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LMXBs

Pulsarsand LM XBscontain
objects with the mass of the sun
compressed to size of city; i.e.,
compact (2GM/Rc” ~ .2) and ultra
dense (10415 g/cm?).

Neutron stars. (superfluid)
neutrons, (superconducting)
protons, normal e ectrons, plus
exotic particles (e.g., hyperons).
Strange stars. up, down, &
strange quarks.

These objects spin rapidly and
have intense magnetic fields.

Photos. http://antwr p.gsfc.nasa.gov; http://imagine.gsfc.nasa.gov
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The mass of

the sun

compressed
to the size

of a city

Neutron Star Basics

Rotation
Rates up to

642 times per
second

e

Radii of 7-15 kilometers |

_Beams of
Electromagnetic
Radiation

1000 Giga-gauss
-~ Magnetic Fields

Arrays of
quantized
vortices

Central densities
up to a billion tons
per teaspoon
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| solid crust
dissipative
boundary layer
fluid interior
Courtesy Justin Kinney



LIGO

Gravitational-radiation Driven
Instability of Rotating Stars

* GR tendsto drive all rotating stars
unstabl el

* Internal dissipation suppresses the
instability in all but very compact
Stars.



Perturbations in Rotating Neutron Stars

* Neutron star rotates with

angular velocity W> 0. c
e Some type of “wave’

perturbation flowsin the

opposite direction with

phase velocity w/m, as Rotating neutron star.
seen In rotating frame of
Star.

* Perturbations create
oscillating mass and
current multipoles,
which emit GR. Perturbations in rotating frame.

Courtesy Justin Kinney
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D GR Causes | nstability

e |f W-w/m>D0, star
“drags’ perturbationsin
opposite direction.

* GR carries away angular
momentum.

* GR backreaction pushes
on perturbations in
direction they want to
travel.

* This I ncreases their Star drags perturbations in opposite
amplitude! direction. GR drives mode unstable.

Courtesy Justin Kinney
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The R-modes

* Ther-modes correspond to oscillating flows of
material (currents) in the star that arise due to the
Coriolis effect. The r-mode frequency Is
proportional to the angular velocity, W.

e The current pattern travels in the azimuthal
direction around the star as exp(iwt + imj ).

e Forthem= 2 r-mode:

= Phase velocity in the corotating frame: -1/3W
= Phasevelocity in theinertia frame: +2/3W




Flow Pattern for the m = 2 r-mode
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Fluid Motion in the m = 2 r-mode
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e The flow pattern is shown along with
the small elliptical paths (on the left) of
individual fluid elements. The flow pattern

moves (to the left) past the fluid particles
as the mode evolves. '

Courtesy Lee Lindblom
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R-mode Instability Calculations

e Gravitationa radiation tends to make the r-
modes grow on atime scalet .,

 Internal friction (e.g., viscosity) in the star
tends to damp the r-modes on atime scalet,
e The shorter time scale wins:
= t..<t,: Unstable!
= t..>t,: Stablel



I'“?'ol\/l agnetic Effects on Viscous

Boundary Layers

* Previoudly it has been shown that viscous

boundary layer damping may be the most
Important suppression mechanism of the r-modes

In neutron stars with a solid crust (Bildsten and
Ushomirsky, ApJd 529, L33 (2000)

* Magnetic effects on the viscous boundary layer
were expected to be important at high
temperatures.




e The Shear Force:
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e Newton's 2nd Law:
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e For vy = exp(iwt)exp(ikz) the boundary layer
thickness is given by:

() 2n

Im(k) | pw'
e VBL Damping Rate:

1 D N
— ~nlklcd ~ —.
N\ k| r

NV RV A N AN

d =




LIGO Add Magnetic Field...
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Magneto-viscous Boundary

LIGO .
Layer With Alfven Waves
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e Magnetohydrodynamic equations:

O T+2 X 67 = —‘?6U+£ (g X ff) +§€-(2n5§),

e Approximate viscous boundary layer solution:
* Keep only radial derivatives.

* Let 6 ~ exp[ik(r — Re)].
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e Gravitation-radiation growth time-scale:
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e Shear viscosity damping time-scale:
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e Viscous boundary layer equations:

Sado™ = ZR2(10,55° 2 + |6r(sind55*)[),
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e Define VBL wavelength and VBL thickness:

i——+di
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e Taylor expand for _& Ya = —"1
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e Wavelength = distance Alfvén wave trav-
els in one rotation; many of these wavelengths
exist within a thick boundary layer:
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e Good for magnetic fields larger than the fol-
lowing lower bound:

B> (4.6 x 10° O/ 20820 208, T




e Equation for the critical angular velocity:
TGR — Tup.

e Gravitational-radiation growth rate for the
m = 2 r-modes:
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where

O = -\fﬂ'Gﬁ,

2
Qmax = gﬂos

e Magneto-viscous boundary layer damping rate
for the m = 2 r-modes:
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e Critical angular velocity:
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ico MVBL Critical Angular Velocity

Mendell, Phys. Rev. D 64, 044009 (2001)
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Quantized Vortices

Circulation and flux are quantized in superfluids and type Il
superconductors respectively.
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Arrays of quantized vortices form. Typical vortex densities are 10°
neutron vortices per cm? and 102° proton vortices per cm?2. For
neutron vortices the velocity field is long range and varies inversely
with distance from the vortex. For proton vortices the velocity and
magnetic fields are short range and are characterized by a decay
length known as the London depth, L ~ 101 cm. The vortex core
radii = x ~ 101112 cm. The vortex cores consist of normal fluid.
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Superfluid Effects

* No dip boundary condition replaced with
vortex pinning.

 Alfven waves are replaced with cyclotron-
vortex waves.

« Magnetic effects are ssmilar to ordinary
fluid case, but important for B 3 10° G T,>.

e Mutual friction is important too.



LIGO
Critical Angular Velocity

Superfluid Case

B=10%G
B=101G
B=10Y9G
B=10°G
B=0G

Justin Kinney and Gregory Mendell gr-qc/0206001; to appear in Phys Rev D.
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Spin Cyclesof LMXBsS

Simple Evolution Equations
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Spin Cyclesof LMXBsS

Ordinary Huid Case
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Justin Kinney and Gregory Mendell gr-qc/0206001; to appear in Phys Rev D.



HGO  ghin Cycles of LMXBs
Superfluid Case

B=0G B=10°G B=10%G
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Justin Kinney and Gregory Mendell gr-qc/0206001; to appear in Phys Rev D.



