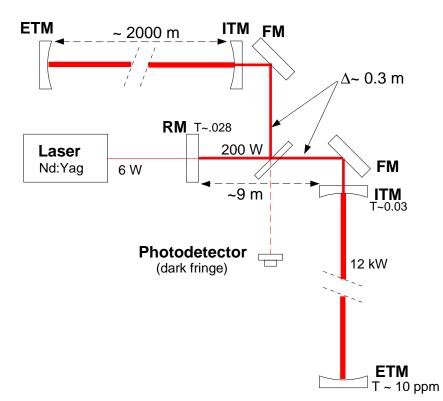
PERFORMANCE of LIGO 2km LARGE OPTICS


W. Kells

<u>Participants</u>: D. Barker, G. Billingsly, R. Bork, J. Camp, D. Cook, D. Coyne, M. Evans, P. Fritschel, D. Gustafson, J. Heefner, M. Landry, G. Mueller, N. Mavalvala, L. Matone, T. Nash, D. Ottaway, D. Reitze, H. Rong, P. Saulson, R. Schonfeld, D. Sigg, M. Smith, B. Weaver, R. Weiss, S. Whitcomb, H. Yamamoto, M. Zucker

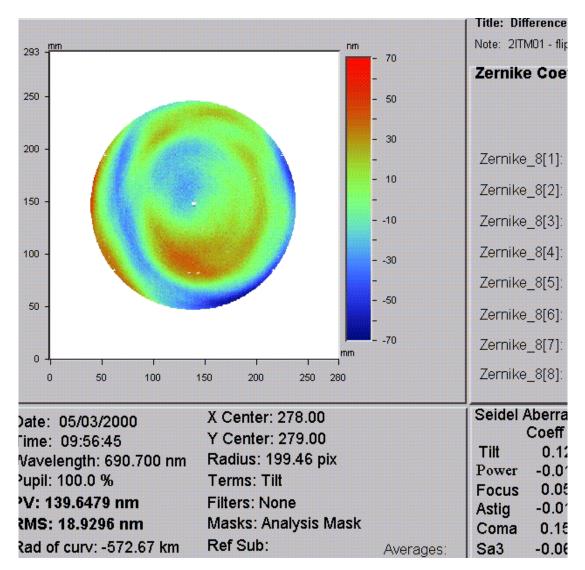
LHO2K core optics performance

- Michelson contrast
- Cavity mode parameters & match to input beam
- Cavity storage time: ring downs. Free swinging transients: arm lengths & SB operating point.
- Interferometer loss: arm visibilities & recycled 'missing' power.
- SBs in ~degenerate (cold start) recycling cavity

Michelson Contrast

- Observe Bright/Dark fringes at Asymmetric port: how dark is dark for carrier?
- RF SB lock Michelson via feedback to one ITM (other ITM, BS free swinging)
- 1-C = Dark Fringe Power/(Bright Fringe + Dark Fringe Power)

(all powers corrected for SB light component)


>>Result : 1-C = 0.0032

- Known tolerances of ITMs (reflectivity, ROC, Schnupp Asymmetry give 1-C < 10⁻⁴
- Defects: misalignment, beam clipping, frequency noise on light source, <u>OPD distortion</u>

-Post fabrication mirror metrology=> λ /50 residual OPD for each ITM substrate. Combining metrology OPD maps predicts residual rms dark port power ~ 0.0018. Beam splitter OPD may contribute remainder

-This ITM OPD effect ameliorated for carrier field with arm cavities locked.

Michelson Contrast(Cont'd)

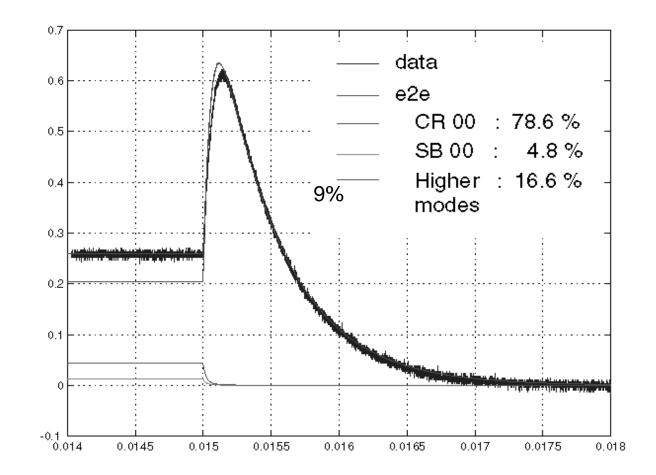
- Difference map of 2km ITM back reflections
- Beam weighted rms ~7.5 nm

 Beam spot video images of non-specular scatter for locked cavity & dumped input beams

-BRDF scatter model of mirrors allows estimate of microroughness loss consistent with design and mirror metrology.

