval & Release Process
- 3 Configuration Control
- 3.1 Design Configuration Control
- 3.2 Interfaces Definition & Control
- 3.3 Physical Configuration Control
- 4 Documentation Requirements
- 4.1 Documentation Numbering & Electronic Filing
- 4.2 Design, Analysis & Test
- 4.2.1 Design Requirements Document (DRD)
- 4.2.2 Conceptual Design Document (CDD)
- 4.2.3 Preliminary Design Document (PDD)
- 4.2.4 Final Design Document (FDD)
- 4.2.5 Technical Design Memorandum
- 4.2.6 Test Plans and Procedures
- 4.2.7 Prototype Test Plans & Results
- LIGO-G010242-00-D

- 4.3 Fabrication and Process Specifications
- 4.4 Engineering Drawings and Associated
- Lists
- 4.5 Technical Manuals and Procedures
- 4.5.1 Procedures
- 4.5.2 Manuals
- 5 Testing Requirements
- 5.1 Form & Fit
- 5.2 Assembly
- 5.3 Function
- 5.4 Performance
- 5.5 Self-Test
- 5.6 Installation
- 6 Mechanical Characteristics & Standards
- 6.1 Materials and Processes
- 6.2 Welding and Brazing
- 6.3 Bolted Joints & Threaded Fasteners
- 6.4 Drawing Standards
- 6.5 CAD Standards
- 6.6 Interchangeability
- 6.7 Workmanship
- 6.8 Human Engineering
- 6.9 Preparation for Delivery
- 6.9.1 Preparation
- 6.9.2 Packaging
- 6.9.3 Marking

<u>6.10</u>	Assembly
6.11	Installation
7	Electrical Characteristics & Standards
7.1	Grounding & Shielding
7.2	EMI
7.3	Cabling
7.4	Connectors
7.5	Bus Architecture
7.5.1	EPICS control interface
7.5.2	Workmanship
7.5.3	Software Characteristics & Standards
7.6	TBD
7.7	GUI Human Engineering
8	Vacuum Compatibility Requirements
8.1	Form/Fit
8.2	Tribology
8.3	Materials
8.4	Qualification
8.5	Fabrication
8.6	Cleaning
9	Earthquake Requirements
9.1	Structural Integrity
9.2	Alignment
9.3	Operation

Quality Assurance 10 **10.1 Ouality conformance inspections** 10.1.1 Inspections 10.1.2 Analysis 10.1.3 Demonstration 10.1.4 Similarity 10.1.5 Test **10.2 Quality Confiormance Matrix Reliability** 11 **11.1 Reliability Requirements 11.2 Reliability Testing** 12 **Maintainability Transportability** 13 Safety 14

• Basically the same as initial LIGO

- » Fill omissions, provide clarifications to initial LIGO requirements
- » Added requirements:
 - CAD Standards: SolidWorks & 3D preferred
 - AutoCad & 2D may be deemed acceptable on a case by case basis
 - Earthquake limit for seismic & suspension survival & alignment retention
 - For controlled documents: Source file archival required (in addition to Adobe AcroBat format)
 - All piece parts must be marked with part # (= drawing # revision S/N)
- Status of LIGO-E010123:
 - » Outline completed
 - » Content growing
 - » Comments & suggestions welcome

LIGObservatory Environment

David Shoemaker 3 July 2001

Purpose

- An overview of the environment at the LIGO sites relevant to the design and operation of the instruments
 - » Will provides pointers to additional sources of information
- Document is organized by the quantity measured, dealing first with one site (LLO) and then the other (LHO)
- The scope of this document covers those aspects of the environment which directly relate to the instrument design and performance
 - » Criterion: if it changes during operation, the performance of the interferometer might change
 - » Should be complementary to the 'Generic Requirements for Detector Subsystems' and the two should span the space

Long-term goals

Document should

- consist of standard plots for similar measurements at different times and places and between sites
- i give pointers to data for the plots to allow quantitative analysis, and give fits and approximations for estimates
- ï carry references to the measurements
- be updated regularly to indicate the latest information on the measured quantities
- Notion: create web sites for each observatory to carry data, additional information
 - » Maintain a single 'paper' document of top-level current information

...clearly, some work yet to do.

How has, how will this happen?

- Growing base of information: Schofield, Giaime, Daw, Johnson, Chatterji, Marka, ...
- LSC Detector Characterization group: Riles et alia
- Upper Limit characterization effort
- Continuing attention from the Detector systems group

'Standard' seismic spectrum

Spectrum at Seismic Supports

Magnetic fields

LIGO-(

Residual gas

- Work to do to finish an initial round of collecting existing data
- On-going work to maintain 'environmental references' for operation, analysis, design

Summary & Plan

- Systems design: resolution of open issues
 - » Sapphire vs fused silica
 - Hinges mostly on success of sapphire development
 - Selection scheduled for mid-20022
 - » Readout scheme
 - Sensitivity analysis in progress, results are weeks-months away
 - Bench tests of dc readout
 - Glasgow, 40m tests
 - » Optics modeling
 - Need to specify requirements for optics production & active thermal compensation
 - Meeting held at MIT in May to define modeling needs and start a concentrated effort with the FFT and Melody models

• Data analysis

» Begin working with A Lazzarini to to scope AdLIGO data analysis

Development Plan

• R&D including Design through Final Design Review

- » for all long lead or high risk subsystems
- » LIGO Lab contracts and funds large R&D equipment
- » Subsystem development plans described at the last LSC meeting (G010082)

Construction Phase Proposal

- » Major Research Equipment (MRE) funding
- » includes 'prosaic' design efforts
- » Proposal due this fall

Isolation Test Bed (LASTI)

- » full scale, integrated suspensions & seismic Isolation testing
- » in-chamber assembly & installation procedure check-out
- » possible first article test bed

Development Plan (continued)

- Controls Test Beds (GEO 10m and LIGO 40m)
- High Power Test Facilities
 - » Component level testing by UFL at LLO
 - » Gingin High Power Interferometer Test Facility
- Integrated Systems Tests
 - » Pre-Stabilized Laser (PSL), Input Mode Cleaner, Suspensions and Seismic Isolation Test at LASTI
 - » Integrated Servo Control Electronics Testing at the LIGO 40m Lab
 - » Possibly early End Test Mass Suspension & Seismic Isolation replacement at a LIGO Observatory

Organization

LASTI & Supporting Subsystem Integrated Schedule

- Subsystem schedules are being integrated into a project plan
- Requirement reviews are already late
- Testbeds (LASTI, 40m, Gingin) are metronomes for the subsystems
- NSF funding limits may defer COC long lead procurement

Installation & Commissioning Plan

- Minimum of a 1 year of Integrated Science Run Before a Major Upgrade
- Schedule to be Coordinated with International GW Observatories to Keep ≥ 2 Detectors Operating
- Start Installation Only When Production & Assembly Pipeline Will Not Limit the Installation Schedule
- Install One Advanced LIGO Interferometer and Incorporate Lessons Leaned into the Subsequent Advanced Interferometers (time lag of ~ 18 months)
- Plan to start installation in early 2006