Status of the ACIGA Gingin Research Facility

Overheads by Chunnong Zhao Edith Cowan University/ACIGA

LIGO-G030070-00-Z

LSC meeting Livingston, March 2003

Gingin Research Facility

Objective

Primarily to collaborate with LIGO to investigate phenomena due to very high optical power in a laser interferometer for gravitational wave detection.

Facility Configuration

A sequence of 3 tests

Input power $\approx 6 \text{ W}$ Intra-cavity power $\approx 2.1 \text{ kW}$

Input power ≈ 50 W Intra-cavity power ≈ 100 kW

Input power $\approx 50W$ Recycling cavity power $\approx 4 \text{ kW}$ Arm cavity power $\approx 200 \text{kW}$

Laser Table Layout

Project Status

- Infrastructure:
 - Facilities
 - Vacuum System
- Vibration Isolation
- Isolator Controls
- Sapphire Test Masses
 - Simulation of thermal lensing and its compensation
 - Scattering measurement

Vacuum Systems

- The best pressure achieved so far
 - in Central Tank
 - 8.0×10^{-7} mbar
 - in South Intermediate Tank 7.8×10^{-7} mbar.
 - in South End Station Tank (detected some leaks)
 - 8.3×10^{-6} mbar

The Roberts linkage

39mHz

Roberts linkage results

Euler Vertical Stages

Euler springs

One isolator stage

Former "wishbone" rotational arm design f = 2.4Hz.

Initial design of the Euler stage f = 0.95Hz

Current design f = 0.5Hz, about 35dB improvement.

Progressive improvement of resonant frequencies in a single vertical vibration isolation stage.

Self-damped Pendulum

Isolators

- Three pre-isolators have been completed
- The isolator chains are in manufacturing stage

Control system

Error Signal (mm)

Demonstration of the Pre-isolator Control

Time (s)

Isolator Controls

- Traditional Coil/Magnet actuators for preisolators and isolator chains control
- DSP based digital control system
- Experimentally demonstrated enough force to control the pre-isolator
- Successfully controlled one axis of the preisolator

Rayleigh Scattering Study of Sapphire Test Masses

Sample 1

Position 1B

The scattering is non-uniform along the beam. There is a big point defect in picture2 (position 1B).

Sample 1

Relative intensity of scattering of position 1A. Maximum value <4000

Relative intensity of scattering of position 1B. "Ordinary" Level ~ 5000. There is a sharp peak at the point defect ~ 45000.

Sample 2

Relative intensity ~4000-5000. The tendency of scattering changing along the length is all trough the sample.

Rayleigh Scattering Light

Sample	Scattering light (digital unit/cm)	R _{632.8nm} (ppm/cm)
Calibration sample*	5500897	9.3
1 (without the point defect)	1090083	1.8
2	2031482	3.4

*Previous measurements

Thermal lensing at ACIGA

Sapphire test mass (abs = 50 ppm/cm) + High laser power (4kW) => Strong thermal lensing (1) OP difference @waist ~ 30nm Relatively small waist (8mm)

=> High temperature gradient (2)

Temperature profile of the ITM (1W absorbed) CL (1) + (2) : Compensation by heating ring difficult

Compensation plate

Fused silica compensation plate wrapped around an heating wire

Advantage:

- Don't heat the TM
- Heating by conduction
- **Disadvantage**
- Need high AR
- Suspended ?

The power required to correct the thermal lens is only 3W => Solution planned for Gingin

ACIGA Team

