

## Analyzing Event Data

Lee Samuel Finn Penn State University

Reference: T030017, T030041

#### **Motivation**

- The devil is in the details
  - Noise obscures, confuses details (waveforms, estimable parameters, etc) in low S/N regime
- "Articulated events" capture principal signal features
  - » E.g., amplitude, duration, time, frequency, bandwidth, etc.
  - » Can be related to physical source characteristics
- Noise event numbers fall with amplitude fast
  - » New populations will emerge from well-defined tails
- More weak signal events than strong ones
- » 9 of every 10 signal events have S/N < 2.2 time threshold in isotropic dist; 3.3 times threshold for disk dist LIGO-G030065-00-Z

log N

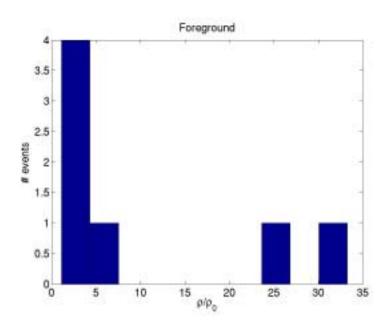
- More events, info/event, better bounds on source properties
- Examples in science
  - » Detection top quark
  - » GRBs are cosmological
  - » Cosmology (distance ladder, Hubble & other parameters, etc.)
  - » COBE & quadrupole anisotropy

# From population model to foreground events

- Population model /
  - » Sources:
    - Radiation in polarization modes, intrinsic strength, etc.
  - » Distribution
    - Spatial, luminosity, other parameters
- Waves at antenna array: "source events"
  - » h: polarization amplitudes, propagation direction
- Data processing pipeline J leads to "detected events"
  - » Pipeline registers only fraction of source events, characterizes events phenomenologically
  - » E.g. amplitude, frequency, bandwidth, source location, etc.

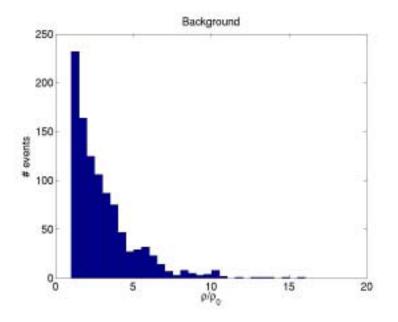
#### Characterizing detected events

- Detected source events: "foreground events"
  - » P<sub>F</sub>(H| /J): distribution of detected events, owing to sources, in H
  - $\approx \epsilon(IJ): \text{ fraction of all source events} \\ \text{leading to detector events} \\$
  - » Determined by simulation
- Example: disk distribution
  - »  $P(\rho) \sim 1/\rho^2$  for *power* signal-tonoise  $\rho$
- At right:
  - » Draw # events from Poisson (10 expected, 7 actual)
  - » Draw event amplitudes from disk distribution



#### **Background distribution**

- Multiple detector correlations among most powerful analysis tools available
  - » Correlation or coincidence
- For event data, estimate distribution, rate from time-delay coincidence
  - » Multiple time delay fit to, e.g., mixture distribution model
  - » "Expectation maximization"
- Example:
  - Thresholded linear filter output: Exponential distribution in power signal-to-noise
  - » Number drawn from Poisson distribution (1000 expected)





- Observed events are either foreground or background
  - » Ratio of foreground number to background number is ratio of foreground rate(unknown) to background rate (known)
- $P(H|/_n_Bn_S)$ : Probability of observing a single event H
  - »  $\mathsf{P}(\mathbf{H}|/\mathcal{J}\mathsf{n}_{\mathsf{B}}\mathsf{n}_{\mathsf{S}}) = (1-\alpha)\mathsf{P}_{\mathsf{B}}(\mathbf{H}|\mathcal{J}) + \alpha\mathsf{P}_{\mathsf{F}}(\mathbf{H}|/\mathcal{J})$
  - »  $\alpha/(1-\alpha) = n_F/n_B$
  - » Used for Frequentist analysis
- P(H|/Jn<sub>B</sub>n<sub>S</sub>T): Probability of observing N events H = {H<sub>k</sub>: k = 1..N}
  - »  $P(H|Jn_Bn_ST) = P(N|\mu) \Pi_k P(H_k|Jn_Bn_S)$
  - »  $P(N|\mu)$  is Poisson distribution;  $\mu = T[n_B + \epsilon(IJ)n_S]$
  - » Used for Bayesian analysis

