Simulating Thermal Effects in Gravitational Wave Interferometers using MATLAB

Melody

Amber Bullington Stanford University July 11, 2003

LIGO-G030362-00-Z

Outline

Motivation

Increased Sensitivity with Higher Laser Power

- The Problem
 - Thermal Distortion Reduces Sensitivity
- The Approach
 - Melody: Object-Oriented MATLAB Model
 - Simulates Thermal Loading in Optical Cavities
 - Ref: Beausoleil et al., Model of Thermal Wave-Front Distortion in Interferometric Gravitational Wave Detectors I: Thermal Focusing, JOSA B, June 2003

Thermal Effects

Thermal Focusing

- Test mass temperature gradient not too large
- Temperature distribution yields a weak positive lens
- Thermoelastic Surface Deformation
 - Stress/strain due to coating and substrate absorption
- Elasto-optic Effect
 - Stress changes index of refraction
 - Important for sapphire test masses
 - Alters thermal focusing slightly

R. Lawrence, thesis, 2003

Key Features of Melody

- 'Object-Oriented Design
 - Classes: Laser_Field, Mirror, Beamsplitter, LIGO
- Cavity Modes
 - Hermite-Gauss Basis (TEM_{mn})
 - User specifies number of modes
- Melody accounts for
 - Thermal distortion
 - Aperture diffraction
 - Mirror/Incident field curvature mismatch
 - Optic displacement from servo control
- Seeks Self-Consistent Solution to a System Perturbed from Steady State

Simulations of LIGO

LIGO with Sapphire

LIGO w/ Sapphire: Lower Loss Beamsplitter

Conclusion

- Thermal Effects
 - Important factor for GW sensitivity
- Melody provides insight into impact of thermal effects on passive cavities
 - When do thermal effects become significant?
- Future Work
 - Add Parameters for Modeling a Curved Beamsplitter
 - Verify Results with Experiment

http://www.phys.ufl.edu/LIGO/LIGO/STAIC/SOFT/