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1. Estimation of the sidebands imbalance noise

which limits the sensitivity of gravitational wave
interferometers

2. Investigation of the physical mechanisms which
induce sideband imbalance

3. Introduction of a 2X2 optical model constructed
with a view to take into account symmetries and
unitarity
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A gravitational wave is measurable as a phase change
in the electromagnetic �eld that is reected out of an
optical resonator driven by monochromatic light

(carrier �eld)
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The detector can be designed in order to make the
application of the basic idea work easier and a more
complex scheme is used for this purpose
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In an ideal interferometer the amplitude of the �eld
at the dark port is proportional to the phase variation
induced by the gravitational wave

	DP =
1

2
[reff(�1)e

i'1 � reff(�2)e
i'2]	RC

at the working point
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A reference frame for detecting the
variation of the phase
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For the \ideal" con�guration
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In a \realistic" interferometer
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� Requirements for limiting any variation equivalent
to a phase change due to some gravitational signal

~x(10Hz) � 10�19m=
p
Hz TMs displacement noise

� laser frequency and amplitude must be stabilized
to reduce uctuations

relative intensity noise � 10�9 � 10�8=
p
Hz

laser frequency noise Æ�0 � 10�7Hz=
p
Hz
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First estimation of the
sidebands imbalance noise in VQ
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Can the sidebands imbalance noise
a�ect the sensitivity of Ligo I and II?

using Ligo I parameters

t2RM = 0:0244 t2ITM = 0:03 t2ETM = 1510�6

jls1 � ls2j= 10�4 �= 1:06410�6m L = 4103m
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What causes sidebands imbalance?

� Geometrical asymmetries that make the two

branches of the interferometer di�erent, even
if everything else is perfectly designed including the
lengths of the cavities that are supposed to match
the macroscopic conditions for the sidebands to be
anti-resonating in the Fabry-Perot cavities and res-
onating in the recycling cavity (Li = (2ni+1)�mod

4
).

� The two branches of the interferometer are

identical but the lengths of the Fabry-Perot and
recycling cavities do not match the macroscopic
condition so that the phase di�erence between

the sidebands is no longer a multiple of 2� as
it is when all the lengths are a multiple of �mod

4
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One arm is perturbed and sidebands
imbalance is produced because of the
geometrical asymmetry
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The results obtained by an FFT code and a modal

model are compared: even using 66 modes the
agreement between them is not good for perturbations
larger than � 2:5km in the radius of curvature of the
ITM o�-line mirror. However the agreement for the
carrier is very good even for large distortions � 7:5km.
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Both the imbalance and the disagreement between the
FFT-code and the modal model become worse when
the recycling cavity is simulated switching o� the arm
cavities
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If the sidebands are sensitive to a geometrical

asymmetry in the two branches let's construct an

analytical model that explicitly implies those features
in a two dimensional model.
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William P. Kells and I developped a simple model with
a view to do analytical calculations. The aim was to
understand the underlying physical mechanisms and we
explicitly started from the basic principles we wanted
to be included such as unitarity and symmetries.
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Sidebands imbalance can occur simply
because the macroscopic condition on
the lengths is not satis�ed

Larm 6= (2n+1)�mod
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Where does the imbalance come from in a completely
symmetrical interferometer?
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We understand the underlying mechanisms that can
generate sidebands imbalance. They are related with
a broken symmetry: the left-right symmetry in the
system or the left-right symmetry around the value for
resonance in the phase domain.
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Prescriptions in our model
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At the second order our request overrides the rules
obtained by other methods.

ei�
�

e�i� cos  i sin 
i sin  ei� cos 

�

The quantity  represents the scattering from one mode
to another.

When the Guoy phase is changed � stands for that
variation.

There is a factor in front of the matrix when the opti-
mal position of the mirror must be varied.

tilt

k~uz �! k sin #~ur + k cos#~uz

radius of curvature

d�g

dR
�R �! �
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The sidebands imbalance can be induced by several
different technical reasons (for instance any

asymmetry in the interferometer or inappropriate
macroscopic lengths of the cavities).

Balance can be restored by tuning the microscopic
lengths although this is an additional tuning

according to the definition of all distances defined
on the carrier resonant condition.

Since the sidebands are not resonating in the arms the
realistic con�guration of the interferometer makes
di�erent the optimal tuning for the carrier from the
optimal tuning for the sidebands balance. This
simple phenomenon induces sidebands noise which can
be reduced by applying an o�set. An useful test is
to alter the sidebands phase although the carrier is
always resonating. This can be done by adjusting the
macroscopic length of the cavities (a conceptual test).

-15 -10 -5 0 5 10 15
phase

10

20

30

40

50

60

70

Resonant curves for SBs

Page 19



Ligo Seminar

May 3
rd, 2002

Erika D'Ambrosio

Caltech, Pasadena

-15 -10 -5 5 10 15
phase

-0.06

-0.04

-0.02

0.02

0.04

0.06

Rel. Difference in SBs Gain

Apparently balance can always be restored by tuning
the frequency and the beam mode at the input.

	SB
input(kx; ky; kz) for res./anti-res. conditions
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The sidebands imbalance arises
because of imperfections in the
interferometer.

When correctly parametrized in terms
of the perturbation it is a second order
correction.

It is clear that sidebands balance is not equivalent to
no carrier light through the antisymmetric port.
Exact balance would imply both same gain and mode

composition. The general issue is that an imbalance
can cause a noise term but we also had in mind other
motivations for this problem to be tackled.
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