

Seismic Attenuation System (SAS) Prototype Test

Akiteru Takamori (Caltech/ Univ. of Tokyo) and SAS Collaboration

LIGO-G030018-00-D

11 February 2003

SAS SAS SAS Collaboration

Univ. of Tokyo

M. Ando Y. Iida K. Nanjo Y. Nishi K. Numata K. Otsuka K. Otsuka K. Somiya A. Takamori K. Tsubono T. Yoda

NAOJ

M. Fukushima S. Kawamura R. Takahashi

Caltech

R. DeSalvoSz. MárkaV. SannibaleH. YamamotoC. Wang

Universita' di Pisa

A. Bertolini G. Cella

Florida Tech H. Tariq

INSA de Lyon

F. Jacquier N. Viboud

Other Institution

G. Losurdo (Virgo) and others

SAS Contents

Introduction: TAMA SAS Prototype Tests of Subsystems 3m Fabry-Perot Experiment Summary

SAS Contents

Introduction: TAMA SAS Aims, Background Features R&D Program Prototype Tests of Subsystems 3m Fabry-Perot Experiment Summary

SAS TAMA SAS (1)

TAMA SAS (Seismic Attenuation System) Aims

- Lower Frequency Limit of GW Detection
- Improve Stability of GW Detectors

Background

- **Upgrade of TAMA300 (2002 2006)**
- **Advanced GW Detectors (LCGT etc.)**
 - Improve TAMA300 Performance
 - Establish Low Frequency Isolation Technique for Future Detectors

SAS TAMA SAS (2)

Main Functionalities

Passive Low Frequency Isolation

- Low Resonant Frequency Mechanics (in all d.o.f.)
 - Highly Robust Isolation Performance
 - Reduce Bandwidth Interferometer Controls
- Specs Overkilling Design
 - Against Spurious Cross-Coupling, Internal Resonances
- **Suppression of Residual Mirror Motion**
 - Attenuation at Micro Seismic Activity
 - Active/ Passive Damping for Mech. Resonances

Provides Mirror Controllability

Actuators for Hierarchical Controls

Introduction

SAS R&D Program

Introduction

SAS Baseline Design

11 February 2003

Introduction

SAS Simulation

Design Performance

- Achieve Pendulum Thermal Noise Level below 10 Hz

11 February 2003

SAS Contents

Introduction: TAMA SAS Prototype Tests of Subsystems Mechanics Local Control

3m Fabry-Perot Experiment Summary

SAS Testing Mechanics

Prototype Test

SAS Inverted Pendulum (1)

Horizontal Pre-Isolator

- **Ultra Low Frequency Passive Isolation**
 - Translational Mode
 - Tuned to a Few Tens of mHz
 - Attenuation at Micro Seismic Activity Frequencies
 - Compensation of c.o.p. Effect

Stage for Active Damping

Compact Design

- 2m Height
- High Internal Mode Frequency: ~ 60 Hz

SAS Inverted Pendulum (2)

IP Prototype Tests

Tuning Resonant Frequency

- Tuned to 30 mHz ~ 70 mHz
 - Limitation due to Non-Linear Effect

11 February 2003

Prototype Test

SAS Inverted Pendulum (3)

11 February 2003

SAS MGASF (1)

Monolithic Geometric Anti-Spring Filter

Low Frequency Vertical Isolator

- **Completely Passive System**
 - Vertical Res. Freq.
 - Tuned to a few hundreds mHz
 - Hight : ~ 10 cm
 - Typical Load : ~ 100 kg

SAS MGASF (2)

Working Principle

Vertical Isolation by Cantilever Springs

- Horizontal Compression

Passive Geometric Anti-Spring Effect

- 'Linear' Model
- Vertical Normal Spring vs. 'Horizontal' Anti-Spring

11 February 2003

SAS MGASF (3)

MGASF Prototype Tests

Frequency Tuning

- Compression / Optimal Load (Working Position)
- Typ. Freq. :200 mHz ~ 500 mHz

11 February 2003

SAS MGASF (4)

11 February 2003

Features

- **Double Pendulum**
- **Passive Damping on Int. Stage**
 - Validated by TAMA300
 - Complement to Active Damp
- Low Freq. Vertical Isolation
 - Mini MGAS
- **Control using Recoil-Mass**
 - Simple Mirror Control

Prototype Test

SAS Mirror Suspension (2)

Prototype Test

SAS Prototype TAMA SAS

SAS Testing Local Controls

Principle & Features (1)

Active Velocity Damping

- Suppress Horizontal Rigid-Body Modes of SAS
- **Utilize Inertial Sensor (Accelerometer)**
 - Ideal Velocity Damping with Respect to Inertial Frame
 - LVDT Position Sensor for DC Stabilization
- **Sensing / Acting on IP**
 - Recoil Effect of Rigid-Body Modes
 - Minimize Control Noises
 - Passive Isolation by MGASFs, Mirror Suspension
 - Limited Frequency Band: below 10 Hz

SAS Local Controls

Principle & Features (2)

