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Bursts

• short GW signal (milliseconds to tens of seconds), w
quency component in the 10-1000 Hz band
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Signal detection:        
definitions

• Choose between two hypotheses:

• Two types of error:
››False alarm: 

α = P(H1 | H0)

››False dismissal: 
β(s) = P(H0 | H1)

H0: y n=

H1: y s n+=



                             

 β for any constraint on α

in a subspace W 

 Neyman-Pearson

α
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Signal detection:        
Optimality

• When s is one known waveform, simple:
››Neyman-Pearson lemma:threshold on likelihood ratio minimizes

• Optimality not well defined when s can take values 
(i.e. when H1 is a composite hypothesis):
››Bayesian: assume prior p(s), integrate likelihood over W, back to

–Excess power (Anderson et al.)

–Excess power #2 (Vicere)

››Average: minimize mean of β(s) over W, for a constraint on α

–Time domain filters (Orsay group)

››Minimax: minimize maximum of β(s) over W, for a constraint on 

–TFCLUSTERS
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ompletely unknown

o structure, and is 
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 have same property:
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η
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Optimal signal detection:
coherent vs incoherent

signal subspace
known precisely

s
c

Match filter:

Signal evolution known exactly; gives an    
optimal rule to weight various data points.

max
s W∈

y s,〈 〉
H1><
H0

η

Total power:

Signal subspace has n
therefore invariant und

Optimal detector must

Note:

y 2

max
s RN
∈

y〈
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Signal detection vs signal esti

• Interesting link between optimal estimation and opti

is the optimal detector if r is the optimal (in mean squa

y r,〈 〉
H1><
H0

η
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TFCLUSTERS:            
first threshold

• compute spectrogram (non-overlapping, no window
• apply threshold on power; get black pixel probability
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TFCLUSTERS:          
second threshold

• For some subset of the spectrogram, threshold on t
integrated over all black pixels

• In practice, this is equivalent to computing

with r defined as

• This estimator r is minimax optimal in mean square o
sparse spectrogram representation

   (Donoho, D. L., IEEE Trans. Inf. Theory 41, 613) 

y r,〈 〉

r̃ij {ỹij  if  |ỹij η1 2⁄>

0  otherwise       
=
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s. If the frequency 

 related to the energy 
/ J < 1 / T f

5
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TFCLUSTERS:         
clustering analysis

What do burst signals look like in the spectrogram?
• short signals (∆t << 1 / bandwidth) have power spre

frequencies (Heisenberg principle)
• longer signals have many tens or hundreds of cycle

is determined by rotation, it can’t change too rapidly
››The amound of angular momentum radiated by gravity waves is

flux. For a certain strain h, there’s a maximum distance such that ∆J 

3337

2
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TFCLUSTERS:         
clustering analysis
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TFCLUSTERS:         
clustering analysis
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TFCLUSTERS:          
algorithm
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TFCLUSTERS:         
operating characteristics

• likely to be optimal or near optimal in the minimax s
forming small clusters in the spectrogram

• false alarm rate completely understood in Gaussian
• with much work, can also compute efficiency for spe
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TFCLUSTERS:                                        
operating characteristics
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TFCLUSTERS:            
real world

• runs at 250-500x real-time (most expensive task is 
identification)

• rough whitening important, especially at low frequen
• actual implementation models background power d

Rice distribution
• LDAS & DMT implementations
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TFCLUSTERS:           
DMT implementation
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E7

• 18 days, 160 hours of coincident operation for H2 and L1
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H2 bursts
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L1 bursts
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S triggers that 3rd 

take exponential
average with
decay time of
0.05s
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MICH_CTRL veto on H2

• it was found that MICH_CTRL could be used to pre
AS_Q

• found using time series analysis near TFCLUSTER
power line harmonic was a good predictor

• use GIDE DMT monitor:

acquire
data

apply bandpass
filter at 180Hz square

compute auto-
regressive mean &
variance;
timescale = 180s

threshold on
deviation from the
mean, in standard
deviations
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MICH_CTRL veto:       
efficiency
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MICH_CTRL veto:                                        
efficiency
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PSL glitch veto on L1

• PSL signal FSS_RCTRANSPD_F has short episodes of excess noise 
that   correlate with glitches in L1:LSC-AS_Q

• use GIDE with a high-pass filter with corner frequency at 20Hz
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PSL Glitch veto:                                              
efficiency
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Toy analysis pipeline

H2 triggersMICH_CTRL vetoes L1 triggers PSL Glitch vetoes

anti-coincidence anti-coincidence

coincidence

candidates

surviving H2 surviving L1
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Analysis pipeline

• many variables: thresholds on GW and veto channe
windows, etc.

• analysis performed on two disjoint data sets: 
››‘Playground’ data to setup pipeline variables

››‘Reserved’ data to compute upper limit
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Analysis pipeline

• use playground data to optimize expected upper lim
››choose values of pipeline variables

››compute number of coincidences in playground data

››compute livetime

››estimate background rate λ from number of coincidences

››extrapolate livetime T to reserved data set

››compute expected upper limit:

UL λT( )ke λT–

k!
-------------------------UL k α λ T, ,;( )

k 0=

∞

∑=
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Livetime
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Background
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Projected upper limit
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Todo list

• need sensitivity (i.e. probability of detection ‘averag
ble bursts) to turn UL into astrophysical statement

• repeat procedure for more vetoes, i.e. optimize ove
sionality space
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	Analysis pipeline
	• use playground data to optimize expected upper limit
	›› choose values of pipeline variables
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