• Calculated mode from mirror metrology.

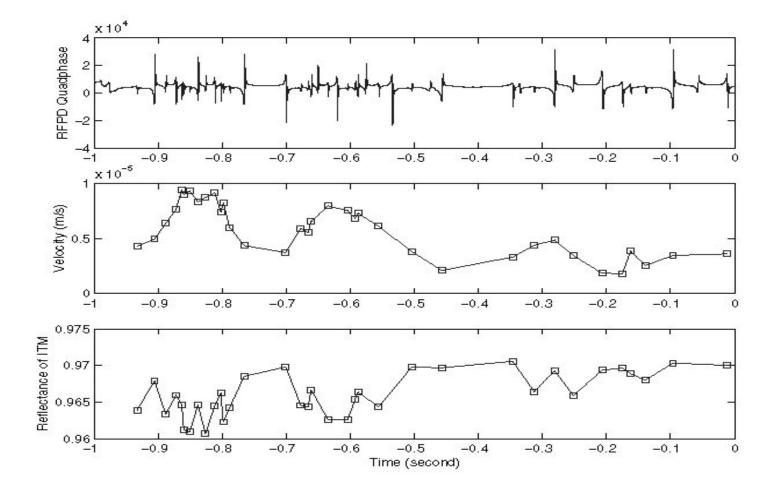
	ITM (0 m) w R.O.C		Waist	ETM (2009 m) w R.O.C.	
Cavity design	.0320	14560	.0313 @600m	.03478	7400
X arm mirrors	.03293	14189	.0321 @680m	.03502	8380
Y arm mirrors	.03275	13523	.0319 @700m	.03477	8210
Y input beam video	.0287	8000	.0275 @680m	.032	5052
X input beam (reflection)	.0293	6800	.0275 @830m	.0311	5386


Summary of mode parameter measurements LHO 2K cavities

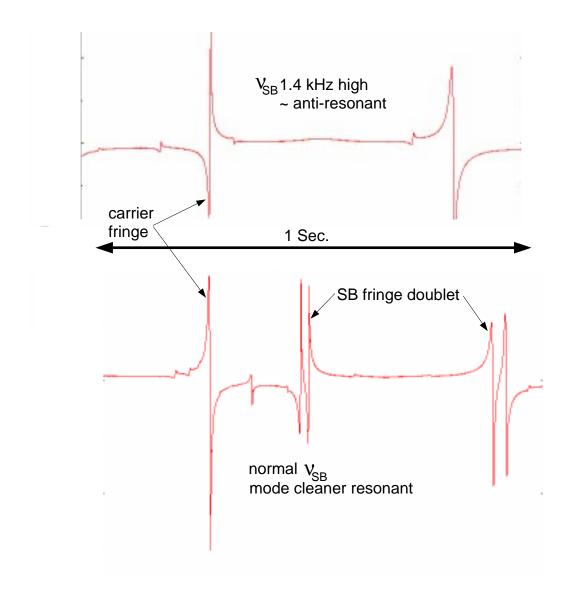
 Cavity reflection in/out of lock => input beam parameters relative to cavity mode.

-determines matching = 0.96, consistent with observation of arm cavity locked vs unlocked reflections.

Cavity Storage Time


- Cut input beam (fast). Fit decaying intensity of light from ITM.
- Multi-mode "end to end" (e2e) dynamic model

• Fit: T+Loss=.0281 (nominal design=.030)


 e2e fit of un-locked cavity reflectivity with constant source beam:

Arm length & SB de-tuning

• Design calls for v_{SB} slightly off arm anti-res.

>> 1.4 kHz offset (V_{SB} =29.50588 MHz => L_{arm} =2009.11 m) from free fringes, or locked arm 2 V_{SB} resonance.

