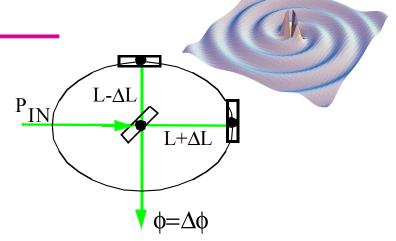
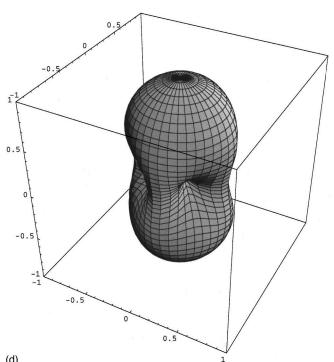
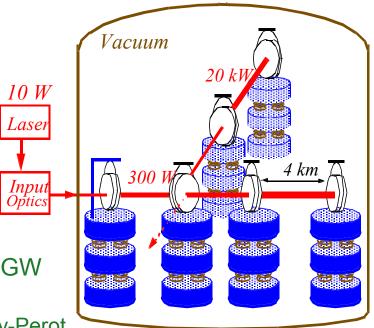

Status of Interferometers and Data Analysis


David Shoemaker LIGO - MIT 9 July 2001

Overview

- Fundamental and practical design drivers
- Principal elements of realistic systems
- For each of several signal classes:
 - » Character of signals for ground-based systems
 - » Data analysis challenges
 - » Status, Plans of endeavors around the world

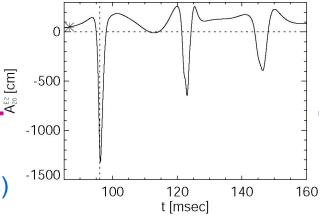

Basic sensing principle

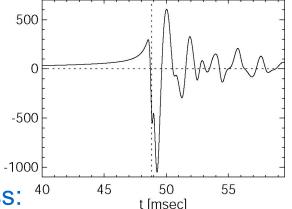

- Quadrupolar strain, differential response
- Transduction into light intensity changes
- Antenna pattern: the 'peanut'

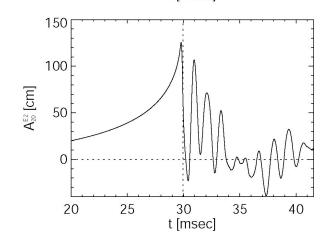
...how to make this a useful instrument?

Basic design rules, consequences

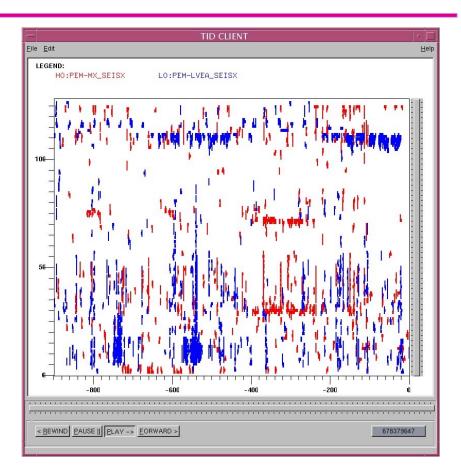
- Goal: minimize other forces on masses
 - » Seismic noise: Active and Passive isolation
 - » Thermal noise: Choice of materials, assembly
 - » Internally generated noise: keep strains low
- Goal: maximize light phase modulation due to GW
 - » 0.3-4 km Interferometer arm length
 - » Optical 'folding' of light path: Delay Line or Fabry-Perot
 - » Tailoring of frequency response:
 RSE (Resonant Sideband Extraction)
- Goal: minimize other sources of phase modulation
 - » Ultra High Vacuum path for light
 - » Laser pointing, intensity and frequency stabilization via transmissive Mode Cleaners
 - » Quantum limited sensing: High-power Nd:YAG lasers
 - (photon pressure; thermal focussing)
- Goal: maximize observation time and value
 - » Reliable operation of individual detectors
 - » Many detectors, closely coordinated, shared data

