

LIGO Data Analysis System (LDAS)

PAC 11 Meeting

California Institute of Technology November 29, 2001

> James Kent Blackburn LIGO Laboratory, Caltech

LIGO-G010404-00-E

Three remaining modules under active development

Current release of LDAS: LDAS-0.0.22 (*alpha*)

dataConditionAPI:

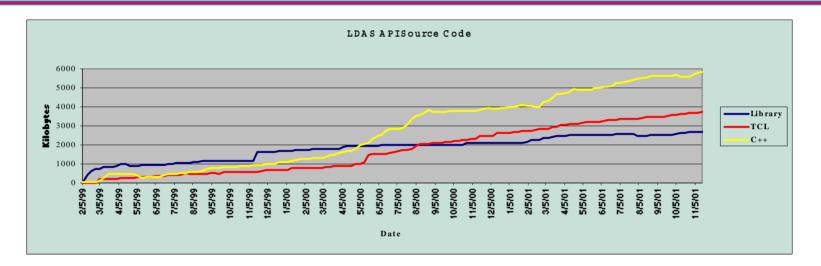
- First module to be tested in an MDC.Used extensively in later MDCs
- and Engineering Runs.
- •Infrastructure nearly complete, only support for state information and cleanup of metadata remain.

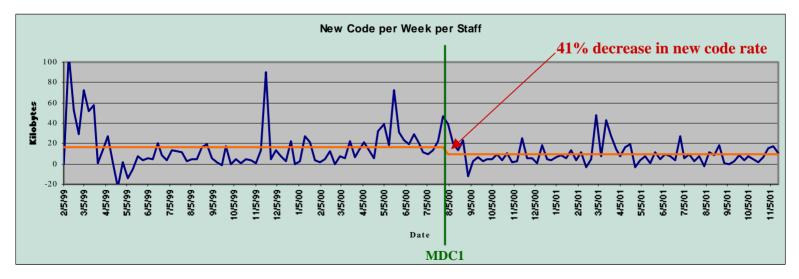
•Still plenty of signal processing functionality to be implemented.

dataIngestionAPI:


- •Basic functions needed with the beginning of the Engineering Runs.
- •Scripts external to LDAS developed to carry out these functions.

•Script to recording data to tapes at sites can be controlled and monitored using LDAS's controlMonitorAPI.


diskCacheAPI:


- •Coupled to selection of archival data storage technology(ies) to be used.
- •Basic functions needed in support of MDCs and Engineering; Temporarily implemented in the frameAPI!
- •Anticipate removing from frameAPI later this year.
- •First "beta" release of LDAS after this API is implemented.

LIGO Data Analysis System Software Block Diagram

Code Development Trends (more LSC support & testing!)