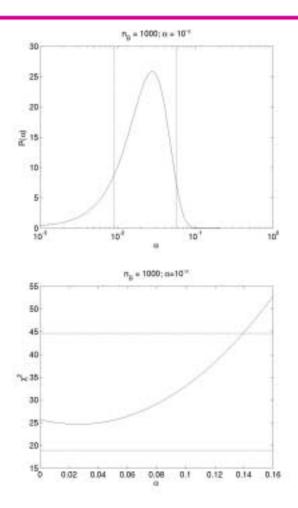


- How well does observed distribution fit expected distribution P(H|/Jn<sub>B</sub>n<sub>S</sub>)?
  - » N events sample  $P(H|/Jn_Bn_S)$
  - » Evaluate  $\chi^2$  test statistic
  - »  $\chi^2 = \chi^2 (H | n_B n_S T I J K)$
- Find interval χ<sup>2</sup> that encloses probability p of χ<sup>2</sup> distribution
  - » Choose smallest  $\chi^2$  interval

- For what range of n<sub>S</sub> is χ<sup>2</sup> in probability p interval?
  - » Like a CI, but not a CI:
    - CI: range of n<sub>s</sub> for which observation is likely with probability p
    - Here: range of  $n_s$  for which  $\chi^2$  is likely with probability p
- Automatically incorporates "goodness-of-fit" test
  - If observed distribution does not fit well to expected distribution for any n<sub>S</sub>, no range of n<sub>S</sub> reported

### Example

- Disk population, Rayleigh noise
  - »  $n_{\rm S}/n_{\rm B} = 1/100$
- Analysis: "See" all events with S/N above threshold
- Expect 1000 background events
  - » Actual number background, foreground Poisson
- Typical result 90% confidence
  - Bayesian analysis (flat prior) bounds n<sub>F</sub> away from zero
  - » Frequentist analysis sets upper limit n<sub>S</sub>/n<sub>B</sub><0.14</p>



LIGO-G030065-00-Z

#### Compare ...

#### • "Excess event" analysis

- » Detection of excess @ 90% confidence requires # observed events greater than  $\sim 1.5 n_{\rm B}$
- »  $n_F/n_B = 1/100$  to  $n_F/n_B = 1/2$  requires increase threshold by factor 14
- » After increase, expect 0.7 foreground, 1.4 background!
- » "Detection efficiency" 15%
  - Will have one or more foreground event only 15% of times you look
  - Compare 46% of cases will have Bayesian bound on  $n_{F\,\text{\sc h}}$  away from 0
- Why is distributional ("log S/log N") analysis so much better?
  - » Populations emerge in the tail
  - » Mass of distribution provides context, anchor for measuring, interpreting tail
  - » Without the mass of distribution, tail wags dog

LIGO-G030065-00-Z



### **Summary & Conclusions**

- Source and source population properties are revealed in observed event distribution properties
  - » Axi- vs. non-axisymmetry, spatial distribution (disk, sphere), etc., all reflected in observed distribution in amplitude (& frequency, bandwidth, etc.)
- Study event distributions to identify, bound character of sources, source populations
  - » Models can be fit to observed event distributions
  - » Rate, spatial distribution, luminosity, other properties
  - » Bayesian analysis straightforward; Frequentist analysis based on  $\chi^2$  statistic
- <u>Distributional analyses have greater sensitivity, are more</u> robust against small number statistics
  - » Dig deeper into noise
  - » More events make analyses more robust than low-number statistics, single event, low-background analyses

#### Moral: use coincidence to estimate background & drop thresholds!