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Slab Thermal Distortions
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Transmissive Optic Thermal Lens
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Basic Adaptive Optics (AO) System
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What architecture for high 
power?

� Liquid crystal spatial phase modulators
� Absorbing ITO damages easily

� Segmented mirrors
� Diffractive effects, edges damage

� Surface micromachined mirrors
� Surface perforations are damage sites

� Bulk micromachined mirrors
� Most have high crosstalk
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3D View of Mirror Architecture
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Cross-Section of Mirror 
Architecture

Gold Silicon Nitride

SiliconBond 2.3mm 0.4mm
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Stanford DM Photograph
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Two-Layer DM Characteristics
� 19 actuators with 2.3 mm spacing
� 1.6 cm aperture
� 10 µm throw in center actuator
� Low electrical power consumption
� 3.7 kHz mechanical resonance frequency
� Low-cost fabrication

� Class 1000 clean room
� Two-Mask Process
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Thermal Distortion Compensation
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Compensation Results
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Two-Layer DM Advances
� Possible to Preserve Mirror Surface

� All polishing and coating complete before processing
� Mirror surface never exposed to etchant 

� Low Static Aberrations
� Bond annealing relaxed bonding stress
� ~50 nm rms static aberration in an astigmatic term

� Capable of bonding to silicon circuitry
� Can use CMOS to address for large actuator count
� A polished silicon surface for electrode uniformity
� No mismatch between layers

� Robust 
� Electrostatic snap-down does not cause damage.
� Mirror is fully recovered by reducing voltage.
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Power Handling Characterization
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Gold-Coated DM Power Handling

Wavefront distortion when loaded with 41 W 
of cw 1064 nm laser power (212 W/cm2) 

with 39.1 nm of rms distortion
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HR Wafer Power Handling
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With 1.1 kW (39 kW/cm2) of cw 1064 nm laser power,
no thermally induced distortion was observed.
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High Reflectivity Deformable Mirror
Dielectric coating Silicon Nitride
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High Reflectivity DM Photograph
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Reliability Characterization
� Deformable mirror was cycled at 150V 

for 500 million cycles & no damage was 
observed

� 30 hours with 36 W of cw 1064 nm laser 
power with no damage

� Fully recoverable from electrostatic 
snap-down.
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MLD-Coated DM Power Handling

Wavefront distortion when loaded with 41 W 
of cw 1064 nm laser power (212 W/cm2) 
with 61.3 nm of rms distortion
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Thermally Induced Aberration Compensation

� Thermally loaded the MLD-coated DM 
with 22 W (350 W/cm2) of cw 1064 nm 
laser light

� Induced 88 nm rms distortion
� Used a dithering adaptive optics 

algorithm to reduce the distortion to 31 
nm rms. 
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Thermal Loading Results
� Distortions concentrated on pillar 

edges
� Gold-coated DM had less 

thermally induced distortion
� Thermal Distortion Explanations

� Differential thermal expansion 
between silicon pillars and silicon 
nitride 

� Non-uniform temperature 
distribution

� Silicon pillars as effective �radiators�
� Silicon pillars absorbed more light than 

gold
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Gold-Coated All-Silicon DM Architecture

Gold Silicon55 µm

No wavefront distortion was observed 
even when loaded with 55 W of cw 1064 

nm laser power (300W/cm2).

Non-tensile silicon had ~10λ of sphere.
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All-Silicon DM Architecture
Silicon25 µm

1123 nm rms distortion with 2.2 W.274 nm rms distortion with 1.3 W.
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Damage Threshold

� 25 kW/cm2 (~600 W) appeared to increase 
temperature enough to permanently distort 
the mirror surface.

� Mechanism is probably thermal annealing.



Supriyo Sinha (supriyo@stanford.edu)

Future Work
� Conclusively determine cause of 

distortions.
� Fabrication of a single-crystal silicon 

MLD-coated deformable mirror with gold 
flash coating.

� Superior control algorithms
� Three-layer architecture
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New Three-Layer Structure
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Advantages of Three Layer DM
� Less actuator crosstalk

� Resonance frequency that is fairly 
independent of mirror diameter
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Conclusions
� We have demonstrated a robust, good 

surface quality DM that can compensate (to a 
large degree) for thermal distortions in 
transmissive optics

� We have presented an architecture that 
permits MLD stack to be deposited easily

� We have presented an architecture that can 
be easily integrated with silicon circuitry.

� We have demonstrated a closed loop system.
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