Problem Tracking

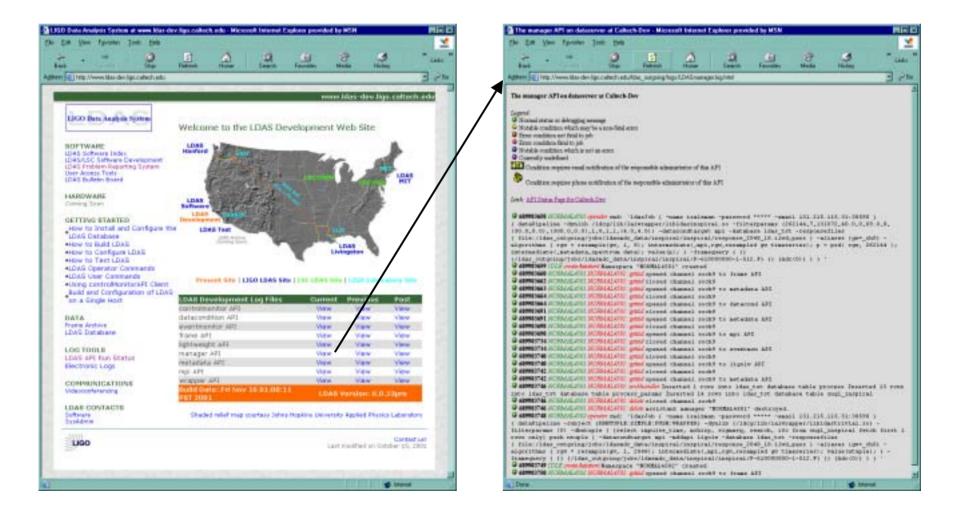
LIGO

category	open	analyzed	suspended	feedback	closed	Total
ouild process	3	-	0	0	85	88
controlMonitorAPI	0	0	0	0	46	46
data archive	0	0	0	0	1	1
dataConditionAPI	16	3	8	1	176	204
dataIngestion	0	0	0	0	0	0
dbaccess	0	0	0	0	4	4
diskCacheAPI	0	0	0	0	0	0
distribution	1	0	0	0	1	2
documentation	13	0	0	0	95	108
eventMonitorAPI	1	0	0	0	16	17
frameAPI	11	0	0	0	105	116
frameCPP	1	0	0	0	12	13
general library	1	0	0	0	1	2
genericAPI	4	0	1	0	95	100
lwd	0	0	0	0	25	25
lwdfcs	0	0	0	0	0	0
ntegration tests	0	0	0	0	5	5
ghtWeightAPI	1	0	0	0	47	48
nanagerAPI	8	3	0	0	72	83
IDC ready	0	0	0	0	3	3
DC run	0	0	0	0	0	0
netaDataAPi	1	1	0	0	68	70
nime	0	0	0	0	0	0
npiAPI	3	0	0	0	33	36
emoteAPI	0	0	0	0	0	0
SWIG	0	0	0	0	1	1
ys admin	4	5	0	0	206	215
userAPI	0	0	0	0	8	8
wrapperAPI	0	0	0	0	14	14
Totals:	68	12	9	1	1119	1209

93%

LDAS systems up and running around the world!

LIGO Laboratory:


- Caltech
 - Development system
 - Test system
 - Main system soon!
- Hanford
- Livingston
- MIT
- LDAS staff work closely with others setting up LDAS systems.

LSC Institutions:

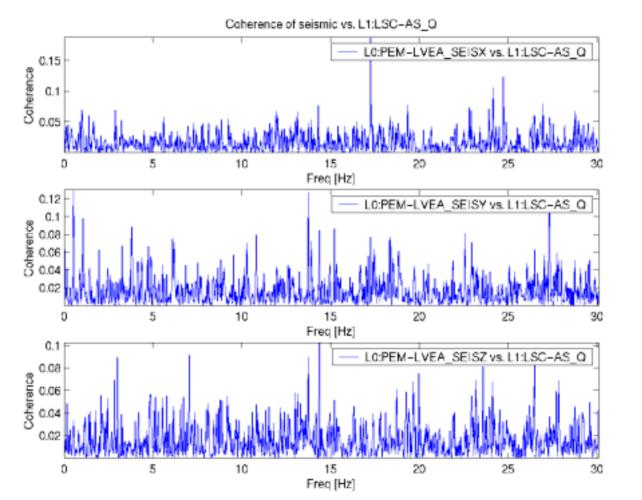
- University of Wisconsin Milwaukee[†]
- Penn State University[†]
- University of Texas Brownsville[†]
- Australia National University[†]
- University of Florida

[†] Sites with LDAS databases (*IBM's DB2*)

System web interface provides window onto *all* sites

Participation with the LSC

• Weekly dataConditioning Group (CIT, ANU, PSU, UTB, UF, MIT)


- Weekly (Message Passing Interface) MPI Group (CIT, UWM, UTB, LHO)
- Participate in LSC Software Coordination Meetings (AL, KB, SA)
- LDAS staff active in LSC Upper Limits Search Groups (AL, KB, SA, PS, PC, LW, MB, PE)
- Participate in Upper Limits Chairs Meetings (AL, KB, SA, PS)
- Participate in Detector Characterization Group (AL, PS, KB)
- Also active in Non-LSC specific areas (gravitational wave network analysis, GriPhyn, and LIGO's own CDS/GDS)
- Joint LSC/LDAS tutorial on developing analysis codes for the *Diagnostic Monitoring Tool*, *wrapperAPI* and *dataConditionAPI* last June at Caltech.

