

Analysis of Data from LIGO and GEO

Bruce Allen, University of Wisconsin – Milwaukee On behalf of the LIGO Scientific Collaboration Amaldi Meeting, 7 July 2003

Outline of talk

- » The first two science runs (S1 and S2)
- » Analysis Tools & Facilities
- » Overview of S1 analysis:
 - » Binary Coalescence

LIGO

- Details: Gonzalez, 14:15 on July 9th
- Poster: Brown, "Testing the LIGO Inspiral Analysis with Hardware Injections"
- Paper approved by LSC; will be posted on gr-qc after some editorial changes.
- » Pulsars and CW Sources
 - Details: Allen & Woan, 14:30 on July 9th
 - Paper approved by LSC; will be posted on gr-qc after some editorial changes.
- » Stochastic Background
 - Details: Whelan, 14:00 on July 9th
 - Paper approved by LSC; will be posted on gr-qc after some editorial changes.
- » Unmodeled Burst Sources
 - Details: Weinstein, 13:45 on July 9th
 - Results: PRELIMINARY
- » Plans for S2 and beyond

LIGO-G030327-00-Z

G LIGO Sensitivity Improvements 600 Strain Sensitivity for the LLO 4km Interferometer 31 January 2003 LIGO-G030014-00-E 1e-16 1e-17 1e-18 **First Science Run S1** 1e-19 h[f], 1/Sqrt[Hz] 1e-20 ~ Second Science Run S2 1e-21 **LIGO Target Sensitivity** 18 May 2001

Lock Summaries S1/S2

	S1	S2
Dates	23/8-9/9/02	14/2-14/4/03
	<u>Hours</u>	<u>Hours</u>
Runtime	408 (100%)	1415 (100%)
Single IFO statistics:		
GEO:	400 (98%)	
<u>H1</u> (4km):	235 (58%)	1040 (74%)
<u>H2</u> (2km):	<mark>298 (73%)</mark>	<mark>818 (58%)</mark>
<u>L1</u> (4km):	170 (42%)	<mark>523 (37%)</mark>
Double coincidence:		
<u>L1</u> && <u>H1</u> :	116 (28%)	<mark>431 (31%)</mark>
<u>L1</u> && <u>H2</u> :	131 (32%)	<mark>351 (25%)</mark>
<u>H1</u> && <u>H2</u> :	188 (46%)	<mark>699 (49%)</mark>
Triple coincidence:		
<u>L1, H1, and H2</u> :	<mark>96 (23%)</mark>	<mark>312 (22%)</mark>
Sensitivities:	GEO << H2 < LIGO-G030327-00-Z	< H1 < L1

Sensitivity in S1

LIGO

LIGO-G030327-00-Z

LSC Data Analysis Organization

- LSC data analysis is organized in four working groups. Each has two co-chairs:
 - » **Binary inspiral**: Patrick Brady [UWM], Gabriela Gonzalez [LSU]
 - » Pulsars/CW: Maria Alessandra Papa [AEI], Mike Landry [LHO]
 - » **Stochastic BG**: Joe Romano [UTB], Peter Fritschel [MIT]
 - » Burst: Erik Katsavounidis [MIT], Stan Whitcomb [CIT]
- Each group has had dozens of weekly teleconferences, face-to-face meetings, presentations to the LSC, etc.
- LSC LIGO-I author list has ~300 individuals and ~30 institutions from the USA, Europe, and Asia

LIGO

LSC Data Analysis Tools and Facilities

- Data Analysis Tools:
 - » Software Libraries: LAL, LALAPPS, DMT, Frame, FFTW, ...
 - » LIGO Data Analysis System (LDAS)
 - » Data Monitor Tool (DMT)
 - » Condor (for standalone jobs on clusters)
 - » Matlab (graphical/analytical analysis)
- Large Data Analysis Facilities (main S1):
 - » Sites: LLO (70 dual nodes), LHO (140 dual nodes), CIT (210 dual nodes)
 - » Tier I Center: Caltech (210 dual cpu nodes + all level 1 data in SAN-QFS system)
 - » Tier II Centers: UWM (Medusa, 300 nodes), PSU (under design)
 - Other LSC Resources: AEI (Merlin, 180 dual cpu nodes), UTB (Lobizon, 128 nodes), MIT (112 nodes), Cardiff (80 dual cpu nodes)

