Aspen Winter Conference on Gravitational Waves, February 2003

Gravitational Wave Space Antennas beyond LISA . . .

from LISA follow-ons to ASTROD

Albrecht Rüdiger

Max-Planck-Institut für Gravitationsphysik

mailto:Albrecht.Ruediger@aei.mpg.de

March 17, 2003 LIGO-G030218-00-Z

Talks on Gravitational Wave Space Antennas

at Aspen Winter Conference 2003

Beyond LISA:

- Mon 18:20 A. Rüdiger LISA follow-ons + ASTROD
- Mon 18:55 N. Seto DECIGO

LISA:

- Thu 16:30 M. Tinto Time Delay Interferometry for LISA
- Thu 17:00 A. Krolak On LISA Signal Resolution
- Thu 18:00 J. Camp LISA R&D
- Thu 18:30 M. te Plate LISA Technology Package (LTP)
- Thu 19:00 A. Kuhnert Disturbance Reduction System on ST7

• ... LISA follow-ons

... LISA follow-ons

... LISA follow-ons

ASTROD

or ... DECIGO

next talk, N. Seto

two separate frequency ranges:

Frequency [Hz]

Schemes to move optimal frequencies for Space antennas:

 $\leftarrow \mathsf{ASTROD} \qquad \rightarrow \mathsf{LISA follow-ons} \qquad \rightarrow \mathsf{DECIGO}$ $10^{-4}\,\mathsf{Hz} \ \leftarrow \qquad \rightarrow \ 10^{-2}\,\mathsf{Hz} \qquad \rightarrow \ 10^{-1}\,\mathsf{Hz}$

Object(ive)s of Gravitational Wave Search

- aside from **distinct events**:
- also try to measure stochastic background

Object(ive)s of Gravitational Wave Search

aside from **distinct events**:

also try to measure stochastic background

triangular configuration with 3 s/c does not allow independent measurements

Object(ive)s of Gravitational Wave Search

aside from **distinct events**:

also try to measure stochastic background

triangular configuration with 3 s/c does not allow independent measurements

square configuration
with 4 s/c is therefore
one alternative configuration

Configurations of Square GW Antennas

In all concepts:

importance of independent interferometers
 to allow measurement of stochastic background
importance of long baselines between constellations
 to provide high angular resolution

Alternative Configuration of an Advanced LISA

- currently favored configuration:
- $6 + 2 \times 3 = 12$ spacecraft in ecliptic formation:

 acceleration noise below 10⁻³ Hz

 acceleration noise below 10⁻³ Hz

• shot noise floor 10^{-3} to 2×10^{-2} Hz

 acceleration noise below 10⁻³ Hz

- shot noise floor 10^{-3} to 2×10^{-2} Hz
- antenna response above $2 \times 10^{-2} \,\mathrm{Hz}$

Alternative Armlengths of LISA

being discussed in evaluations of LISA: what can be gained in extremely low-frequency sources

Bad (Acc + Sh.n.) Long LISA, + BadAcc Short

Concept of ASTROD

going to extremely long armlengths measure (solar) relativistic effects, β , γ , and J_2 1 spacecraft near Earth at Lagrange point L1 2 s/c on Earth-like orbits

slightly (20 %) bigger slightly (20 %) smaller

after about $2\frac{1}{2}$ years: 2 distant s/c behind Sun

ideal for measurements of eta,γ,J_2

but particularly bad for GW detection

proposed by Wei-Tou Ni

ASTROD for GW Detection:

during approach, and after "relativistic" configuration

armlengths of $\sim 1 \cdots 2 \, \mathrm{AU}$

good opening angles

only slowly varying

variation of equal sign

arms rather unequal:

a challenge to M. Tinto's time delay interferometry

"breathing" armlength: further complication but also considered in some LISA variants

Sensitivity Given in Early ASTROD Literature

• shot noise effect

$$\widetilde{h}_{\mathrm{sh.n.}} = \frac{\widetilde{\delta L}_{\mathrm{sh.n.}}}{L} \sim \frac{1}{L\sqrt{P_{\mathrm{recv}}}}$$

• shot noise effect

$$\widetilde{h}_{\mathrm{sh.n.}} = \frac{\widetilde{\delta L}_{\mathrm{sh.n.}}}{L} \sim \frac{1}{L\sqrt{P_{\mathrm{recv}}}}$$