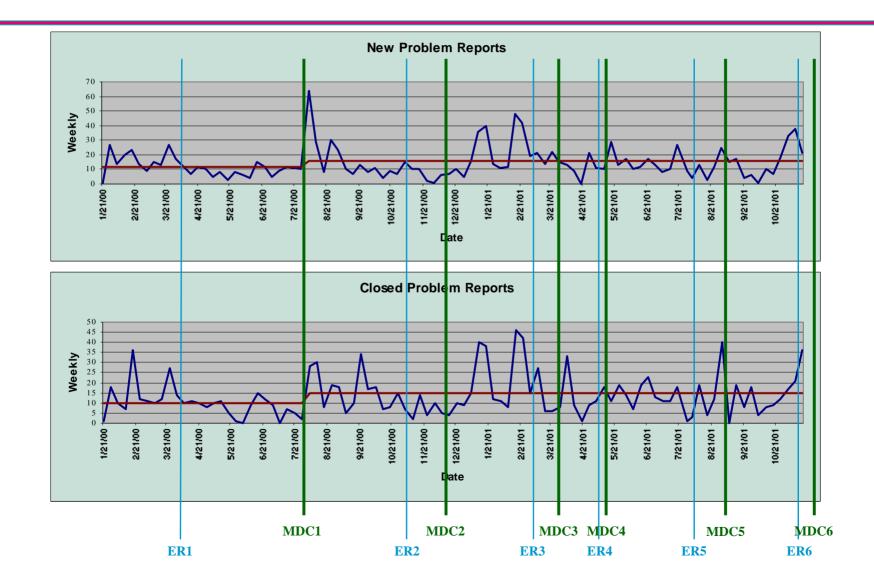
Participation in Engineering Runs

- E1: (*ldas-0_0_10*) supported ingestion of triggers from Hanford Diagnostic Monitor Tool (DMT) using LDAS Commands.
- E2: (*ldas-0_0_12*) supported ingestion of triggers(~7x10⁵) from LHO DMT and archiving of frames to tape.
- E3: (*ldas-0_0_15*) supported ingestion of triggers from LHO and LLO DMTs and archiving of frames to tape ...
 - E3 release allowed frame channel data to be analyzed using signal processing tools to dataConditionAPI and stored in database
 - Power spectral densities & Cross spectral densities

- **E4**: (*ldas-0_0_16*) supported ingestion of triggers from DMTs and archiving of frames to tape
- E5: (*ldas-0_0_19*) supported ingestion of triggers from DMTs and archiving of frames to tape.
- E6: (*ldas-0_0_22*) supported ingestion of triggers from DMTs and archiving of frames to tape...
 - LDAS/LSC driver script polled database for locked segments, then submitted dataPipeline jobs to conduct an unmodeled burst search:
 - 95 segments of 180 second long each analyzed to produce 218933 burst events in database!

LIGO Cross Spectral Densities generated online with LDAS in E3 run

Coherence between single arm length signal & difference between end & vertex station seismic channels


Participation in MDCs

(mock data challenges)

- dataConditionAPI MDC1: August 2000, release (*ldas-0_0_10*)
 - Tested <u>managerAPI</u> & <u>dataConditionAPI</u>.