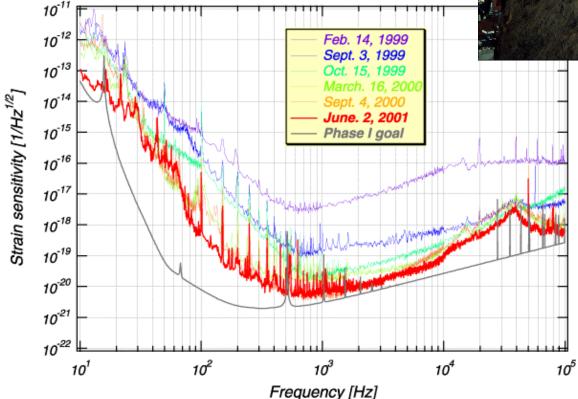

Impulsive sources


- Sources and signatures
 - Some predictions for simple objects (BH ringdown)
 - Supernovae great zoo of possible signatures
 - » Unpredicted signals, but allowed by physics
- Challenge: many instrumental sources of 'bursts'
 » Requires excellent characterization of instrument


 - Similar 'data analysis' to be performed on many diagnostic channels

- » resolve the channel into sub-bands
- identify statistics on the sub-bands
- identify epochs when the detector output is uncharacteristic of its behavior in the mean

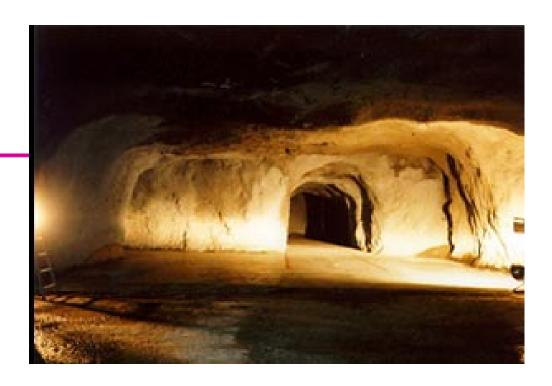


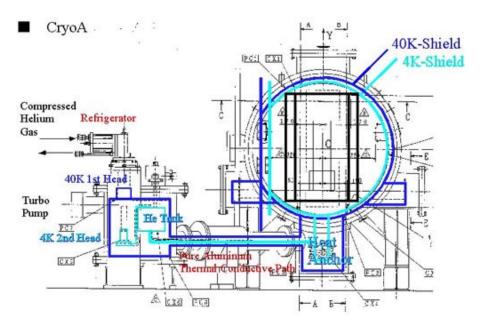

Impulsive sources

- Search with variety of filters
 - » Power fluctuations larger than measured statistics
 - » Time-frequency techniques
 - » Wavelet or other general approaches
- Must have second astrophysical sensor for coincidence -
 - » Other interferometers, or acoustic detectors
 - » Neutrino detectors
 - » GRB and optical telescopes
- Computation:
 - » GW and auxiliary channels may present comparable demands
- Example of detector well suited: TAMA

TAMA300

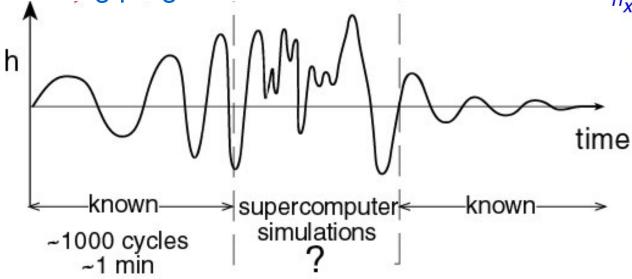
- FP Michelson, 300m arm length
- Best interferometer sensitivity to date: ~5x10⁻²¹ h/rHz, ~700 Hz
- Continuous lock >24hours

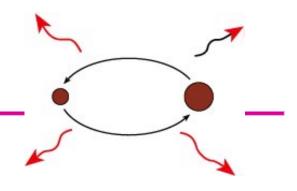

- - •Sensitivity for supernova: 0.01M_{solar}, SNR 10, galactic center
 - In conjunction with e.g.,
 Kamiokande neutrino detection

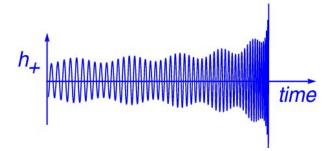

TAMA → LCGT

Large-scale Cryogenic Gravitational wave Telescope

- Planned cryogenic detector
- Next to Kamiokanda
- 3km arm length
- 20 K sapphire mirrors
- Goal: 3x10⁻²⁴ h/rHz at 70 Hz
- Strong R&D program underway

