Development of an RSE Interferometer Using the Third Harmonic Demodulation LIGO-G010322-00-Z

> Osamu Miyakawa, Kentaro Somiya ^A, Gerhard Heinzel ^B, Seiji Kawamura ^C

ICRR Univ. of Tokyo, Dept. of Advanced Materials Science, Univ. of Tokyo ^A, Max-Planck-Institut fuer Gravitationsphysik ^B, NAO ^C

Aug. 2001 @ LSC

Suspended-mass RSE locked for the first time in the world

using single modulationby Third Harmonic Demodulation

- Purpose of our experiment
- Signal sensing for SEC using Third Harmonic Demodulaiton
- Experiment
- . Summary and next plan

Purpose of our RSE experiment

Other table top experiments

Feature

Objectives/Scope

To establish the control scheme using single modulation Suspended mirror High finesse cavity in vacuum chamber Most difficult point of RSE locking the extraction of a Signal Extraction Cavity(SEC) signal(δls).

Mixture of δL + and δL - signal to δls signal is quite large.

Need to improve the signal ratio of δls –multi modulation

–establish a new sensing scheme using single modulation

Application of 3rd order harmonic demodulation

Signal ratio

If the demodulation phase is exactly zero, δL - is zero in both 1st and 3rd demodulation case, but in non zero demodulation phase case, 3rd demodulation has good signal ratio.

The depth of improvement is depend on the asymmetry length. We can adjust the modulation frequency instead of asymmetry length to satisfy the condition.

RSE experimental setup

Experimental setup of RSE

Small Suspension System (SSS)

- 1 inch mirror is suspended by singleloop wire.
- Mirror position and orientations are controlled by 4 coil-magnet actuators.
- Motion of the mirror at resonant frequency is efficiently damped by the eddy-current damping.

RSE control topology using THD

Lock acquisition of RSE

Locking selection of SR/RSE

Institute for Cosmic Ray Research Univ. of Tokyo

Measurement of cavity Transfer Function

Transfer function

SR : upper than FPMI RSE : lower than FPMI

Conclusion

- We locked suspended-mass Resonant Sideband
 Extraction with one modulation and by Third Harmonic
 Demodulation.
- We confirmed the RSE and SR locking by comparing the response of the interferometer for both configurations.
- Next plan
 - vacuum
 - measurement of T.F. with wide band including pole
 - L+ L- control
 - detuned RSE
 - Power Recycling