- Message Passing Interface MDC2: December 2000, release (*ldas-0_0_12*)
 - Tested managerAPI, <u>mpiAPI</u>, <u>wrapperAPI</u>, & (LSC's: <u>LAL and LALwrapper</u>).
- Database MDC3: January 2001, release (*ldas-0_0_12 ldas-0_0_15*)
 - Tested managerAPI, metaDataAPI, lightWeightAPI, & database table design.
- Inspiral MDC4: May 2001, release (*ldas-0_0_17*)
 - Tested managerAPI, <u>frameAPI</u>, dataConditionAPI, mpiAPI, wrapperAPI, <u>eventMonitorAPI</u>, metaDataAPI & (LSC's: <u>inspiral dynamically loaded shared object (dso) search codes</u>).
 - Data products inserted into database and into ilwd data objects.
- Joint burst/stochastic MDC5: September 2001, release (*ldas-0_0_20*)
 - Tested managerAPI, frameAPI, dataConditionAPI, mpiAPI, wrapperAPI, eventMonitorAPI, metaDataAPI, lightWeightAPI & (LSC's <u>burst and stochastic dso search codes</u>).
 - Data products inserted into database, frame files and ligo_lw(xml) data objects.
- Periodic MDC6: November 2001, release (*ldas-0_0_22*)
 - Tested managerAPI, frameAPI, dataConditionAPI, mpiAPI, wrapperAPI, eventMonitorAPI, metaDataAPI, lightWeightAPI & (LSC's <u>periodic source dso search codes</u>).
 - Data products inserted into database, frame files and ligo_lw(xml) data objects.

MDC influence on problem reports

LIGO and GriPhyN

- LDAS working closely with GriPhyN collaboration on LIGO related components.
- Current prototype combines several LDAS systems using GLOBUS components to carry forward user requests.
- First prototype demonstrated at SC 2001 Conference.

- For each request for data, determined if it already exists and if so where, if not how to get it using LDAS.
- Data moved between LDAS system at UWM and CIT to carry out request if computation needed.
- Next phase of prototype will integrate components from continuous wave (periodic source) searches.
 - Data products will involve the common "Short Fourier Transform" SFT frames produced by search codes running on the LDAS Beowulf clusters.
- Security to LDAS systems and data assured by Globus proxy credentials and GridFTP over secure socket connections.

Open Issues

- GriPhyN activities starting to ramp up across collaboration(ocean).
 - Caltech, UWM, PSU, UTB, GEO (UK, Germany).
 - VIRGO, Others.

- Different potentials for how GriPhyN evolves from demos to real infrastructure.
 - Extensions of LDAS.
 - LIGO @ Home (a.k.a. SETI @ Home, a possibility for periodic searches).
 - GEO model (Java based TRIANA).
 - Grand Challenge model (CACTUS).
- No coherent body in the LSC to provide guidance on how to proceed.
 - Want to prevent redundant/conflicting efforts given that we have so few people to work on infrastructure.

Open Issues (continued)

- In LIGO the Tier 1-2-3 capacity ratio is close to [1:1:1], unlike the HEP ratio of close to $[1:1/N_{Tier2}:1/N_{Tier3}]$ model.
 - How Tier 2 centers evolve actually impacts LIGO Lab significantly!
 - Tier 2 centers are hardware heavy and people light.

- Unforeseen (in 1996-1997) was the propagation of LAB LDAS systems to collaboration sites, this has pluses and minuses:
 - (+) user experience/expertise defusing quickly.
 - (+) feedback; faster problem identification and resolution.
 - (-) LAB support function grown to greater than anticipated.
 - (-) becoming progressively more difficult to update LDAS/LAL releases due to inertia and lack of people.
- Tier 2 centers either will not or cannot adopt a pure LDAS hardware model.
 - heterogeneous environment complicates maintenance of LDAS/LAL releases.

Open Issues (unavoidable tension)

- 20 terabytes of archival data at Caltech already!
 - collaboration starting to implement analysis capabilities that will demand data transmission/moving.
 - pressures certain LDAS functionality (scope) be added against original timeline.
- How data are reduced as they filter down the Tier Levels still undefined by collaboration.
 - worst case => everything everywhere.

- Individuality vs. Conformality of Tier 2 design / functionality.
 - Identify subset of each Tier 2 that mirror LIGO configuration of LDAS.
 - fraction / partition can be changed according to load.
- Bandwidth limits the model of all data everywhere.
 - data reduction needs to waterfall through the Tier Hierarchy.
 - logarithmic data reduction required for optimization.