The VIRGO large mirrors : a challenge for low loss coatings

Laurent PINARD SMA - VIRGO LYON FRANCE

Université

http://lyoinfo.in2p3.fr/sma/Smagb.htm

The VI RGO large coater

- ➢ Dimension: 2.2x2.4x2.4 m³
- Base Pressure: 2.10⁻⁸ mbar in 3 hours Clean vacuum (cryo pumps, primary dry pumping)
- I on Beam Sputtering technology
- ➢ Environment: Class 1 Clean Room

Universite

L. PINARD

First VIRGO End Mirror (December 2001)

- ➢ Bulk diameter : 350 mm
- ➢ Coating diameter : 330 mm
- Bulk Thickness : 96 mm
- ➤ Weight : 20 kg

6 components ready in June 2002 (Planning OK), installation in progress

Eduardo Amaldi 5 July 10, 2003

Universite

SI

Optical Performances Ø350 mm, Thk. 96mm

SIDE B measurements	VI RGO specifications	SMA-VIRGO mesurements
average scattering	< 5 ppm	4 ppm 150×150 mm²
average transmission	10 < T < 50 ppm	42,9 +/- 0,2 ppm Ø50 mm
average absorption	< 5 ppm	0,63 +/- 0,07 ppm Ø150 mm
wavefront flatness	< 8 nm RMS Ø150 mm	3,8 nm RMS Ø150 mm
shape	concave 3450 +/- 100 m Ø150 mm	concave 3580 +/- 17 m Ø150 mm

Université

Lyon

S

L. PINARD

LIGO-G030490-00-Z

VIMO1 Input Mirror

Optical Performances Ø350 mm, Thk. 96mm

	measurements	VI RGO specifications	SMA-VIRGO mesurements
	average scattering (HR)	< 5 ppm	7 ppm Ø100 mm 5 ppm Ø60 mm
	average scattering (AR)	< 5 ppm	0,9 ppm Ø100 mm
	transmission difference between VIM01 and VIM02	ΔT < 0.12 %	ΔT = 0,14 +/- 0,03 % Ø100 mm
	average absorption (HR)	< 5 ppm	1,2 +/- 0.1 ppm Ø150 mm
	wavefront flatness (HR)	< 8 nm RMS Ø60 mm	2,6 nm RMS Ø60 mm
	transmitted wavefront	-	2,5 nm RMS Ø60 mm
	reflexion (AR)	R < 500 ppm	132 +/- 2 ppm Ø100 mm
5	July 10, 2003		

L. PINARD

Université

Lyon

S

LIGO-G030490-00-Z

VIMO1 Input Mirror

Surface/Bulk Absorption measurement

- Photothermal Deflection Developed with ESPCI
- ➤ Mappings up to Ø400 mm
- Sensitivity
 - 20 ppb surface
 - 30 ppb/cm bulk

L. PINARD

LIGO-G030490-00-Z

VIMO1 Input Mirror

Bulk Absorption measurement

0,74 +/- 0,05 ppm/cm Ø150 mm

Universite

Lyon

SI

<u>Virgo requirement</u> : < 1 ppm/cm for transmissive component

July 10, 2003

Suprasil 311/312 SV (low -OH)

Eduardo Amaldi 5

Mirror Coating R&D

✤ Difficult to improve

scattering (point defects, roughness) keep the scattering level in the ITF

✤ I mproving the mirrors surface flatness

- coating thickness uniformity
- > corrective coating : flat, special shapes

✤ Improving the material properties

- absorption
- mechanical loss \$\phi\$

Eduardo Amaldi 5 July 10, 2003

Université

L. PINARD

LIGO-G030490-00-Z

