

LIGO Commissioning Report

LSC Meeting, Hanover August 19, 2003 Peter Fritschel, MIT

Starting point: 2nd Science Run

Inspiral Sensitivity

➤ L1: ~900 kpc

➤ H1: ~350 kpc

➤ H2: ~200 kpc

■ Duty cycle

> L1: 37%

➤ H1: 74%

➤ H2: 58%

> Triple: 22%

Major commissioning tasks for the S2:S3 interim

- Increase the effective laser power
 - > S1-to-S2: increased AS port detector power approx. 30x still not all
 - ➤ Increase input power achieve thermally lensed, stable PRC
- Mitigate acoustic coupling at detection ports
 - Combination of improved acoustic isolation; reduction of acoustic noise sources; reduction of physical coupling mechanisms
- □ Continue implementation of wavefront sensor (WFS) alignment control
 - Achieve the control and stability H1 had during S2 for all three ifos full implementation still post-S3
- ☐ Fix in-vacuum problems
 - > Each ifo: takes approx. 4 weeks of full ifo time out of the 22 wks avail.

Motivation for increasing input power: recycling cavity degeneracy

□ RF sideband efficiency is very low

- H1 efficiency: ~6% (anti-symmetric port relative to input)
- ▶ lack of ITM thermal lens makes g₁·g₂ > 1 unstable resonator: low sideband power buildup

Bad mode overlap!

Thermal Lensing Investigations

SB gain turns
over before
reaching the
expected value
of 35:
asymmetrical
thermal
lensing?

For now (S3), H1 operates at 2.3 W input

Getting to high power: optical gain increase for LSC Photodiodes

☐ Dynamic range problem: 1000x

- > Locking ~100 μA / running ~100 mA
- Separate PDs for locking (low power) and running (high power)
- Remote dial for laser power

ASI Servo

AS Port AS quadrature signal dominant!

- Multiple AS port detectors
 - \rightarrow H1: P_{AS} = 500-600 mW \rightleftharpoons 4 detectors
 - ➤ L1: $P_{AS} = \sim 20-30 \text{ mW} \implies \text{detector}$

Getting to high power: radiation pressure

■ Not a small effect!

Mode cleaner length shift (2kW)

Arm cavity angular shift 2cm de-centering at 5kW

Hanover

Getting to high power: sequence

- □ Acquire lock at low power, ~1 Watt
 - > Separate, low-power 'acquisition photodetectors' used to acquire
- Engage common mode servo (laser frequency feedback) & transition to detection mode
 - > Reduces residual demodulation signal levels
- □ Ramp up input power, wait for thermal lens to form (~15 min)
 - Radiation pressure angle shifts corrected with wavefront sensor feedback, ultimately
 - So far, have used WFS for ETMs & dc optical lever feedback for ITMs
- ☐ Implemented on H1: up to 2.3 W into MC, close to 5kW in each arm

Adaptive Feedback Control for Power Increase

Acoustic Noise Coupling

- □ Peaks occur in 50-1000 Hz band, at a level 10-100x the design sensitivity
 - ➤ Major source for H1/H2 broad-band correlations
 - Source for H1/H2 coincident bursts (?)
- □ So far, dominant mechanism appears to be beam clipping, rather than backscattering
 - > Appear directly on AS_Q, through the AS port detection chain
 - ➤ Also via the PRC (& MICH) loops, throug the pick-off detection chain, and the PRC (MICH) coupling to AS_Q

Acoustic Mitigation: 3 prong attack

Acoustic enclosures around output tables

- Outfitted with low-frequency damping panels
- Factor of 15 reduction in acoustic noise
- > AS port enclosures in place for S3

□ Reduce couplings

- Simplify beam path: eliminate E-O shutters, larger optics (S3)
- New stiffer periscope (S3)
- Investigation of table supports: float tables?

Reduce source

- Muffle fan noise at electronics crates
- Racks on isolation legs (S3)
- Move racks out of VEA
- Reduce HVAC noise (S3)
- Insulate mechanical room

Sensitivity tested by adding acoustic noise:

Latest H1 spectrum: high power & acoustic improvements

InspiralRange = 1506kpc

- 2 AS port photodetectors, 20 ma avg. DC current each
- Acoustic peak improvements due to simplified AS port detection chain

T0=11/08/2003 03:03:09g=20/Bin=5L

BW=0.187493

Status of WFS alignment control

- □ S2: H1 had 4 of 5 (low-bandwidth) feedback loops; L1 & H2 only 1
- Now, H1 & L1 have:
 - Closed all 5 feedback loops
 - 1-few Hz bandwidth for AS port WFS to ETMs
 - Less than 0.1 Hz bandwidth for others sensors; system becomes unstable for higher gain
 - Included a low-bandwidth feedback using the ETM transmission quad detectors, to counter spot position drift
- ☐ Still needs work to make reliable & routine
 - S3: goal is long-term power stability at least as good as H1 during S2
- □ Post S3
 - ➤ Increased control bandwidth to reduce short-term power fluctuations, & allow (noisy) optical lever damping to be turned off
 - Simulation (SimLIGO) is being used to develop a high-bandwidth, multiple degree-of-freedom feedback solution

Low-bandwidth Auto-Alignment System

In-vacuum fixes

- □ Schnupp asymmetry on 4 km IFOs
 - Common mode error signal: uses reflected RF sidebands (SB) as local oscillator field
 - Design intent: choose asymmetry to have a SB field reflectivity of 10%
 - Reality: asymmetry was made the same as the 2 km: too small
 - ITMs moved along optic axis by approx. 3 cm
- Suspension wire protection
 - > 2 wire cutting incidents on H2
 - Baffles installed to protect wires

In-vacuum fixes, cont'd

□ L1 recycling cavity length

- Lack of RF sideband power buildup suggested the recycling cavity length was off by a couple of cm
- Error verified by locking the recycling cavity, and performing an AM sweep across a higher-order resonance
- One ITM moved to simultaneously correct recycling cavity length and Schnupp asymmetry

■ Impact

- More SB power for AS_Q, MICH and PRC error signals: better shot noise sensitivity
- Allows thermal lensing to be characterized

In-vacuum fixes: new H2 ITMX

- ☐ H2 recycling gain always low, up to ~20
- □ ITMX AR surface reflectivity measured insitu at ~3%
 - Reflectivity scan after removal
 - Transmission map also shows spatial variation
- New ITMX installed in June
 - Recycling gain up to 55 seen so far

Additional Tasks

- □ High power necessities
 - > PSL/IO maintenance: tune/replace lasers, lossy pre-mode cleaners & EOMs
 - > Remote power adjustment installed
- Lower noise coil drivers
 - > H1: output electronics noise now below SRD level at all frequencies
- Automated initial alignment
 - > H1: using additional WFS at AS port to auto-align both arm cavities
- □ Digital mode cleaner alignment system
 - ➤ L1: MC WFS feedback to MC mirrors, to stabilize residual fluctuations
- □ RFI cleanup: linear power supplies
 - > H1 & H2 now complete, benefit seen
- Photon calibrator
 - One installed on an H1 ETM
- Install atomic clocks for timing diagnostics
 - > Verify GPS timing, synchronize photon calibrator; S3 readiness not certain

Summary for S3

Currently ongoing efforts:

- □ High power operations
- Acoustic mitigation
- Improved alignment control

Significant improvement in H1 sensitivity in hand

One week Engineering run starting 17 October, allows one week before S3 to fix problems