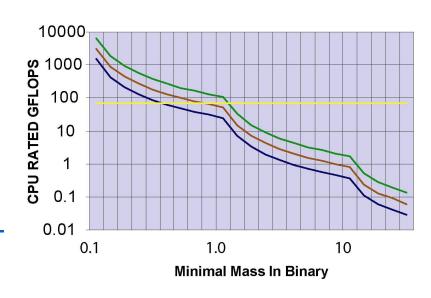






Inspiraling Binaries

- Our best understood source
- Chirp signature:
 - » Sweep upward in frequency
 - » Low frequency instrument response → longer observation time, better SNR and more information extracted
- Can calculate up to, and after making progress on coalescence



Inspiraling Binaries

- Computational challenge many templates required
- Number of templates: $(1/M)^{5/3} * (1/f_{best})^{8/3}$
- Hierarchical search methods, 'mother templates' to help
- 'Slow' Parallelization works well –
 Beowulf CPU configuration

- Practice in studies of Caltech 40m, TAMA interferometer data
- Example of detector well suited: Virgo

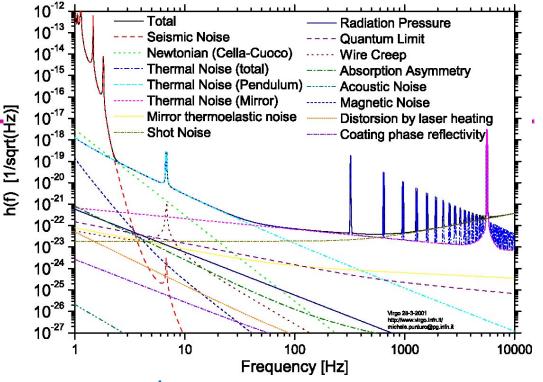
Virgo

- Italian and French collaboration
- 3km arm detector near Pisa
- Power-recycled Fabry-Perot Michelson

- Both tunnels complete
- North beam tube installed and aligned over more than 2.5 km
- The first 300m section pressure is below 6x10⁻¹⁰ mbar
- Construction to be complete mid-2002

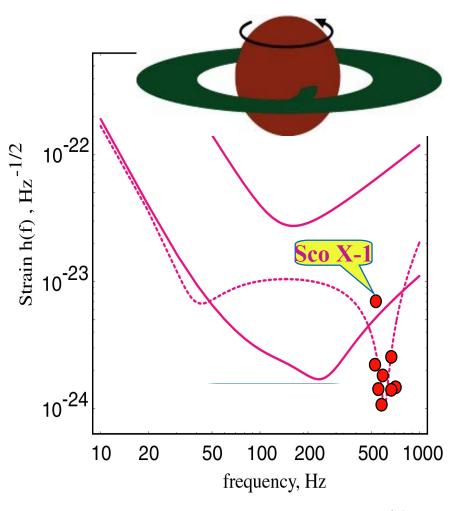
Virgo

- Excellent seismic isolation
- Allows long observation of binaries – better SNR, more precision in parameters
- Mirror suspensions may be steel or (again to improve low frequency response) fused quartz


Virgo - Status

- Central interferometer operating, under study
- Laser, mode cleaner, beamsplitter, near mirrors
- Superattenuators, including inertial damping, operating continuously;

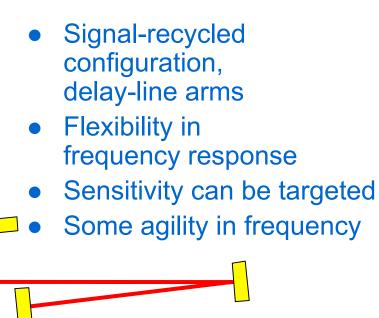
Transfer functions have been measured

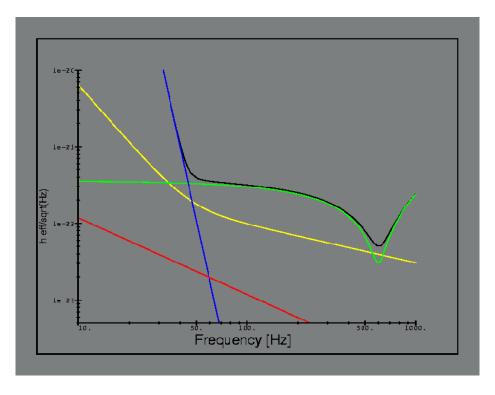


- Filters for the pulse detection and coalescing binaries are being tested. New filters include complete black hole coalescence (Damour-Buonanno model). A 50-100 Gflop analysis system will be implemented in 2001
- Full interferometer commissioning in 2002