• received power

$$P_{\rm recv} \sim \frac{P_0}{L^2}$$

• shot noise effect

$$\widetilde{h}_{\rm sh.n.} = \frac{\widetilde{\delta L}_{\rm sh.n.}}{L} \sim \frac{1}{L\sqrt{P_{\rm recv}}}$$

• received power

$$P_{\rm recv} \sim \frac{P_0}{L^2}$$

• thus sensitivity

$$\widetilde{h}_{\mathrm{sh.n.}} = \frac{\widetilde{\delta L}_{\mathrm{sh.n.}}}{L} \sim \frac{1}{\sqrt{P_0}}$$

• shot noise effect

$$\widetilde{h}_{\mathrm{sh.n.}} = \frac{\widetilde{\delta L}_{\mathrm{sh.n.}}}{L} \sim \frac{1}{L\sqrt{P_{\mathrm{recv}}}}$$

• received power

$$P_{\rm recv} \sim \frac{P_0}{L^2}$$

• thus sensitivity

$$\widetilde{h}_{\mathrm{sh.n.}} = \frac{\widetilde{\delta L}_{\mathrm{sh.n.}}}{L} \sim \frac{1}{\sqrt{P_0}}$$

independent of arm length L

Sensitivity of ASTROD: as compared with **LISA**:

change in sensitivity due to armlength change by factor $\boldsymbol{\alpha}$

Sensitivity of ASTROD: as compared with **LISA**:

change in sensitivity due to armlength change by factor $\boldsymbol{\alpha}$

shot noise floor remains acceleration as $1/\alpha$

response regime: as α

Sensitivity of ASTROD: as compared with **LISA**:

change in sensitivity due to armlength change by factor $\boldsymbol{\alpha}$

shot noise floor remains acceleration as $1/\alpha$

response regime: as α

express change as shift in **frequencies**: acceleration: as $1/\sqrt{\alpha}$

response: as α

Sensitivity of ASTROD (as compared with LISA)

given for three assumptions on accelerometer noise: as in LISA, LISA/30, extreme; shot noise assumed constant

Technology Demonstrator Mini-ASTROD

N

as SMART-2 for LISA: a mission Mini-ASTROD is to test vital ASTROD technologies

only **one** spacecraft launched: behind the sun : after 400 days, and again after 700, 1100 days via double swing-by at Venus with laser as for ASTROD

one telescope on ground: at Kunming Observatory dedicated for that mission

Phase-A Study to be performed in 2003

Trajectory of Mini-ASTROD

spacecraft launched from Earth (top) (Earth orbit not shown)

1st swing-by at Venus into Venus-like orbit with 245 days' period

2nd swing-by at Venus into smaller orbit with 165 days' period

S/C behind the sun at days 400, 700, 1100

The Proposing Collaboration for ASTROD:

The project **ASTROD** has been studied intensely at Tsing Hua University, Taiwan

It is now supported simultaneously by

- National Astronomical Observatory of China, Beijing
- Purple Mountain Observatory, Nanjing
- and other Institutions in China and Taiwan

International Collaboration for ASTROD:

ASTROD is a joint project of "the two Chinas", as it is supported simultaneously by institutions in

- the People's Republic of China, PRC
- the Republic of China, ROC, Taiwan

Further collaborations have been started with

- France, CERGA*, CNES (2003–2005)
- Germany, ZARM** Bremen

*

**

• Germany, Universität Düsseldorf

Centre d'études et de Recherches en Géodynamique et Astrométrie

Schedule for Space GW Detectors :

- 2006: **LTP** on SMART-2
- 2006: **ST7** on SMART-2
- 2010: Mini-ASTROD launch ?
- 2011: LISA launch
- 2017: **ASTROD** launch ?
- 20??: **DECIGO** launch ? ("before end of this century")

"Beyond Einstein"

- NASA initiative for future research in Relativity
- Detector LISA is one prominent mission in this initiative * * note added in proof: LISA now in top place
- Detectors **Beyond LISA** will form further decisive field
- Big Bang Observer (BBO) is one typical project
- Such LISA follow-ons will again be opportunity for close collaboration with ESA

Conclusion :

- Although **LISA** not yet launched:
- investigations into LISA follow-ons (below and above)
 - are timely
 - are necessary
 - will encourage international collaboration
 - will widen interest in special topics
 - will yield great scientific returns

So: let's start working on them, working on an exciting future

The End