

# Laboratory of Autowave Processes

Methods of analysis of autowave solutions in the models of distributed non-equilibrium, neuron-like media are developed. The patterns of collective activity (autowave processes) in homogeneous non-equilibrium media are investigated.

A research system for control of the effeciency of image recognition algorithms is carried out.

**Applications: a) variants of biometric systems;** 

b) comparison of the experimental data on the specific features of sensor signal transformation with the results of computer simulation. Application of Neuron-Like algorithms for extraction and recognition of model gravitational wave

Institute of Applied Physics RAS D.N. Budnikov, M.A. Kostin, S.O. Kuznetsov, I.V. Nuidel, A.V. Sergeev, S.G. Shilin, and <u>V.G. Yakhno</u>

# Examples of a model gravitational wave Wave(t), and noise in a LIGO detector <u>Noise(t)</u>





Results of computation of the efficiency of model gravitational signal extraction against the background of LIGO detector noise



• K=0

## • K=100

| 1 |       | 4   | 1  |     |
|---|-------|-----|----|-----|
|   |       |     | 1  |     |
|   |       | 1   |    |     |
|   |       |     | :  | 1.1 |
|   |       | 31  |    |     |
| 1 |       | 121 | 1  |     |
|   |       | 191 | 1  |     |
|   |       | 1   | 1  |     |
| 1 |       | 10  |    |     |
|   | 1.1.1 |     | 1  |     |
|   |       |     | 1  |     |
|   |       |     |    |     |
|   |       | 191 | 1  |     |
|   |       | 64  | 1  |     |
|   |       |     | 1  |     |
|   |       | 1   | 1  |     |
|   |       | 131 | 11 |     |
|   |       |     |    |     |
|   |       | 151 | 1  |     |
|   |       | 12  | 1  |     |
|   |       | 1.5 | 1  |     |
| 1 |       |     |    |     |



#### **Covariation spectral analysis**





K=100



Initial signal and the results of gravitational signal extraction (the size of the spatial "frequency – time" filter is  $15*15 \text{ pixels or } \sim 15Hz*6 \text{ sec}$ )

A nonlinear spatial-frequency filter is used as a homogeneous neuron-type medium



# A nonlinear spatial-frequency filter is used as a homogeneous neuron-type medium

K=50



## **Covariation spectral analysis**



# A nonlinear spatial-frequency filter is used as a homogeneous neuron-type medium



## **Covariation spectral analysis**



#### **Results of analysis and processing of images of a 100-sec signal from a LIGO detector.**

«Initial dynamic spectrum of the signal». (2048 points)



The x axis shows frequency from 1 to 1024 Hz; the y axis time from 1 to 100 sec.

The changes in the spectral component in the range from 690 Hz to 704 Hz reveal a moving source of signal near the detector.

We used a program for extracting and recording frequency of maximum signal and its amplitude within the frequency range of 650 – 750 Hz.



A source for such a signal was apparently an object that changed its velocity in the direction towards the detector in the range from 0 to ~25km/h.

Variants of models for a homogeneous neuron-like medium to transform an initial image, were used.

That is example of signal processing in the time-frequency domain with variants of "wavelet"-like functions of filtering The model is given by the following equation:

$$\tau_{\mathbf{u}} \overset{\partial \mathbf{u}}{\mathbf{\partial}}_{t} = -\mathbf{u} + F \left[ -T + \alpha \int_{-\infty}^{+\infty} \Phi_{u} \left( \vec{\xi} - \vec{r} \right) \cdot u \left( \vec{\xi}, t \right) \cdot d\vec{\xi} + u_{ex} \left( \vec{r}, t \right) \right]$$

where  $u(\vec{r},t) = u(x,y,t)$  - the distribution of excitation in the form of space-time structures in a 2D distributed neuron-like system. *T* determines threshold of system's actuation in response to the summed signal.

The spatial coupling function  $\Phi_u(\vec{r})$  is chosen of the type of lateral inhibition with positive center and negative wings.

 $\alpha$  is the normalizing constant for the coupling function.

In the absence of second term in the right-hand side of the equation, the initial condition decays during the time  $\tau_u$ .

#### Coupling functions are taken in the form of Gabor functions

$$\Phi(\vec{r} - \vec{r}_0) = \cos(2\pi \cdot kx + \phi_0) \exp\left(\frac{-\vec{r}^2}{2 \cdot l^2}\right),$$
  
$$\vec{r} = (x, y)$$

In this case, at given  $l, \phi$  the element coupling function of the lateral inhibition type is realized, where l is standard deviation in Gaussian distribution.



Coupling functions for extracting lines in different directions (vertical lines and lines at a -45° angle).

LIGO-G020114-00-Z

#### Matrix of couplings of 33\*33 element



**Extraction of vertical lines. Threshold T=100** 



#### **Extraction of inclined lines (at a -45° angle)**



**Extraction of horizontal lines. Threshold T=100** 



#### **Extraction of inclined lines (at a 45° angle)**

LIGO-G020114-00-Z

# Conclusions

1. The algorithm for image analysis of the signal dynamics spectrum seems to be more convenient for apprehension by an operator-researcher and more efficient, in particular, for extracting signals with different, a priori unknown dependences of the frequency filling in the sought gravitational waves.

2. It is very interesting to develop a version of an automated system enabling one to seek the fragments of recorded signal that resemble the signals from gravitational waves or the pre-extracted or pre-examined "signals" (with the calculating of the probability of coincidence and statistics of recording such fragments on the experimental records being analyzed).

#### Laboratory of autowave processes of The Institute of Applied Physics of RAS





Institute of Applied Physics of the Russian Academy of Sciences, 46 Uljanov Street, 603950 Nizhny Novgorod, Russia Telephone: 7- (8312) 38-42-90; 7- (8312) 38-01-94 Fax: 7- (8312) 36 37 92 E-mail: yakhno@appl.sci-nnov.ru This results for LIGO signal investigation was supported by Eu. Eremin, S. Klimenko, VI. Kocharovsky, and A. Lazzarini