Coherent sources

- Pulsars
- Low-mass X-ray binaries
- Possibly supernova remnants, r-mode oscillations
- Possibility of synchronous detection with other kinds of instruments

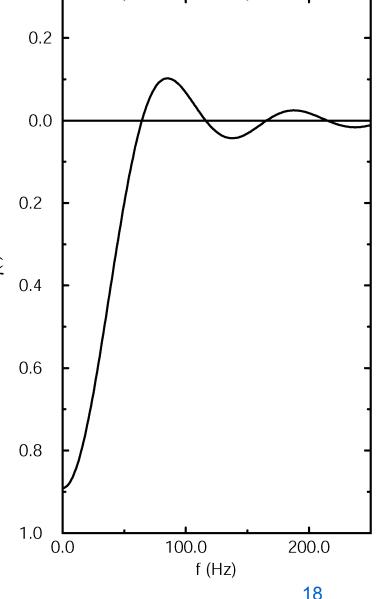

Coherent Sources


- All-sky challenge:
 - » Must correct for Doppler shifts for each pixel in sky
 - » Computationally limited
- Start with short (1-day) transforms, then either knit together into longer coherent transforms, or add incoherently
- Instrumental line sources must be well characterized...
- Known pulsar search easier position, Doppler shift calculable
- Interesting to focus instrument sensitivity at fixed frequency;
 simplifies analysis problem, increases absolute sensitivity
- Example of detector well suited: GEO

GEO-600

- UK-German collaboration
- 600 m arm detector near Hannover
- Infrastructure, vacuum complete

GEO-600


- Fused-silica suspension fibers
- Multiple pendulums for isolation, control; monolithic construction
- Suspensions installed and operating at GEO-600
- This, and RSE, as model for most next-generation detectors

- Prototype tests of interferometer configuration, control complete
- Characterization of laser, mode cleaners underway
- Final optic installation in coming months
- Commissioning of complete interferometer this year

Stochastic sources

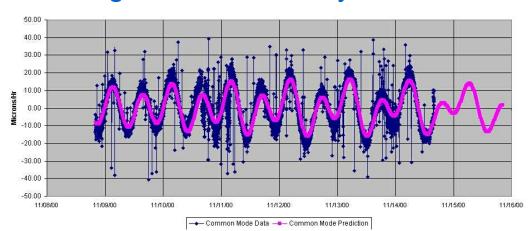
- Standard Big Bang (analogy to infrared background) probably not detectable
- Possible sources in superstring models of BigBang, other string predictions
- Confusion limit of many sources
- Definitely uncertain! But definitely to be searched for.
- Requires minimum of two detectors
 - » Two interferometers, or
 - » Interferometer and acoustic detector
- Cross-correlated detector noise must be understood
- Overlap function: both instruments must see same wave 'in phase'
- Example: the two **LIGO** instruments

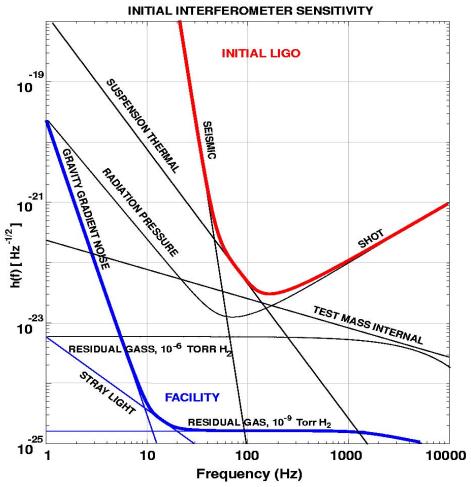
LIGO

- US/LIGO Scientific Collaboration
- Two 4km arm observatories
- 2km and 4km interferometers at Hanford,
- 4km interferometer at Livingston

