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Sensitivities of Gravitational Wave Antennas

two separate frequency ranges: 1018
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Schemes to move optimal frequencies for Space antennas:
— ASTROD — LISA follow-ons — DECIGO
1074 Hz «— — 1072 Hz — 107! Hz
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Object(ive)s of Gravitational Wave Search

aside from distinct events:
also try to measure stochastic background

triangular configuration
with 3 s/c does not allow

iIndependent measurements

square configuration
with 4 s/c is therefore

\ relative orbits
. of spacecraft

one alternative configuration




Configurations of Square GW Antennas

2 X 7. 85/c In opposition 3 x 4 =" [ZNcyremm triéngle

In all concepts:

importance of independent interferometers
to allow measurement of stochastic background
importance of long baselines between constellations

to provide high angular resolution



Alternative Configuration of an Advanced LISA

currently favored configuration:

6 + 2x3 = 12 spacecraft in ecliptic formation:
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Sensitivity
limitations:

gravitational wave amplitude h

1020

102!

10722

1028

10724

temperature shot antenna
fluctuations noise transfer
function
Sup, -
., A 10°M, BH coalescence z=1
o . 5 _
. A 10°M_ BH coalescence z=1
nearest Con%{; OBMO BH formation 221

C .
[ [ bingyje,

e“\e‘

20 ¢

Q

@
L]

[ 111l I I q O ! |

104 1073 107 107 10°
frequency f (Hz) | Agw = 5x106 km



Sensitivity of LISA:  three distinct regimes:

Sensitivity temperature shot antenna
limitations: fluctuations noise transfer
function
| SU/;
| n . (fna/\,) 5
® acceleration noise 1020 | ‘e A 10°M, BH coalescence z=1
c = e . 5 —
- R A 10°M_ BH coalescence z=1
—3 <) - Nearegy 108M,_ BH formation z=1
below 1072 Hz 3 COnfhigpg o O 1omaton 2
a 102 - Aries
S B
(4] B
e -
> |
o
= 102 L
I B
C |
O -
E |
'c% 102 F
o) B
i Q
1024 | —_ .
L1 Lt e? A I ] | | \QHQ\ I |

104 1073 107 107 10°
frequency f (Hz) | Agw = 5x106 km



Sensitivity of LISA:  three distinct regimes:

Sensitivity temperature shot antenna
limitations: fluctuations noise transfer
function
| SU/;
| - - (”’Q\y 3
® acceleration noise 1020 | ‘e A 10°M, BH coalescence z=1
f, ; o . neay A A 1O5MO BH coalescence z=1
below 10—3 HZ S est Con%aé?bM° BH formation z=1
B2 102 E = - "Narieg
% - %z et
" ® B i E NG o
e shot noise floor s Ll L o <
10=° E . )
-3 —2 [ £ O A Blinto 10, BH 21 \®
1072 to 2x107“ Hz 5 N , - Briinto10°M, Bri == 0¥
s i ’ *,® 4U7820-30
'c% 102 F : .
> i
1024 ; Q \e ﬂbackground, Qo = 108
[ I B | Q? I I | T | \QHQ\ [ R

104 1073 107 107 10°
frequency f (Hz) | Agw = 5x106 km



Sensitivity of LISA:

e acceleration noise
below 1072 Hz

e shot noise floor
1073 to 2x 102 Hz

® antenna response
above 2x 1072 Hz

gravitational wave amplitude h
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Alternative Armlengths of LISA

being discussed in evaluations of LISA:

what can be gained in extremely low-frequency sources
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Concept of ASTROD proposed by Wei-Tou Ni

going to extremely long armlengths

measure (solar) relativistic effects, 3,, and Js

1 spacecraft near Earth
at Lagrange point L1

2 s/c on Earth-like orbits
slightly (20 %) bigger
slightly (20 %) smaller LauncH Position

Outery Orbit

1 .

after about 25 years: Y on
2 distant s/c behind Sun
ideal for measurements of (3,7, Js el (U0 s e T

but particularly bad for GW detection



ASTROD for GW Detection:

during approach, and after “relativistic” configuration

1.20

armlengths of ~ 1..-2AU
good opening angles
only slowly varying < 0.00]

variation of equal sign
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a challenge to M. Tinto's time delay interferometry

“breathing” armlength: further complication

but also considered in some LISA variants

Orbit



Sensitivity

Given in Early ASTROD Literature
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Sensitivity Law : shot noise as function of armlength
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Sensitivity Law : shot noise as function of armlength

e shot noise effect
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Sensitivity of ASTROD:  as compared with LISA:

change in sensitivity due to armlength change by factor «

Sensitivity temperature shot antenna
limitations: fluctuations noise transfer
function
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Sensitivity of ASTROD (as compared with LISA)

given for three assumptions on accelerometer noise:

as in LISA, LISA/30, extreme; shot noise assumed constant
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Technology Demonstrator Mini-ASTROD

as SMART-2 for LISA:

a mission Mini-ASTROD is to
test vital ASTROD technologies

only one spacecraft launched:

behind the sun: after 400 days,

and again after 700, 1100 days
via double swing-by at Venus
with laser as for ASTROD

N

one telescope on ground:
at Kunming Observatory
dedicated for that mission

Phase-A Study to be performed in 2003



Trajectory of Mini-ASTROD

spacecraft launched from Earth (top)
(Earth orbit not shown) ...

_ o4y S
st swingby at Venue / .............. | - oo
0.3 4 /20 Mercury orbit

into Venus-like orbit
with 245 days’ period

2nd swing-by at Venus

Into smaller orbit

with 165 days’ period

S/C behind the sun at days 400, 700, 1100



The Proposing Collaboration for ASTROD:

The project ASTROD has been studied intensely

at Tsing Hua University, Taiwan

It Is now supported simultaneously by
e National Astronomical Observatory of China, Beijing
e Purple Mountain Observatory, Nanjing

e and other Institutions in China and Taiwan



International Collaboration for ASTROD:

ASTROD is a joint project of “the two Chinas”,

as it is supported simultaneously by institutions in

e the People’'s Republic of China, PRC
e the Republic of China, ROC, Taiwan

Further collaborations have been started with
e France, CERGA*, CNES (2003-2005)
e Germany, ZARM™* Bremen
e Germany, Universitat Dusseldorf

Centre d’études et de Recherches en Géodynamique et Astrométrie

Zentrum fiur Angewandte Raumfahrttechnologie und Mikrogravitation



Schedule for Space GW Detectors:
e 2006: LTP on SMART-2
e 2006: ST7 on SMART-2
e 2010: Mini-ASTROD launch ?
e 2011: LISA launch
o 2017: ASTROD launch ?

o 2077: DECIGO launch ? (“before end of this century”)



“Beyond Einstein”
NASA initiative for future research in Relativity

Detector LISA is one prominent mission in this initiative *

* note added in proof: LISA now in top place
Detectors Beyond LISA will form further decisive field
Big Bang Observer (BBO) is one typical project

Such LISA follow-ons will again be opportunity

for close collaboration with ESA



Conclusion:
Although LISA not yet launched:
investigations into LISA follow-ons (below and above)
e are timely
® are necessary
e will encourage international collaboration
e will widen interest in special topics

e will yield great scientific returns

So: let's start working on them, working on an exciting future



The End