Search for Inspirals

• Sources:

LIGO

- » Compact neutron star binaries undergoing orbital decay and coalescence.
- » Masses, positions, orbital parameters, distances: unknown

• Analysis goals:

- » Develop and test an inspiral detection pipeline incorporating instrumental vetos and multi-instrument coincidence
- » Obtain upper limit on the NS-NS inspiral rate
 - For setting upper limits, need a source distribution model:
 - S1 range included Milky Way (our Galaxy) and LMC and SMC
 - S2 range includes Andromeda

Search for Inspirals

• S1 Search method:

LIGO

- » Optimal Filtering used within LDAS to generate "triggers"
 - Used only most sensitive two IFOs: H1 and L1. Distance to an optimally-oriented SNR=8 source is L1: 176 kpc, H1: 46 kpc.
 - Bank of 2110 second post-Newtonian stationary-phase templates for 1< m1 \leq m2 < 3 solar masses with 3% maximum mismatch for total mass < 4 solar masses
 - Threshold on ρ >6.5 and χ^2 <5(8 + 0.03 ρ^2) [8 frequency bins]
- » DMT used to generate "vetoes" and select data. Criteria established with playground dataset:
 - Eliminate contiguous science-mode intervals with large band-limited GW noise (6 minute stretch with 3σ or 10σ compared to average for the entire run).
 - H1: vetoed ±1 second windows from reflected port PD (avg arm length), eliminating 0.2% of data.
- » Require coincidence in time (11 msec) and chirp mass (1%) for triggers which are strong enough to be seen in both detectors
- » Upper limit set by measured detection efficiency at highest SNR event

• S1 results:

- » No event candidates found in coincidence
- » 90% confidence upper limit: inspiral rate < 170/year per Milky-way equivalent galaxy, in the (m1, m2) range of 1 to 3 solar masses.

- **Source:** PSR J1939+2134 (fastest known rotating neutron star) located 3.6 kpc from us.
 - » Frequency of source: known
 - » Rate of change of frequency (spindown): known
 - » Sky coordinates (α , δ) of source: known
 - » Amplitude h_0 : unknown (though spindown implies $h_0 < 10^{-27}$)
 - » Orientation 1: unknown
 - » Phase, polarization ϕ , ψ : unknown

• S1 Analysis goals:

- » Search for emission at 1283.86 Hz (twice the pulsar rotation frequency). Set upper limits on strain amplitude h_0 .
- » Develop and test an efficient analysis pipeline that can be used for blind searches (frequency domain method)
- » Develop and test an analysis pipeline optimized for efficient "known target parameter" searches (**time domain method**)

Search for Continuous Waves

• S1 Search Methods:

LIGO

» done for all four detectors: L1, H1, H2, G with standalone codes running under Condor.
» No joint IFO result (timing problems, L1 best anyway)

»Frequency-domain method (optimal for detection, frequentist UL):

- Take SFTs of (high-pass filtered) 1-minute stretches of GW channel
- Calibrate in the frequency domain, weight by average noise in narrow band
- Compute F = likelihood ratio (analytically maximized over ι , ϕ , ψ)
- Obtain upper limit using Monte-Carlo simulations, by injecting large numbers of simulated signals at nearby frequencies

Stochastic Radiation

Sources

- » Early universe sources (inflation, cosmic strings, etc) produce very weak, non-thermal unpolarized, isotropic, incoherent background spectrum
- » Contemporary sources (unresolved SN & inspiral sources) produce power-law spectrum
- » Indirect constraints on fractional energy density $\Omega_{GW}(f) < 10^{-5}$

