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Possible sources at £ > 2 kHz

Neutron stars 1n binary orbits: mergers, disruptions with
black holes.

Formation of neutron stars: ringdown after initial burst.

Neutron star vibrations, wide spectrum up to 10 kHz.
Can be excited by formation, merger, or glitches.

Stochastic background of primordial origin
Speculative possibilities:
— Black holes below 3 Mg

— Compact objects in dark matter

— Thermal spectrum at microwave frequencies, but only 1f
inflation did not happen!
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Neutron star
physics

Neutron stars are
among the most

complex and interesting

physical systems

Determining normal

mode frequencies could
illuminate the structure

of neutron stars in the
way helioseismology
has allowed us to look
inside the sun.
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Oscillation
frequencies of
neutron stars

Figure from Kokkotas &
Andersson, gr-qc 0109054,
shows modes of non-rotating
stars

Modes could be excited by
violent events or by more
modest glitches.

Glitches occur often 1n young
pulsars, making Crab a good
target.

Glitch energy < 10-1Y Mg ¢?
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Stochastic Background

* Only firm limit at high frequencies is Q,,, < 10,
from cosmological nucleosynthesis.

» Inflation predicts Q,, <1071

 Many mechanisms have been proposed to generate
backgrounds between these limits, some relying on
string physics or branes.

« Expected astrophysical backgrounds are stronger
than the inflation bound over most of the

observable GW spectrum. The 10 kHz band 1s an
exceptionally clean window 1n this way.
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Possible detector strategies
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Synthesizing a broadband detector at high
frequencies -- current GEO600 capability
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Source strengths
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Interferometers at high frequencies

Interferometers have potentially extremely good high-
frequency sensitivity. By implementing simultaneous multi-
band signal recycling, they can synthesize a broadband
instrument.

While an interferometer like Advanced LIGO could
implement this strategy, 1t would be expensive compared to
resonant-mass detectors that improve over LIGO’s standard
power-recycled sensitivity. There would also be severe
operational constraints from competing observing goals.

A third-generation detector could implement this as standard,
but this might force design compromises with its low-
frequency goals, where seismic noise, gravity-gradient noise,
and the quantum “limit” are design drivers.

GEO600 1s planned to become a platform for implementing
HF techniques once it is eclipsed by Advanced LIGO.
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A dedicated high-frequency interferometer

Our third-generation strategy for interferometers should be to
address low- and high-frequency extensions with separate 1FOs.

An nterferometer dedicated to high frequencies could be much
less costly. Sacrificing LF sensitivity offers big cost savings:

— Seismic isolation can be relatively crude.

— Arm-length can be shorter and still give good performance.

Technological challenges demanding but not necessarily costly:

— Thermal performance crucial: sapphire or silicon masses, ultimately cryogenic.
— Broadband operation requires very high laser power: diffractive optics.

A carefully designed HF-IFO performing better than the limits
shown earlier could be built 1n parallel with Advanced LIGO,
enabling neutron star seismology before the end of the decade.

Two such instruments near to one another might be the most
realistic and 1nexpensive way of reaching the inflation bounds on
a stochastic background.
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