

LIGO Detector Commissioning

Reported on behalf of LIGO colleagues by Fred Raab, LIGO Hanford Observatory

LIGO-G030169-02-W

Basic Signature of Gravitational Waves

Power-Recycled Fabry-Perot-Michelson Interferometer

Commissioning Time Line

Some of the Technical Challenges

- Typical Strains < 10⁻²¹ at Earth ~ 1 hair's width at 4 light years
- Understand displacement fluctuations of 4-km arms at the millifermi level (1/1000th of a proton diameter)
- Control arm lengths to 10⁻¹³ meters RMS
- Detect optical phase changes of ~ 10⁻¹⁰ radians
- Hold mirror alignments to 10⁻⁸ radians
- Engineer structures to mitigate recoil from atomic vibrations in suspended mirrors

What Limits Sensitivity of Interferometers?

- Seismic noise & vibration limit at low frequencies
- Atomic vibrations (Thermal Noise) inside components limit at mid frequencies
- Quantum nature of light (Shot Noise) limits at high frequencies
- Myriad details of the lasers, electronics, etc., can make problems above these levels

Vibration Isolation Systems

- » Reduce in-band seismic motion by 4 6 orders of magnitude
- » Little or no attenuation below 10Hz
- » Large range actuation for initial alignment and drift compensation
- » Quiet actuation to correct for Earth tides and microseism at 0.15 Hz during observation

LIGO-G030169-02-W

Seismic Isolation – Springs and Masses

Seismic System Performance

LIGO-G030169-02-W

Core Optics

• Substrates: SiO₂

- » 25 cm Diameter, 10 cm thick
- » Homogeneity $< 5 \times 10^{-7}$
- » Internal mode Q's > 2 x 10⁶

• Polishing

- » Surface uniformity < 1 nm rms
- » Radii of curvature matched < 3%

Coating

- » Scatter < 50 ppm
- » Absorption < 2 ppm
- » Uniformity <10⁻³

Core Optics Suspension and Control

Shadow sensors & voice-coil actuators provide damping and control forces

Mirror is balanced on 30 micron diameter wire to 1/100th degree of arc

Optics suspended as simple pendulums

LIGO-G030169-02-W

Feedback & Control for Mirrors and Light

- Damp suspended mirrors to vibration-isolated tables
 - » 14 mirrors × (pos, pit, yaw, side) = 56 loops
- Damp mirror angles to lab floor using optical levers
 - » 7 mirrors × (pit, yaw) = 14 loops
- Pre-stabilized laser
 - » (frequency, intensity, pre-mode-cleaner) = 3 loops
- Cavity length control
 - » (mode-cleaner, common-mode frequency, common-arm, differential arm, michelson, power-recycling) = 6 loops
- Wave-front sensing/control
 - » 7 mirrors × (pit, yaw) = 14 loops
- Beam-centering control
 - » $2 \operatorname{arms} \times (\operatorname{pit}, \operatorname{yaw}) = 4 \operatorname{loops}$

Suspended Mirror Approximates a Free Mass Above Resonance

Frequency Stabilization of the Light Employs Three Stages

Pre-stabilized Laser (PSL)

Custom-built 10 W Nd:YAG Laser, joint development with Lightwave Electronics (now commercial product)

Cavity for defining beam geometry, joint development with Stanford

Frequency reference cavity (inside oven)

Interferometer Length Control System

•Multiple Input / Multiple Output

- •Three tightly coupled cavities
- •Ill-conditioned (off-diagonal) plant matrix
- •Highly nonlinear response over most of phase space
- •Transition to stable, linear regime takes plant through singularity
- •Employs adaptive control system that evaluates plant evolution and reconfigures feedback paths and gains during lock acquisition

LIGO-G030169-02-W

Digital Interferometer Sensing & Control System

Digital Controls screen example

Digital calibration input

Why is Locking Difficult?

	One meter
÷10,000 (Earthtides, about 100 microns
÷100	Microseismic motion, about 1 micron
÷10,000	Precision required to lock, about 10 ⁻¹⁰ meter
÷100,000	Nuclear diameter, 10 ⁻¹⁵ meter
÷1,000	LIGO sensitivity, 10 ⁻¹⁸ meter
LIGO-G030169-02-W	LIGO Detector Commissioning 19

Tidal Compensation Data

Microseism

Calibration of the Detectors

- Combination of DC (calibrates voice coil actuation of suspended mirror) and Swept-Sine methods (accounts for gain vs. frequency) calibrate meters of mirror motion per count at digital suspension controllers across the frequency spectrum
- DC calibration methods
 - » fringe counting (precision to few %)
 - » fringe stepping (precision to few %)
 - » fine actuator drive, readout by dial indicator (accuracy to ~10%)
 - » comparison with predicted earth tides (sanity check to ~25%)
- AC calibration measures transfer functions of digital suspension controllers periodically under operating conditions (also inject test wave forms to test data analysis pipelines
- CW Calibration lines injected during running to monitor optical gain changes due to drift

Noise Equivalent Strain Spectra for S1

LIGO Detector Commissioning

LIGO Sensitivity Over Time Livingston 4km Interferometer

Background Forces in GW Band = Thermal Noise ~ k_BT/mode

Strategy: Compress energy into narrow resonance outside band of interest \Rightarrow require high mechanical Q, low friction

LIGO-G030169-02-W

LIGO Thermal Noise Observed in 1st Violins on H2, L1 During S1

~ 20 millifermi RMS for each free wire segment

Commissioning Achievements

- Stable locking of 4-km interferometers with power recycling factors of ~40 and lock durations up to 66 hours
- Achievement of 10⁻¹³ m RMS arm length stabilization
- Steadily improving sensitivity
- Development of digital suspension controllers provides agility in tailoring control-loops
- Partial implementation of wave-front sensing & alignment control stabilizes sensitivity to within several % over 1/2-day time scales
- Tidal and Microseism compensation systems work
- Initial look at thermal-noise parameters exhibit expected properties
- Optical characterization of losses in long arm cavities look good

Commissioning Tasks Remaining

- Complete commissioning of wave-front & beam-centering control systems to stabilize alignment
- Commission intensity stabilization system
- Operate interferometers at full laser power
- Improve RFI immunity
- Install active seismic pre-isolators in Livingston to extend duty cycle
- Compensate for degeneracy issues in recycling cavity

Despite a few difficulties, science runs started in 2002.

LIGO-G030169-02-W