 Deficit of In/out of lock cavity reflected power for aligned & matched cavity is direct measure of cavity loss

-Measured mismatching insignificantly affects visibility

-Beams observed ~centered on mirrors: no edge loss

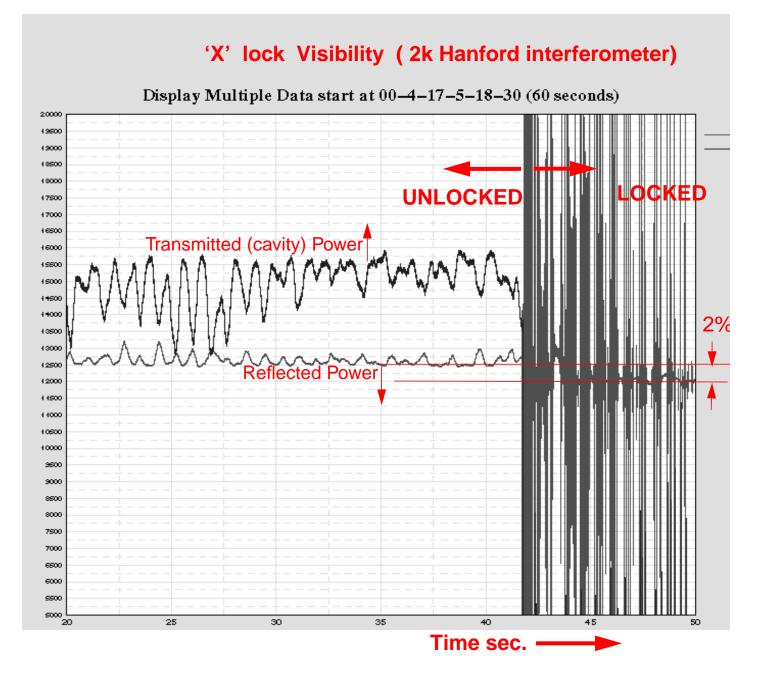
-ETM transmission small (include as net effective loss).

• Expect ~1% level: experimentally difficult:

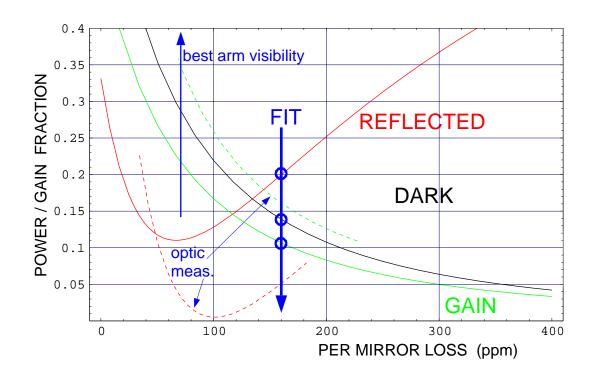
-Large beams fill optics: systematic errors from clipping

-Requires careful mean alignment as well as good WFS servo

Best results ('X' arm): lock deficit <0.020 (corresponds to 70 ppm average per mirror)


Fabrication metrology results in FFT simulations predict 60ppm (
0.018 deficit) equivalent loss/mirror. Recycling gain > 45 plausible.

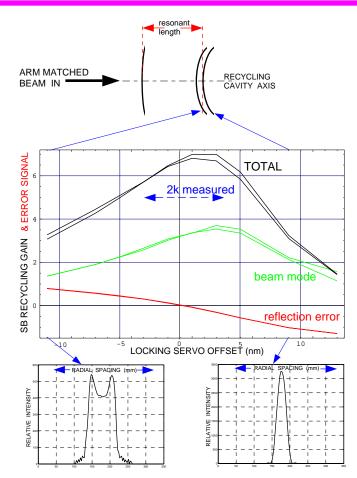
-Reflected beam still clipping=> upper limits.


-With some interpretation (of fluctuations) best visibility = 0.015

-'Y' arm measurements not refined: lock deficit < 0.04

Cavity Loss: Visibility

POWER BUDGET



- Measure: 'visible power'=P_{refl} +P_{dark}
 - >>Correct for P_{SB}=0.10
 - >>Missing (Lost) carrier power ~0.65 at G^{RC}=15-18.
 - >>Loss is integral over interferometer

>>Fit requires significant mismatch (0.1 power) to arms (~2x beam and optics conclusion).

Degenerate (cold start) Recycling cavity

Recycling cavity ~unstable at low power

- >>No well defined mode or matching
- >>Observe characteristic variation of cavity profile with length
- >>Observe offset of SB peak gain from natural lock point.