• Analysis goals:

- » Directly constrain $\Omega_{GW}(f)$ for 40 Hz < f < 314 Hz
- » Investigate instrumental correlations

Stochastic Radiation

S1 search method

LIGO

- » Done within LDAS
- » Look for correlations between pairs of detectors
- » Break data into (2-detector coincident) 900-second stretches
- » Break each of these into 90-second stretches
- » Window, zero pad, FFT, estimate power spectrum for 900 sec
- » Remove ¼ Hz bins at n•16 Hz, n•60 Hz, 168.25 Hz, 168.5 Hz, 250 Hz
- » Find cross-correlation with filter optimal for $\Omega_{GW}(f) \propto f^0$
- » Extensive statistical analysis to set 90% confidence upper limit

• S1 search results:

- » H1-H2 cross-correlation contaminated by environmental noise (corresponding to $\Omega_{\rm GW}$ < 0)
- » Limit from H2-L1 (with 90% confidence): Ω_{GW} (40Hz 314 Hz) < 23±4.6

Stochastic Radiation

Limit from H2-L1: Ω_{GW} (40Hz - 314 Hz) < 23±4.6

LIGO-G030327-00-Z

- **Sources:** phenomena emitting short transients of gravitational radiation of unknown waveform (supernovae, black hole mergers).
- Analysis goals:
 - » Don't bias search in favor of particular signal model(s)
 - » Search in a broad frequency band
 - » Establish bound on rate of (uncalibrated) instrumental events using [triple] coincidence techniques
 - » Interpret these bounds in terms of source/population models in rate versus strength plots

• S1 Search methods:

- » Create database of instrumental monitor triggers using DMT
- » Create database of GW triggers using LDAS
 - "SLOPE" algorithm (time domain) is an optimal filter for a linear function of time with a 610 μ sec rise-time.
 - "TF-Clusters" algorithm identifies regions in the time-frequency plane with excess power (threshold on pixel power and cluster size).
- » Veto GW trigger events by using instrumental monitors. (Thresholds set with playground data.)
- » Use time-shift analysis to estimate background rates, and Feldman-Cousins to set upper limits or confidence belts
- » Use Monte-Carlo studies to determine detection efficiency as a function of signal strength and model

Bursts

• **PRELIMINARY** S1 Search results:

» (for 1ms Gaussian pulses):1.6 events/day rising up as the detection efficiency reduces (50% efficiency point is at h~3x10⁻¹⁷).

Figo Plans for S2 and beyond

•

- Inspiral
 - » (If no detections) get better upper limit, making use of longer observation time, additional sources in Andromeda
 - » Improved data quality cuts and statistical testing; coherent analysis
 - » Search for non-spinning BHs up to ~20 solar masses (or UL)
 - » Search for MACHO binaries (low mass BHs) in Galactic Halo
- Burst
 - » "Eyes wide open" search for signals in the 1-100 msec range
 - » Triggered search for correlations with GRBs
 - » Modeled search for
 - Black hole ringdown
 - Supernovae waveform catalog
 - » Four-way coincidence with TAMA

- Pulsar Time domain method:
 - » Upper limits on all known pulsars > 50 Hz
 - » Search for Crab
 - » Develop specialized statistical methods (Metropolis-Hastings Markov Chain) to characterize PDF in parameter space
- Pulsar Frequency domain method
 - » Search parameter space (nearby all-sky broadband + deeper small-area)
 - » Specialized search for SCO-X1 (pulsar in binary)
 - » Incoherent searches: Hough, unbiased, stack-slide
- Stochastic
 - » May optimally filter for power-law spectra: $\Omega_{GW}(f) \propto f^{\beta}$
 - » Correlate ALLEGRO-LLO
 - » Technical improvements: apply calibration data once/minute, overlapping lowerleakage windows, study H1-H2 correlations in more detail.