Adaptive Optics Development for LIGO

L S C

Supriyo Sinha and Robert L. Byer Stanford University Justin Mansell Intellite, Inc.

Supriyo Sinha (supriyo@stanford.edu)

LIGO-G010351-00-Z

Outline

- Motivation
- Deformable Mirror (DM) Design
- Experimental results
- Future Work
- Conclusions

Laser Inteferometer Gravitational-Wave Observatory

Transmissive Optic Thermal Lens

Basic Adaptive Optics (AO) System

Spatial Phase Modulator (Deformable Mirror)

What architecture for high power?

- Liquid crystal spatial phase modulators
 Absorbing ITO damages easily
- Segmented mirrors
 - Diffractive effects, edges damage
- Surface micromachined mirrors
 - Surface perforations are damage sites
- Bulk micromachined mirrors
 - Most have high crosstalk

3D View of Mirror Architecture

Cross-Section of Mirror Architecture

Stanford DM Photograph

Two-Layer DM Characteristics

- 19 actuators with 2.3 mm spacing
- 1.6 cm aperture
- 10 μ m throw in center actuator
- Low electrical power consumption
- 3.7 kHz mechanical resonance frequency
- Low-cost fabrication
 - Class 1000 clean room
 - Two-Mask Process

Thermal Distortion Compensation

Compensation Results

Two-Layer DM Advances

Possible to Preserve Mirror Surface

- All polishing and coating complete before processing
- Mirror surface never exposed to etchant

Low Static Aberrations

- Bond annealing relaxed bonding stress
- ~50 nm rms static aberration in an astigmatic term

Capable of bonding to silicon circuitry

- Can use CMOS to address for large actuator count
- A polished silicon surface for electrode uniformity
- No mismatch between layers

Robust

- Electrostatic snap-down does not cause damage.

Mirror is fully recovered by reducing voltage.

Power Handling Characterization

Gold-Coated DM Power Handling

Wavefront distortion when loaded with 41 W of cw 1064 nm laser power (212 W/cm²) with 39.1 nm of rms distortion

HR Wafer Power Handling

With 1.1 kW (39 kW/cm²) of cw 1064 nm laser power, no thermally induced distortion was observed.

High Reflectivity Deformable Mirror

High Reflectivity DM Photograph

Reliability Characterization

- Deformable mirror was cycled at 150V for 500 million cycles & no damage was observed
- 30 hours with 36 W of cw 1064 nm laser power with no damage
- Fully recoverable from electrostatic snap-down.

MLD-Coated DM Power Handling

Wavefront distortion when loaded with 41 W of cw 1064 nm laser power (212 W/cm²) with 61.3 nm of rms distortion

Thermally Induced Aberration Compensation

- Thermally loaded the MLD-coated DM with 22 W (350 W/cm²) of cw 1064 nm laser light
- Induced 88 nm rms distortion
- Used a dithering adaptive optics algorithm to reduce the distortion to 31 nm rms.

Thermal Loading Results

- Distortions concentrated on pillar edges
- Gold-coated DM had less
 thermally induced distortion
- Thermal Distortion Explanations
 - Differential thermal expansion between silicon pillars and silicon nitride
 - Non-uniform temperature distribution
 - Silicon pillars as effective "radiators"
 - Silicon pillars absorbed more light than gold

Gold-Coated All-Silicon DM Architecture

No wavefront distortion was observed even when loaded with 55 W of cw 1064 nm laser power (300W/cm²).

Non-tensile silicon had ~10 λ of sphere.

All-Silicon DM Architecture

Damage Threshold

- 25 kW/cm² (~600 W) appeared to increase temperature enough to permanently distort the mirror surface.
- Mechanism is probably thermal annealing.

Future Work

- Conclusively determine cause of distortions.
- Fabrication of a single-crystal silicon MLD-coated deformable mirror with gold flash coating.
- Superior control algorithms
- Three-layer architecture

New Three-Layer Structure

Advantages of Three Layer DM

Less actuator crosstalk

Resonance frequency that is fairly independent of mirror diameter

Conclusions

- We have demonstrated a robust, good surface quality DM that can compensate (to a large degree) for thermal distortions in transmissive optics
- We have presented an architecture that permits MLD stack to be deposited easily
- We have presented an architecture that can be easily integrated with silicon circuitry.
- We have demonstrated a closed loop system.

Acknowledgements

- Thanks to Marty Fejer, Patrick Lu, Todd Rutherford and Shally Saraf for assistance and advice.
- Thanks to the NSF for funding this work.