4 km + 2 km + 2 km • Power-recycled Fabry-Perot

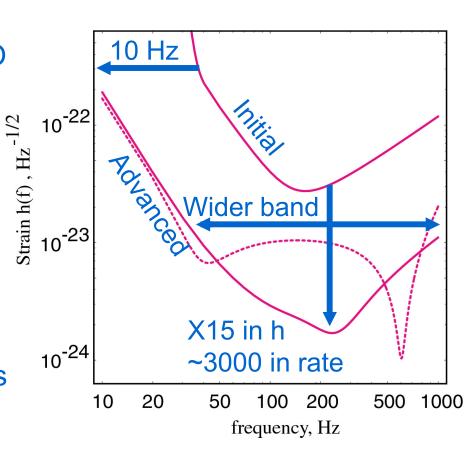
Installation of both sites complete


Commissioning underway


LIVINGSTON
4 km

LIGO

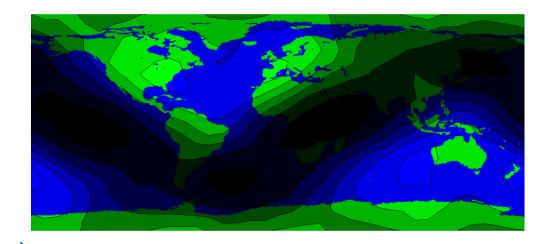
- Laser, mode cleaner working near design sensitivity
- Complete recycled 2km system locks (when no earthquakes...)
- Strain sensitivity
 to be ~3x10⁻²³ 1/Hz^{1/2}
- Data analysis algorithms in test
- Detector characterization, diagnostics underway



- Coincidence runs planned for Fall 2001
- Science running starting early 2002

LIGO→ Advanced LIGO

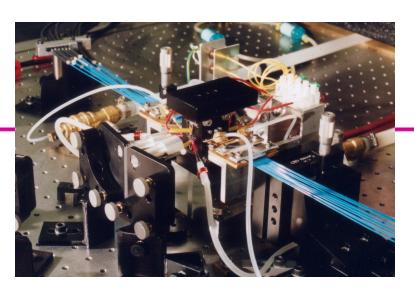
- R&D for the next generation of instruments housed at the LIGO Observatories well underway
- LIGO Scientific Collaboration playing major role
- Quantum-limited at >100W input power
- RSE tunable response
- Sapphire test masses, fused silica suspensions
- Active seismic isolation systems
- Baseline: start updating interferometers in 2006

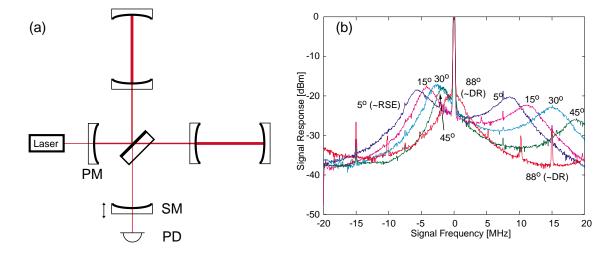


Networks of GW detectors

- A single interferometer requires some independent confirmation to claim a detection – e.g., GRBs, neutrinos, etc.
- A pair of interferometers can make a believable detection, and measure one polarization; position can be fixed to an annulus
- Three interferometers can add information about the polarization, and place the source in the sky
- Further interferometers improve further the quality and quantity of information, confidence in observations, probability of a complete network given uptime, flexibility for operating conditions – all required for an astronomy of gravitational radiation.
- Detector-to-be well suited to contribute to this endeavor: AIGO.

AIGO


- AIGO concept from ACIGA for an Australian interferometer
- A detector in Australia is 'aligned' with US, European detectors – good overlap (and still good for those elsewhere)


- The Gingin High Power Research Facility:
 - » high power optical test facility to diagnose cavity performance at MW circulating powers
 - » A starting point for scaling up
- Considerable range and depth of expertise in Australia for GW detection

ACIGA R&D

High power laser development

Isolation, thermal noise research

Configurations and readout systems

The future with a little optimism

Two years from now:

- LIGO, Virgo, GEO, TAMA in networked operation
- AIGO planning underway
- ...first detections?

Ten years from now:

- Next generation instruments in full operation,
 - » Advanced LIGO
 - » Second generation Virgo
 - » LCGT
 - » AIGO
 - » EURO
- How many discoveries per day? What new astrophysics revealed?
- ...LISA on the launch pad!