Digital Signal Processing

- Ultra Low Frequency (1 mHz) Filtering
- Flexibility for Servo Design

Local Controller Rack

SAS Local Controls

Component Test

SAS Local Controls

Accelerometer

SAS Local Controls

Experimental Results

- Horizontal Rigid-Body Modes: Sufficiently Damped

- Residual Peak due to Cross-Talk from Vertical Mode
- IP Motion at 1 Hz: 1×10//tHz

- Residual IP Motion

IP Motion Detected by Accelerometer out of the Loop

11 February 2003

SAS Contents

Introduction: TAMA SAS Prototype Tests of Subsystems **3m Fabry-Perot Experiment** Setup Results Summary

SAS 3m Fabry-Perot Experiment

SAS Scope

Evaluation of Total System of TAMA SAS

Components' Validation Completed

Demonstrate TAMA SAS Compatibility to F-P Operation

Quantitative Evaluation of Isolation Performance

- Cavity Length Stability
- Effect of Local Control
 - With Respect to Frequency Stabilized Laser

Collect Information for Justification for TAMA300

- Handling, Stability, etc.

SAS Setup

2 TAMA SAS Prototye Towers House 3m Fabry-Perot Cavity IP Resonant Frequencies: 40 ~ 70 mHz MGASF Vertical Frequency: ~ 500 mHz **Optical System Nd:YAG Laser Frequency Locked to Rigid F-P Cavity** Vacuum System Scroll Pump - Operation ~ 0.1 Torr

SAS Setup: Laboratory

SAS Setup

2 TAMA SAS Prototye Towers House 3m Fabry-Perot Cavity IP Resonant Frequencies: 40 ~ 70 mHz MGASF Vertical Frequency: ~ 500 mHz **Optical System** Nd:YAG Laser **Frequency Locked to Rigid F-P Cavity** Vacuum System Scroll Pump - Operation ~ 0.1 Torr

SAS Setup: Optics Layout

SAS Setup

2 TAMA SAS Prototye Towers House 3m Fabry-Perot Cavity IP Resonant Frequencies: 40 ~ 70 mHz MGASF Vertical Frequency: ~ 500 mHz **Optical System** Nd:YAG Laser **Frequency Locked to Rigid F-P Cavity** Vacuum System **Scroll Pump Operation** ~ 0.1 Torr

3m F-P Experiment

SAS Setup: Vacuum Envelope

SAS 3m Fabry-Perot Cavity

Length Control

Error Signal Obtained by Pound-Drever-Hall Technique

Feedback only to End Test Mass

Analog Filters (Bandwidth DC ~1 kHz)

No Automatic Alignment Control

SAS Results (1)

Cavity Length Fluctuation

- 10^m/rtHz @ 1Hz (Floor)
 - No Common Mode Rejection Observed
- Stable Operation: ~4 hours (Intentionally Unlocked)

11 February 2003

SAS Results (2)

Noise Evaluation

- 1~3 Hz: Disagreement with Evaluation

- Possible Reason: Mirror Angular Fluctuation
- Above 3 Hz: Electronic Noise Dominant

11 February 2003

SAS Results (3)

Effect of Local Control

- Agreement with Measurements on IP
- Horizontal Rigid-Body Modes: Well Damped
 - Residual Peak at 500 mHz: MGASF Vertical Mode

11 February 2003

SAS Results (4)

Effect of Local Control (cont'd)

- Residual Motion (0.1 Hz ~ 10 Hz)

	Displacement	Velocity
Ground	1.2 μm	2.6 µm/s
F-P Cavity		
Damping Off	0.9 µm	1.2 µm/s
Damping On	0.2 μm	0.3 μm/s

Improvement Factor: 5 – 10

SAS Results (5)

Expected Improvement in TAMA300 Seismic Noise

- Below 10 Hz: Factor 100 10000 (Measured)
- Above 3 Hz: Over 10000 times (Estimated)

11 February 2003

SAS Contents

Introduction: TAMA SAS Prototype Tests of Subsystems 3m Fabry-Perot Experiment Summary Summary

- **Future Work**
- Conclusion

SAS Summary

SAS Components

- Individual Validation of TAMA SAS Prototype Components Mechanics
 - Local Control System

Evaluated Total System Performance

- 3m Fabry-Perot Experiment

Demonstrated TAMA SAS Compatibility to F-P Operation

Residual Motion: Suppressed by Local Control

Estimated Performance in TAMA300

Improvement Factor: 100 ~ 10000 (Experimentally Guaranteed)

Installation to TAMA300 in 2004, Baseline for LCGT

SAS Future Works

Installation to TAMA300, Future Detectors

- **Further Evaluation in TAMA300**
- **Study on Hierarchical Controls**
- **Minor Modification**
 - Frequency Matching for Better Damping Performance
 - Adding Initial Adjustment Devices

Further Understanding on 3m FP Noise (1 – 3 Hz)

Study on Compatibility to Cryogenic Mirror Suspension (LCGT)

Other Applications

- **Reference for Laser Frequency Stabilization**
- **Sensor Noise Measurement Facility (Accelerometer)**
- Low Frequency Accelerometer (Seismometer)