Using LIGO to search for high frequency coherent fields that couple to two photons

A.C.Melissinos, M.Bocko, W.Butler University of Rochester

8/20/2003

LIGO-G030521-00-Z

CLASSICAL "PICTURE" of LIGO

1. GRAVITATIONAL FIELD
CONSIDER: SINGLE ARM, OPTIMAL INCIDENCE,
$$\Omega L/c \ll 1$$

FIELD IMPOSES SIDEBANDS
 $E_{\pm} = (2kL)hE_c e^{i(\omega \pm \Omega)t}$
IF THE FIELD (ENERGY) DENSITY IS ρ_g
 $h_g^2 = \rho_g (32 G_N / c^2) / \Omega^2$

2. A SCALAR FIELD THAT COUPLES TO 2-PHOTONS WITH (INVERSE ENERGY) STRENGTH 1/Λ IMPOSES SIDEBANDS AS WELL

 $h_a^2 = \rho_a (2/\Lambda)^2 \hbar c^3 / \omega_a^2$

QUANTUM "PICTURE" of LIGO

SIDEBANDS AT $\pm \Omega$ ARE DUE TO ABSORPTION AND STIMULATED EMISSION OF A GRAVITON FROM/INTO THE FIELD

•ENERGY CONSERVATION IS SATISFIED •LINEAR AND ANGULAR MOMENTUM IS BALANCED BY THE RIGID MIRRORS •LORENTZ INVARIANCE IS SATISFIED BY DIRECTION/POLARIZATION OF THE SIDEBANDS •IF THE FIELD IS COHERENT AND IF ω+Ω AND/OR ω-Ω IS RESONANT THE SIDEBAND AMPLITUDE WILL GROW IN TIME: WE SPEAK OF PARAMETRIC CONVERSION

PARAMETRIC CONVERSION

1.	THE LIC	O IFO ADMITS A SPECTRUM OF DISCRETE
	FREQUENCIES v _n	
	THE FREQUENCIES ARE EQUALLY SPACED	
		$\Delta v \equiv v_0 = 2L/c$
	-	v ₀ IS THE FREE SPECTRAL RANGE (fsr)
	n+1	$v_0 = 37.52 \text{ kHz}$
	n	WHEN THE IFO IS LOCKED ONLY ONE MODE IS OCCUPIED $n = v_n / v_0 \approx 10^{10}$
	n-1	THE WIDTH OF THE MODES IS
		$\delta = v / Q$ $Q = F (2L / \lambda) \approx 10^{12}$

IN THE PRESENCE OF A PERTURBATION AT FREQUENCY

 $\Omega/2\pi \approx \Delta v = v_0$

THE (n+1) AND (n-1) MODES BECOME POPULATED

9/25/2003

LSC 8/20/03 Sidebands

2. EXPECTED SIGNAL

- E_n FIELD IN MODE n
- $E_{n\pm 1}$ FIELD IN MODE $n\pm 1$
- η or h DIMENSIONLESS PERTURBATION
 - FOR $E_{n\pm 1} \ll E_n$ AND $t \gg Q / \omega$

 $E_{n\pm 1} = \frac{1}{2}Q \eta E_n$

3. EXAMPLE: END MIRROR (ETM) MOTION $x = x_0 \cos \Omega t$ $\eta = x_0 / L$ $\omega_{\tau} = v_0 (\pi / F)$ $E_{n\pm 1} = E_n \eta (L / \lambda_0) F / [1 + (\Omega_{mod 2\pi vo} / \omega_{\tau})^2]^{\frac{1}{2}}$ On resonance $E_{n\pm 1} = \frac{1}{2} Q \eta E_n \sim 10^{12} \eta E_n$

PARAMETRIC SIGNALS AT 37.52 kHz

SINGLE ARM

FULL IFO Narrow peak: Common mode Broad peak: Differential mode

LSC 8/20/03 Sidebands

ARBITRARY INCIDENCE

For $\theta = 0$ $H_1(\Omega = 2\pi v_0) = 0$

For $\theta \neq 0$ $H_1(\Omega = 2\pi v_0) \neq 0$ and the signal is enhanced at $\Omega = n(2\pi v_0)$ n = 1,2...

HIGH FREQUENCY, ΩL/c>>1

For free test masses the response decreases as $(2\pi v_0)/\Omega$

For fixed test masses the response is constant at the dc value.

Normalized frequency = $\Omega/4\pi v_0$

DETECTION OF AXION FLOW

ASSUME STATIONARY AXION FIELD $a(r,t) = |a| e^{i\Omega t}$ $\Omega = m_a$ $E_c = E_0 e^{i\omega t} (e^{ikz} + e^{-ikz})$ $\mathcal{L} = (E_c \cdot B_s)a$ E_s perpendicular to E_c

SIDEBAND FIELD $E_s = E_s e^{i(\omega + \Omega)t} (e^{ikz} + e^{-ikz})$

 E_s beats with E_c with wavelength $\lambda = 1/m_a$

Consider only frequencies $\Omega = n (2\pi v_0)$

Sidebands will resonate and maintain their phase along z Thus they stimulate further transitions. In the steady state $E_s = \frac{1}{2} (h_a Q) E_c$ Detect sidebands as usual by beating against the rf sidebands

SENSITIVITY

 $\begin{array}{lll} \rho_a \sim 1.7 \times 10^{-24} \ g/cm^3 &= 10^3 \ MeV/cm^3 &\sim 10^5 \ \rho_c \\ m_a \sim 10^{-5} \ eV &\to & \Omega = 1.5 \times 10^{10} \ r/s \ ; & \Lambda = 10^{14} \ GeV \\ \end{array}$ Find

 $h_a = (2/\Lambda)(c/\Omega)\sqrt{(\rho\hbar c)} = 6 \times 10^{-19}$

EXPECTED LINE WIDTH

$$\Delta f_a \sim 10^{-6} f_a \sim 2.5 \text{ kHz}$$

COMPARE TO CAVITY WIDTH $\sim 250 \text{ Hz}$
For $T_{\text{INTEGRATION}} = 10^5$ S/N = 10⁴

If $m_a \neq \Omega_n$ SCAN CAVITY ARM LENGTH ~ 3 cm

RELATIVISTIC FIELDS

EXAMPLES: QUINTESSENCE, DILATON NOW PROPAGATION DIRECTION AFFECTS THE PHASE AT THE DETECTOR COLLINEAR PROPAGATION IS OPTIMAL

USE OPTICAL TECHNIQUES TO ISOLATE SIDEBANDS

FABRY-PEROT ETALON $L = 1.5 \text{ cm}, F \sim 10^5$ fsr = 10 GHzResolution = 100 kHz IF THE LINE IS BROAD "COMB OF SIDEBANDS"

